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Background and objective
Microbial levansucrase (LS) is a good source for the production of biologically
active fructo-oligosaccharides and levan, which have diverse applications in
pharmaceutical industries. Therefore, recent studies have focused on the
enhancement of LS production through searching for potent microbial producers
and optimization of the fermentation conditions. The present study aimed to use
agro-industrial waste as a cost-effective carbon source for LS production and
maximize the enzyme yield by optimization of the cultural conditions.
Materials and methods
A potent fungal producer of LS was isolated from an Egyptian soil sample that was
collected from Giza Governorate at a depth of 5 cm and identified based on internal
transcribed spacer identification and then submitted to the gene bank database.
The production of LS by the isolated strain was optimized by evaluating the best
fermentation state and agro-industrial waste to be used in the fermentation process.
After that, further optimization of culture medium composition was established by
two statistical designs: the Plackett–Burman design followed by central composite
design.
Results and conclusion
The isolated strain was identified as Aspergillus niger MK788296. The first
optimization approach declared that using the submerged fermentation
technique and utilizing potato peels as the main carbon source led to a 2.4-fold
increase in LS production. The statistical optimization resulted in a massive LS
production (18870.3U/ml) with a 59.4-fold increase in enzyme yield than the
nonoptimized culture conditions.
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Introduction
Levansucrase (LS; E.C.2.4.1.10) is a
fructosyltransferase that belongs to the glycoside
hydrolase family 68 [1]. LS can be produced by
plants, bacteria, and fungi. It is widely distributed in
gram-positive and negative bacteria. The most
common bacterial sources of this enzyme are
Pseudomonas, Zymomonas, Bacillus, and
Corynebacterium. Fungal fructosyltransferase can be
found in Aspergillus, Penicillium, and Fusarium [2–4].
LS catalyzes three reactions, including hydrolysis,
transfructosylation, and polymerization, and
according to the acceptor molecule, fructo-
oligosaccharides (FOS) or levan polymers were
synthesized. FOS and levan have promising
applications in the pharmaceutical and food
industries due to their several biological activities,
including prebiotic, anticancer, and antioxidant
activities [5,6].
Wolters Kluwer - Medknow
LS production using Bacillus and Aspergillus spp. in
several studies was carried out by submerged
fermentation (SMF), and fewer studies could
produce LS by solid-state fermentation (SSF)
[1,7–11]. Use of agro-industrial waste as the main
carbon source and using statistical factorial designs
for optimization of the fermentation medium
constituents exert a significant positive effect on
microbial enzyme production [12]. Agricultural by-
products such as corn cobs, wheat bran, sugarcane
bagasse, rice straw, aguamiel, banana peels, coffee
by-products, lemon waste, and orange peels were
utilized as the main substrates for LS production by
many authors [8,13–16]. These wastes are eco-friendly
DOI: 10.4103/epj.epj_92_22
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and reduce the production cost at the industrial scale.
The growing need for FOS and levan in many
industrial fields urged many researchers to optimize
LS production. The traditional one-factor-at-a-time
methods are time consuming; therefore, statistical
optimization is preferable for significant
enhancement of microbial enzyme production as
many variables could be studied with a low number
of experiments [17,18]. Several studies focused on the
optimization of medium composition for microbial
levan production. Meanwhile, fewer studies are
concerned with the optimization of the LS
[4,19–22]. Response surface methodology was used
by Erdal et al. [23] to evaluate the best level of
initial pH, sucrose concentration, and fermentation
temperature for maximum LS production by
Zymomonas mobilis NRRL B-14023. Box-Behnken
design was used by Gonçalves et al. [24] to optimize
LS production by Bacillus subtilis Natto CCT 7712.
Materials and methods
Isolation of microbial strains
