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Comparative studies of free and immobilized partially purified
lipase from Aspergillus niger NRRL-599 produced from solid-
state fermentation using gelatin-coated titanium nanoparticles
and its application in textile industry
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Background and objective
Lipases (triacylglycerol acylhydrolase, EC. 3.1.1.3) belong to a class of hydrolases
that are specific for the hydrolysis of fats into fatty acids and glycerol that havemuch
application in different industrial processes. Fungi, yeast, and bacteria have been
reported to be sources of lipase. There are many immobilized methods for enzyme,
and the commonly used methods are physical adsorption, entrapment, and cross-
linkage. This study aimed to evaluate lipase production by Aspergillus nigerNRRL-
599 in solid cultivation using agro-industrial waste as a substrate. Partial purification
of the crude enzyme and its characterization and immobilization using
nanoparticles were carried out. The potential application of the immobilized and
partially purified enzyme was also studied in the field of textile.
Materials and methods
Partially purified A. niger NRRL-599 lipase was immobilized by physical adsorption
onto modified titanium dioxide nanoparticles using gelatin and palmitic acid binders
and characterized by transmission electron microscopy, dynamic light scattering,
and Fourier-transform infrared.
Results and conclusion
In our study, lipase produced by A. niger NRRL-599 was partially purified by
ammonium sulfate at 60% saturation and immobilized on gelatin-coated titanium
dioxide. Comparison between the properties of the free and the immobilized A.
nigerNRRL-599 lipase formswas carried out. The optimum pHwas 9.0 and 10.0 for
the free and immobilized forms, respectively. The half-life of the soluble-free lipase
at 50 and 55°C was 17.3 and 23.1min, respectively, whereas for the immobilized
form was 23.1 and 34.6min, respectively. At 50 and 55°C, the deactivation rate
constants (kD) for soluble lipase were 6.6×10−3 and 5×10−3, respectively, and
6.6×10−3 and 3.3×10−3, respectively, for immobilized lipase. The Km was 11.11 and
12.5mM for the immobilized and free forms, respectively. The Vmax was 416.6U/mg
protein and 296.3U/mg protein for immobilized and free lipase forms, respectively.
This confirms that the apparent affinity toward the substrate increases by
immobilization. Partially purified lipase and immobilized enzymes were used in
the textiles in the treatment of wool fibers before dying to improve the color strength.
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Introduction
Lipids represent a large part of the earth’s biomass, and
lipolytic enzymes take part in their degradation.
Recently, microbial lipases were preferred over plant
and animal lipases for industrial applications owing to
their reusability [1,2]. Different species of bacteria,
yeasts, and fungi can produce lipase with different
biological properties [3,4]. Lipases are used in
several industries such as fat oleo-chemical industry
for initiation of hydrolysis and glycolysis of mixed
substrates [5], detergent industry, food processing
industry for flavor improvement and to improve
Wolters Kluwer - Medknow
quality of food by lipolytic hydrolysis of fats and
cream [2], paper making industry to remove
hydrophilic compounds from pulp [6], and textile
industry to increase fabric absorbability [7]. Lipases
are also commercially used in biodegradable polymer
production, cosmetics [8], tea processing, and
resolution of the racemic mixtures [9].
DOI: 10.4103/epj.epj_90_21
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Enzyme immobilization has many advantages that
were already discussed such as improving both the
stability of biocatalyst as well as the mass transfer in
case of nanoparticles, in addition to their reuse in the
reaction of interest [10]. The application of enzyme
immobilization in large-scale applications depends on
the support, which may be rigid, elastic, permeable,
nonpermeable, macroporous particles, or nanoparticles
[11].
Materials and methods
Chemicals
All media components were purchased from Adwic
Company. Chemicals and reagents were purchased
from Aldrich (St. Louis, MO, USA) and were of
analytical grade.
Microorganism and culture maintenance
Aspergillus niger NRRL-599 was obtained from the
National Research Center Culture collection
(Department of Natural and Microbial Products)
and was refreshed in potato dextrose agar slants that
were kept at 30°C for 7 days. The slants were then
placed at 4°C. The culture was maintained in 50% (v/v)
glycerol stocks at −80°C.
Solid-state fermentation and extraction of the enzyme
Overall, 3 g of olive oil cake as substrate was taken in
250-ml Erlenmeyer flasks and supplemented with
2.5% tap water to maintaining initial moisture. The
flasks were sterilized by autoclave at 121°C for 15min.
After cooling, 4ml of inoculum of the fungal strain A.
niger NRRL-599 was added to the solid substrate and
incubated at 25°C for 16 days [12]. At the end of the
fermentation period, the crude enzyme was extracted
by mixing the fermented substrate with 100ml of tap
water and then shaking the mixture in a reciprocal
shaker at 200 rpm for 15min. The obtained extract was
filtered, and the supernatant was used as crude lipase
enzyme [13].
Solid substrate
Olive oil cakes were supplied by the oils department,
National Research Center. The olive oil cakes used in
all the experiments were from the same batch of the oil
production and were frozen at −80°C before use.
Lipase assay
Lipase activity was determined using 1ml of culture
filtrate mixed with 3-ml emulsion of olive oil in Arabic
gum (10%w/v) and 2.5ml of deionized water in 1ml of
0.1M Tris-HCl buffer (pH 7.5). After incubation for
2 h at 37°C and 160 rpm, the reaction was stopped by
the addition of 10ml of 99% acetone or ethanol
solution. The mixture was then titrated against
0.05N NaOH using thymolphthalein as an
indicator. Blank assays were conducted by boiling
the enzyme. One unit of lipase activity is defined as
the amount of enzyme that liberates 1 μmol of free fatty
acids per minute under assay conditions [14].
Protein determination
The protein content was determined according to the
Lowry method [15] using bovine serum albumin as a
standard.
Enzyme partial purification
Crude lipase was concentrated and fractionated using
ammonium sulfate. Ammonium sulfate was added to
the crude lipase with gentle stirring at 4°C to bring
saturation to 20%. The precipitation was collected by
centrifugation (10 000 rpm, 15min, and 4°C) and
suggested as fraction 0–20% (F20). Additional
ammonium sulfate was added to the supernatant to
bring the saturation to 40% and the same treatment was
done as 20% saturation to give a fraction of 20–40%
(F40). The same work was done for saturation 60% to
give a fraction of 40–60% (F60), 80% to give a fraction
of 60–80% (F80), and then 100% to give a fraction of
80–100% (F100). All fractions were dissolved in 5ml of
distilled water. The fractions were then dialyzed using a
dialysis membrane at 4°C against cold distilled water
and then dissolved with 0.1M Tris-HCl buffer (pH
7.5). The lipase activity and protein content of each
fraction were measured, and the specific activities were
determined [16].
Immobilization of lipase on gelatin-coated titanium
dioxide nanoparticles
Adsorption of partially purified lipase on TiO2