Several sources were used for the isolation. Themicrobial
strains used in this study were isolated from
environmental samples, including soil (local sample
from Giza Governorate), Red Sea water (collected at a
depth of 10m in winter season from Hurghada
Governorate, Egypt), sugarcane bagasse, soil-sugarcane
bagasse mixture, sugarcane juice, and sugarcane juice-
sucrose mixture. Samples (0.1ml) were collected directly
from liquid sources. On the contrary, the solid samples
(10 g) were mixed with 100-ml sterile distilled water in a
shaker incubator at 200 rpm for 30min before being
spread on both sucrose agar and PDA. The microbial
isolates colonies were picked and purified.
Screening for microbial levansucrase producer
Microbial suspensionsof the isolatedstrainswereprepared
by scratchingone slantwith10-ml steriledistilledwater.A
volume of 1ml of each microbial suspension was
transferred to a sterile 250-ml Erlenmeyer flask
containing 2-g crushed lemon peels and 50ml of the
basal nonoptimized medium. The basal medium used
was composed of (g/l) yeast extract, 5; KCl, 0.5;
MgSO4.7H2O, 0.5; sucrose, 10; and the initial pH was
7.0 [25].The flaskswere incubated ina shaker incubator at
150 rpm for 7 days for fungi and 48h for bacteria at 30°C.
Cooling centrifugation was performed to get the culture
filtrates, which were assayed for LS activity.
Levansucrase assay
The assay of LS activity was established according to
the method by Yanase et al. [26], where 0.5-ml enzyme
solution was mixed with 0.5ml of 0.2M acetate buffer
(pH 5.2), 0.5ml of distilled water, and 1ml of 20%
sucrose solution. The mixture was incubated for 15min
at 30°C. The produced sugars were measured via a
glucose oxidase kit. One unit of LS activity was defined
as the amount of LS that produces 1 μmole fructose per
minute.
Identification of the fungal isolate
The fungus with the potent LS production was
identified based on morphological characterization
and internal transcribed spacer (ITS) identification
by Sigma Scientific Services Company, 6th of
October city, Egypt. The fungal DNA extraction
was established by Quick-DNA Fungal/Bacterial
Microprep Kit. The PCR was made using Maxima
Hot Start PCRMasterMix, ITS 1 forward primer, and
ITS 4 reverse primer [27,28]. The PCR product was
cleaned up using GeneJET PCR Purification Kit. The
sequencing was made by the use of an ABI 3730xl
DNA sequencer. The sequence was aligned with
NCBI (National Centre for Biotechnology
Information) database using the BLAST tool
(https://www.ncbi.nlm.nih.gov), and a phylogenetic
tree was constructed using the Phylogeny.fr website.
Preliminary physiological optimization of levansucrase
culture conditions
SSF and SMF techniques were used to investigate the
LS production utilizing several agro-industrial wastes
(lemon peels, potato peels, Molokhia stalks, orange
peels, sugarcane bagasse, wheat straw, banana peels,
and corn cobs) as the main carbon source. In SSF, a
weight of 2 g of each waste was moistened with 10ml of
the basal medium in static conditions, whereas in SMF,
the waste was moistened with 50ml of the basal
medium and shaken at 150 rpm.
Statistical optimization of levansucrase culture conditions
Two-step experimental designs were carried out to
maximize LS production. The first design
[Plackett–Burman design (PBD)] was used to detect
the significant medium constituents and production
conditions for LS. The second step was central
composite design (CCD), which was used to detect
the best concentrations for the significant factors
determined by the PBD. The design of the two
statistical experiments and the analysis and
calculations of the results were performed using
DesignExpert software (version 13) fromStat-Ease Inc.
Plackett–Burman design
The PBD was used to study the qualitative effect of
factors that influence LS production [21]. Eleven
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factors were selected for the study, and each variable
was presented at two levels, high (+1) and low (−1). The
total number of experiments was 12 runs based on the
rule n+1, where n represents the number of factors
under investigation. The 11 factors studied were yeast
extract (A), ammonium sulfate (B), sucrose (C),
fructose (D), MgSO4.7H2O (E), KCl (F),
MnCl2.4H2O (G), FeSO4.7H2O (H), tween 80 (J),
plant waste weight (K), and incubation period (L).

The following equation developed by PBD showed the
dependence of production of LS by Aspergillus niger
isolate on the medium constituents:

Where β0 is the intercept, β1–β9 are the coefficient
estimates, and A, B, C, D, E, F, H, K, and L are the
independent variables.

The coefficient estimate represents the expected
change in response per unit change in factor value
Figure 1

Similarity between the Aspergillus niger isolate and other A. niger strain
when all remaining factors are held constant. The
intercept in an orthogonal design is the overall
average response of all the runs.
Central composite design
The CCD was used to investigate the quantitative
effect of the most suitable significant factors
detected by PBD. Five factors were detected in the
study. Each variable was presented at five levels. The
total number of experiments was 50 runs including
eight central points in a quadratic design model. The
five factors studied were yeast extract, plant waste
(potato peels), KCl, MgSO4.7H2O, and incubation
period.
Results and discussion
Screening and identification of the fungal isolate
A. niger was the most LS promising producer isolate
among the isolated strains in the presence of lemon
peels as the main carbon source in SMF. It was noticed
that the ITS sequence of the isolated strain had 99.05%
s registered in NCBI database.
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similarity to more than 20 different A. niger strains
registered in the NCBI database (Fig. 1).

This similarity affirms the isolated strain identification.
The partial ITS sequence was submitted to the gene
bank database (NCBI) as A. niger MK788296. The
phylogenetic tree illustrates the relation between A.
niger isolate and other related strains (Fig. 2). The
present work detected a potent fungal source (A. niger
MK788296) for the microbial production of LS, which
is mainly produced by bacteria as reported by Mostafa
et al. [15] and Charoenwongpaiboon et al. [29]. Some
studies investigated fructosyltransferase production
from fungal strains, especially A. niger isolates
[9,30]. The presented isolated fungus can be used as
a promising source of LS enzyme as it can produce
317.49U/ml LS in the nonoptimized medium,
whereas the maximum LS production from
recombinant Bacillus licheniformis RN-01 was
65.7U/ml as reported by Sangmanee et al. [31].
Hamdy et al. [32] screened 13 bacterial isolates for
LS production, and the best enzyme production was
94.1U/ml from B. subtilis HMNig-2. LS produced by
Pediococcus acidilactici bacteria showed 12.64U/ml
enzyme activity as illustrated by Youssef et al. [33].
Effect of the fermentation state condition and the type
of agro-industrial wastes
In the present study, there was a variation in LS
production yield depending on the production
technique and the agro-industrial wastes used. The
preliminary screening of A. niger isolate MK788296 in
SMF using the basal medium and lemon peels resulted
Figure 2

Phylogenetic tree of Aspergillus niger isolate.
in the production of LS by 317.49U/ml. On the
contrary, SSF resulted in a massive decrease in LS
yield by 5.3 folds (60.214U/ml). This result is similar
to observations reported by Prapulla et al. [7] and
Ganaie et al. [34] and in contrast to Sangeetha et al.
[8], Lateef et al. [9] and Dahech et al. [1]. The
preference of SMF may be due to the need of the
microorganism to high moisture environment for
enzyme production [35].

The major studies that used SMF for LS production
mainly utilized soluble carbon source (sucrose) as the
main substrate. Ganaie et al. [36] examined the
production of fructosyltransferase by 20 different
microorganisms in SMF using sucrose as the sole
carbon source, and the highest enzyme activity was
35.64, 33.73, and 31.85U/ml produced by A. niger (SI
19), Aspergillus flavus NFCCI 2364, and Aspergillus
terreus (NFCCI 2347), respectively. Gonçalves et al.
[24] produced LS from B. subtilis natto CCT 7712 in
SMF using soluble carbon substrate in the culture
medium (sucrose 300 g/l), and the highest activity
detected was 8.53U/ml. Bersaneti et al. [10] found
that the best LS production (23.9U/ml) by B. subtilis
natto was detected in SMF in a medium containing
sucrose (420.7 g/l) as the main carbon source. The
present study is one of the rare studies that used
agro-industrial wastes instead of the soluble carbon
source (sucrose) as the main substrate for LS
production in SMF as utilizing wastes is more
common in SSF as reported by Mostafa et al. [15].
Among all the tested wastes in both SSF and SMF,
potato peel in SMF was the carbon source with the