nanoparticles was achieved by incubating 1ml of the
enzyme (10mg of lyophilized partial purified enzyme
containing 200U/mg, dissolved in distilled water, pH
6.6) with 50mg of TiO2 and 50mg of palmitic acid
with the addition of tween 80 under stirring, followed
by the addition of 50mg of gelatin dissolved in traces of
distilled water. The mixture was incubated at 30°C
overnight with continual shaking and then centrifuged
at 10 000 rpm for 15min at 10°C. The adsorbed
enzyme-containing TiO2 nanoparticles were
removed from the solution and dried. The enzyme
activity was measured [17].
Characterization of the TiO2 nanomaterials
Fourier-transform infrared spectroscopy

Samples were lyophilized, and the powder was mixed
with potassium bromide (KBr) to form a thin pellet.
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Fourier-transform infrared analyses were performed in
a Perkin Elmer 2000 spectrophotometer used to record
between 4000 and 400 cm−1.
Transmission electron microscope

Morphological and dimension of samples were
characterized by a transmission electron microscopy
(TEM) (JEOL Electron Microscopy JEM-100 CX;
JEOL). Zeta potential analyzer (Nano-ZS, Malvern
Instruments Ltd, Worcestershire, UK) was used to
determine the average diameter and size
distribution. The samples were diluted (five times)
by deionized water just before assessment [18]. All
of the analyses were carried out at the National
Research Center.
Determination of free and immobilized enzyme
properties
Optimum pH and pH stability

Enzyme activities of both free and immobilized
partially purified enzymes were measured at 37°C at
different pH values using citrate buffer pH from 3.0 to
5.0, 0.2M phosphate buffer pH from 6.0 to 8.0, and
glycine-NaOH buffer pH from 9.0 and 10. The pH
stability in the range of 3.0–10 was examined by
incubating the enzyme solution at different times
(15, 30, and 60min) at 30°C with the tested buffer,
and then, the residual activity was determined.
Optimum temperature and thermal stability
The optimum temperature was determined by
measuring the enzyme activity for the free and
immobilized partially purified enzyme at
temperatures from 20 to 45°C in pH 9.0 and 10 for
free and immobilized partially purified enzymes,
respectively. For thermal stability, both free and
immobilized partially enzymes were incubated at
25°C to 60°C with different incubation periods (15,
30, and 60min) in the absence of substrate, and the
relative activity was determined in glycine-NaOH
buffer pH (9.0 and 10) for free and immobilized
partially purified enzymes, respectively.
Determination of kinetic parameters and thermal
properties of lipase
The activity of free and immobilized partially purified
lipase was assayed with olive oil concentration from
0.7–3.6mM. The Michaelis-Menten constant (Km)
and maximum reaction velocity (Vmax) were
established from the Lineweaver-Burk plot [19].
The activation energy (Ea) was determined by
plotting the log of the relative activity of the assayed
temperature against 1/T (Kelvin) of free and
immobilized enzymes [20].

Ea ¼ slope× 2:303R:

Where Ea is the activation energy and R is the gas
constant (1.976).

Half-life and the deactivation constant rate were
determined [21] by plotting the log of relative
activity against time according to the following
equation: half-life=0.693/slope and deactivation
energy=slope of the straight line.
Pretreatment of wool by enzyme
Wool fibers were treated by the microwave technique.
The wool fibers were treated by different enzyme
concentrations (1.5–5.5%, v/w) for 5min [22].
Dyeing wool fibers using the microwave method
In a dye bath containing 2 g/l of saffron natural dye
with a liquor ratio of 1 : 50, the wool fibers treated with
different concentrations of free and nanoenzymes were
dyed by microwave heating at pH 5 for 5min. The
dyed samples were rinsed with warm water and then
cold water, washed in a bath containing 5 g/l nonionic
detergent at 50°C for 30min and then rinsed and dried
in air at room temperature [22].
Measurements of color strength (K/S value)
An UltraScan PRO spectrophotometer was used to
measure the reflectance of the samples, and hence, the
K/S was measured spectrophotometrically at
wavelengths (λmax) of 370 nm. The K/S of untreated
and pretreated wool fibers with free and immobilized
enzymes and dyed with saffron natural dye was
evaluated.
Scanning electron microscopy
The surface morphology of untreated and treated wool
fibers was investigated using scanning electron
microscopy (SEM), with a JSMT-20, JEOL, Japan.
Before the examination, the wool fiber surface was
prepared on an appropriate disk and randomly coated
with a spray of gold.
Results and discussion
The maximum lipase activity was recorded in the
fraction precipitated by 40–60% ammonium sulfate
saturation (F60), where the enzyme showed an
increase in SEA from 976.7 to 3200±1U/mg protein
(purification fold 3.2).

The profile of ammonium sulfate precipitation
indicates that the specific enzyme activity increased
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from 0.1-fold with fraction 1 precipitated at 0–20%
(F20) to 3.2-fold with fraction three precipitated at
40–60% (F60). The partial purification profile shows a
marked decrease in protein content at fractions F20
and F60, which may be attributed to the possible
removal of interference. Similar results were also
observed for the purification of lipase from
Pseudomonas aeruginosa srt 9 [23]. The high recovery
of lipase activity in the successive fractions may be
owing to its high stability [24]. The low recovery of
lipase activity in fraction 4 (F80) may be owing to the
increase in addition of (NH4)2SO4, whichmay result in
a drop in pH and consequently a loss in enzyme activity
even in a well-known buffered system [25]. Thus,
fraction 3 (F60) contained most of the enzymatic
activity, and it was considered to be a partially
purified enzyme and was used for further studies.

Characterization studies of the partially purified lipase
bound to TiO2 nanoparticles

The morphology of the naked and lipase-bound
titanium dioxide was studied using a TEM (Fig. 1).
The carrier appeared to be rod-shaped in Fig. 1A, the
free lipase has different morphologies in Fig. 1B, and
the enzyme appears to be adsorbed on the surface of the
modified TiO2 nanoparticles in Fig. 1C was spherical
like shape. As a result, the enzyme adsorption and
incorporation in gelatin–TiO2 nanocomposite was
discovered in matrices. Immobilization could be
considered as a powerful tool that helps in the
stabilization of the free enzyme. The support
material used for enzyme immobilization is an
important key parameter owing to the effect of this
material on the properties of the catalytic system [26].
These observations were confirmed by the particle size
Figure 1

TEM images of the immobilized lipase (c) on gelatin-coated TiO2 nanopar
100 nm. TEM, transmission electron microscopy.
distribution analysis. The particle size and the
distribution were measured using the dynamic light
scattering method, which is the most popular and
common technique for determining the size
distribution particles of nano-micelle in suspension
[27,28].