Figure 3

Effect of agro-industrial waste and fermentation state condition on LS production. LS, levansucrase
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highest LS productivity (760.89U/ml) with a 2.4-fold
increase than lemon peels under the same conditions
(Fig. 3). Utilizing agro-waste instead of sucrose is a
better substrate for LS production as it is an eco-
friendly way to recycle agro-wastes and at the same
time decrease the cost of enzyme production. In the
present study, the pronounced increase observed in LS
production upon utilizing agro-wastes can be
attributed to the favorable environment for the
microorganism that supplied by the agro-wastes as
they are rich in carbon content, nutrients (protein,
pectin, lipid, and polyphenols) and moisture [37,38].
The waste with the highest LS production was potato
peel (760.89U/ml). Meanwhile, Dahech et al. [1] used
starch as the main carbon source for LS production by
B. licheniformis in SSF, and the enzyme activity
detected was 0.5U/g. The type of the waste used in
the fermentation medium can strongly affect the
microbial enzyme yield. The use of potato peels by
A. nigerMK788296 in the present study led to a much
better LS production than detected by A. niger strain
used by Lateef et al. [9], which utilized plantain peel
and kola nut pod waste. The reason for this difference
can be attributed to the high moisture and
carbohydrate contents in the potato peels than
plantain peel and kola nut pod [39–41]. The fruit
wastes can be considered suitable substrates for LS
production [14]. Lemon peels and orange peels in the
present work exhibited good LS productivities in SMF
(317.49 and 301.07U/ml) and SSF (60.21 and 55.1U/
ml). Meanwhile, banana peel as a substrate helped in
the production of 16.4U/ml LS in SMF and was not
suitable for LS production in SSF. Kanakdande et al.
[14] used banana peels, orange peels, and lemon peels
for the production of LS by Bacillus megaterium isolate
in SSF, and the activity detected was 0.05, 0.1, and 0.65
Umg/ml, respectively. Ganaie et al. [42] observed that
fructosyltransferase activity produced by A. flavus
NFCCI 2364 in SSF using banana peels and orange
peels as the main carbon source was 102.6 and 31.15U/
gds, respectively. Sugarcane bagasse in the present
study produced moderate LS in SMF (136.85U/ml)
relative to the other wastes examined. This result is in
agreement with Ganaie et al. [42], who used sugarcane
bagasse, and the enzyme activity reached up to
176.86U/gds. On the contrary, Sangeetha et al. [8]
stated that fructosyltransferase could not be produced
by utilizing sugarcane bagasse, whereas corn cobs
helped in the production of 7U/ml enzyme by
Aspergillus oryzae CFR 202. In the present study,
corn cobs were not helpful for LS production in
both SMF and SSF.
Statistical optimization by Plackett–Burman design
The statistical optimization of LS production was done
by PBD followed by CCD. The maximum LS activity
obtained after PBD was 1248U/ml in run 12 with a
3.9-fold increase from the nonoptimized medium. The
PBD examined the significance of 11 different
variables (including medium constituents and culture
conditions) on LS production (Table 1). The
significant factors that positively affected the enzyme
production were yeast extract, substrate weight, KCl,
MgSO4.7H2O, and incubation period, as their
‘Prob>F’ values were lower than 0.05. Moreover,
FeSO4.7H2O, ammonium sulfate, sucrose, and
fructose had a negative effect. However, tween 80
and MnCl2.4H2O had no significant effect on
enzyme production, as illustrated in the Pareto chart
(Fig. 4). The preference of yeast extract over



Table 1 Plackett–Burman design for optimization of levansucrase production

LS activity (U/ml cf)