The results in Fig. 2 and Table 1 show that the carrier
had two peaks of particle size around 729.4 and 108.2
dnm, with PDI of about 0.702. The free enzyme had
particle sizes around 534.7 and 95.19 dnm, with PDI of
0.482. On the contrary, immobilized lipase had one
peak, with a small particle size around 160.5 dnm and
PDI of 1.000. Thus, it is important to note that the
strategy used to synthesize nanoparticles was efficient
because of the presence of agglomeration of more than
one particle in the solution. This agreed with what was
stated by Yang et al. [28]. To verify the incorporation of
partially purified enzyme on the nanocomposite,
Fourier-transform infrared spectroscopy absorption
spectra were measured for the samples (Fig. 3):
gelatin titanium dioxide nanocomposite (a), free
partially purified lipase (b), and immobilized lipase
(c). It was observed that in case of the carrier, the
characteristic bands were assigned at 3610, 3420, 2870,
2840, 1735, 1650, 1450, and 1250 cm−1 corresponding
to OH (str) vibration of water adsorbed on the TiO2

surface [27], the OH stretching and N-H stretching of
primary and secondary amines, C-H2 stretching, C-H
stretching of carboxylic acid, and C<td:glyph
name=}dbnd}/>O of ester groups. N-H bending,
C-H bending, and C-N stretching groups proved
the formation of gelatin coated to TiO2

nanoparticles. After lipase immobilization, all of the
bands mentioned before were also observed but with
low intensities. This may be owing to the physical
ticles in comparison with the carrier (a) and free enzyme (b) at 50 and



Figure 2

Particle size distribution analysis of the immobilized lipase in comparison with the carrier and free enzyme.

Table 1 Particle size analysis of the carrier, free enzyme, and
immobilized enzyme using dynamic light scattering

Sample code Particle size (dnm) PDI

Carrier 729±190.6, 81.2% 0.702

108±23.19, 18.8%

Free enzyme 534±115.4, 88.3% 0.482

95±15.46, 11.7%

Immobilized enzyme 160±8.293 1.000

Figure 3

FTIR spectra of immobilized lipase compared with the free enzyme and
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attachment of immobilized lipase. On the contrary, in
the case of the free enzyme, the pattern exhibited a
characteristic band at 1713 cm−1, which disappeared
after immobilization of the enzyme. The bands at
1631 and 1628 cm−1 for free enzyme and at 1628
and 1628 cm−1 for carrier were transferred to 1628
and 1627 cm−1, respectively, after immobilization
[29,30].
carrier. FITR, Fourier-transform infrared.
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Characterization of free and immobilized partially
purified enzyme
Effect of pH value on the activity of free and immobilized
enzymes

Specific enzyme activities for both free and
immobilized lipase enzymes were detected at
different pH values (Fig. 4). pH values 10.0 and 9.0
were found to be the optimum for immobilized and
free enzymes, respectively. The immobilized lipase had
a higher specific enzyme activity (3275±0.4U/mg
protein) than the free one (2175±0.42U/mg
protein). The pH stability of both the free and
immobilized enzymes was studied at broad pH range
values (6–10) (Fig. 5). The immobilized lipase was
stable in pH ranges 7.0–8.0 for 60min, whereas the
free one was stable in pH ranges 7–10 for 15min only.
This indicates that the immobilization appreciably
improved the lipase stability in the neutral and
alkaline regions for a longer time, indicating that it
has a great potential for applications in textiles and
Figure 4
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detergent industries [31]. Similar results were obtained
using Rhizopus oryzae [32] and Fusarium globulosum
[33].

Effect of temperature on activity and thermal stability
of free and immobilized partially purified lipase
enzymes

The temperature dependence of both free and
immobilized lipase enzymes is illustrated in Fig. 6.
Maximum specific enzyme activity of the free and
immobilized occurred at 40°C (2225±0.5 and 3300
±0.9U/mg protein, respectively). Although a gradual
decrease of the specific enzyme activities was detected
on increasing the temperature, the activity of the
immobilized lipase was still higher than the free
enzyme. Similar results were observed by Bruno et al.
[34]whofoundthat theoptimumtemperaturewas (40°C)
for both immobilized and free lipase of Mucor miehei.
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The relative activity of both free and immobilized
lipase was determined at different temperatures, and
the results are shown in Fig. 7. The temperature
profile for the free enzyme showed that 100%
residual activity was attained after 15min
incubation at 45°C and 80% residual activity was
still retained after 60min incubation at 60°C. On
the contrary, the immobilized enzyme was more
tolerant to thermal treatment where it retained
100% residual activity after 15min incubation at
50°C and only got 90% residual activity after
60min at 60°C. This phenomenon was similar to
previous reports in which the immobilization of
lipase is stable in comparison with soluble nature
form in terms of a long incubation period at a high
temperature [35].
Effect of temperature on kinetic behavior of free and
immobilized lipase
The temperature data were plotted in the form of
Arrhenius plots (Fig. 8), from which the energy of
activation was calculated. Ea for immobilized and free
lipase forms was 0.4 and 0.5 kcal/mole, respectively. In
the immobilized enzyme form, the energy of activation
of lipase is 20% lower. Lower activation energy of
immobilized enzyme form compared with that of
the free enzyme may be attributed to the diffusion
resistance of product and substrate in the case of
immobilization [36].The heat activation profile of
free and immobilized enzymes provides a
relationship between the enzyme substrate structure
and function at different temperatures (Table 2). The
deactivation rate constantKd is an important parameter
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Table 2 Thermaldeactivation rate constant (Kd) and times of half-life (t1/2) of the free partially purified and immobilized lipase of
Aspergillus niger NRRL-599 at different temperatures

Kinetic parameter Partially purified enzyme (free) Immobilized enzyme

Activation energy (kcal/mol) 0.5 0.4

Half-life (min)

50°C 17.3 23.1

55°C 23.1 34.6

Deactivation rate constant (h)

50°C 6.6×10−3 6.6×10−3

55°C 5×10−3 3.3×10−3

Figure 9
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to initiate economic bioprocess at the industrial level.
The half-lives of the immobilized enzyme at 50 and
55°C were 23.1 and 34.6min, respectively, proving to
be higher than those of the free enzyme, which were
17.3 and 23.1min, respectively. The deactivation rate
constant Kd at 50 and 55°C was 6.6×10−3 and 5×10−3

for free lipase, respectively, and 6.6×10−3 and 3.3×10−3,
respectively, for immobilized form. The deactivation
rate constant value at increasing temperatures showed
that the immobilized enzyme is highly stable compared
with the free one.
Effect of substrate concentration on lipase activity
Effect of substrate concentration on lipase activity

The activity of the free and immobilized enzymes was
estimated at various olive oil concentrations. The
enzyme activity increases with increase in the
substrate concentration up to 3.5mM for both free
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and immobilized enzymes (data not shown). The
reaction kinetics of two forms of lipase were
estimated from the Lineweaver-Burk plot under
optimal conditions (Fig. 9A and B). The results
indicated that Km value of immobilized lipase
(11.11mM) was less than that of free (12.5mM),
which in turn pointed to the high affinity of the
immobilized enzyme to the substrate [36]. In
addition, the Vmax of immobilized lipase was higher
than that of free form by 1.4-fold.

The catalytic efficiency (Vmax/Km) for the immobilized
form was greater than that of the free form by 1.58-
fold, and this indicated that the rate of conversion of
substrate product is higher in the immobilized form
[37].
Applications of TiO2 nanoparticles for obtaining smart
textiles
Scanning electron microscopy

SEM images (Fig. 10) showed that the scale of the
untreated wool fiber is clear and arranged compactly
around the fiber. The scales were changed slightly after
the treatment with soluble and immobilized enzymes
Figure 11
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scanning electron microscopy.
using gelatin-coated titanium dioxide as the foreign
material observed in the SEM image.
Effect of different concentrations of enzyme on fibers
dyed with saffron dye
The obtained results indicated that the high value of
color strength was higher than untreated wool fibers. It
is also observed that pretreatment with immobilized
enzyme exhibited higher values of color strength than
pretreatment with enzyme free. The pretreatment
using 1.5% (v/g) of immobilized enzyme gave the
highest value of color strength (K/S) for wool fibers
dyed with saffron natural dye using the microwave, as
shown in Fig. 11.
Conclusion
In this study, lipase was produced by A. niger NRRL-
599 using agro-industrial waste (olive oil cake) as
substrate by solid-state fermentation. The
exploitation of waste material for the production of
valuable products like economic enzymes supports
commercialization activities; in addition, it may help
in solving pollution problems. Lipase was partially
4 5 6

 of enzyme (g/l)

K/S Treated with nano enzyme

ol fiber dyed with saffron.

parison with free wool fibers dyed with saffron natural dye. SEM,
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purified by 60% ammonium sulfate and then
immobilized on modified titanium dioxide
nanoparticles by adsorption. This method was simple
and economic. Optimization of the immobilization
parameters such as pH and temperature was studied
to get the maximum specific enzyme activity (3300
±0.9U/mg protein). The research found that there
was a significant improvement in pH and heat
stability. Kinetic studies showed that the substrate
affinity for the immobilized enzyme is great, and it
exhibited lower Km and higher Vmax compared with
the free enzyme. The results represented the potential
applicability of immobilized enzymes for industrial
applications in the textile industry.
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