Run numbers A B C D E F G H J K L Experimental Predicted

1 5 0 5 10 0.25 0.5 0.001 0 1 2 7 1094.8 1081.11

2 10 2 5 10 0.5 0.5 0 0 0 2 4 1149.54 1163.23

3 5 0 10 5 0.5 0.5 0 0.001 1 2 4 843 843.91

4 5 2 10 5 0.5 0.5 0.001 0 0 1 7 821.1 820.19

5 10 0 10 10 0.25 0.5 0.001 0.001 0 1 4 541.93 541.02

6 10 2 5 5 0.25 0.5 0 0.001 1 1 7 815.63 816.54

7 5 2 5 10 0.5 0.25 0.001 0.001 1 1 4 257.28 243.59

8 5 2 10 10 0.25 0.25 0 0.001 0 2 7 306.54 320.23

9 5 0 5 5 0.25 0.25 0 0 0 1 4 602.14 615.83

10 10 0 10 10 0.5 0.25 0 0 1 1 7 947 947.91

11 10 2 10 5 0.25 0.25 0.001 0 1 2 4 788.26 774.57

12 10 0 5 5 0.5 0.25 0.001 0.001 0 2 7 1248.07 1247.16

A, yeast extract; B, ammonium sulfate; C, sucrose; D, fructose; E, MgSO4.7H2O; F, KCl; G, MnCl2.4H2O; H, FeSO4.7H2O; J, tween 80;
K, plant waste weight; L, incubation period; LS, levansucrase.

Figure 4

Pareto chart for detection of significant variables.
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ammonium sulfate as nitrogen source for LS
production can be due to the slow assimilation of
nitrogen from organic source than inorganic
nitrogen source. Moreover, yeast extract contains
certain growth factors, amino acids, and vitamins
that enhance microbial enzyme production [43–45].
Similar effect of yeast extract was reported by
Ademakinwa et al. [46] during statistical
optimization for improving fructosyltransferase
production from the fungal strain Aureobasidium
pullulans NAC8. Similar effects of yeast extract,
MgSO4.7H2O, ammonium sulfate, and
FeSO4.7H2O on LS production were observed by
Esawy et al. [47] during the statistical optimization
of LS production from B. subtilis M. However, Esawy
et al. [48] reported the opposite results for the effects of
both FeSO4 and MgSO4 on LS production by B.
subtilis NRC1aza. In the present study, sucrose
exerted a negative effect, which is contrary to the
reports stated by both Esawy et al. [47] and Esawy
et al. [48]. The presence of Mn2+ ion was insignificant
in the present PBD. On the contrary, Esawy et al. [47]
stated that Mn2+ had a positive effect on enzyme
production, whereas Esawy et al. [48] stated the
opposite.

The accuracy and validation of the PBD were affirmed
by the closeness between the experimental LS activity
values and the activity values predicted by the model
(Table 1). The F-value was high (211.4), which
exhibited the significance of the design model and
indicated that there was only 0.47% probability that
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the model is caused by noise as illustrated in analysis of
variance results (Table 2).The strength of themodelwas
affirmed by the closeness of the determination
coefficient of the model (R2=0.999) to 1. The
proximity of both predicted R2 (0.962) and adjusted
R2 (0.994) to each other advocated a good correlation
between the observed and predicted enzyme activities.
The signal to the noise (46.272) ratio was higher than 4,
which indicated the adequate signal of the model. The
equation incoded factors describing the relationbetween
the 11 factors and LS production was as follows:

Activity=784.608
+130.464×A–94.883×B–76.636×C–68.426×D+93.058×
E+93.059×F–115.866×H+120.428×K+87.583×L.
Table 2 Analysis of variance results for Plackett–Burman design

Sources Sum of squares DF

Model 1 073 962 9

Yeast extract 204 250.8 1

Ammonium sulfate 108 032.3 1

Sucrose 70 476.61 1

Fructose 56 185.14 1

MgSO4.7H2O 103 916.4 1

KCl 103 920.1 1

FeSO4.7H2O 161 098.7 1

Substrate weight 174 033.4 1

Incubation period 92 048.33 1

Residual 1128.936 2

Cor total 1 075 091 11

SD=23.7, mean=784.6, coefficient of variance (%)=3.03, predicted resi

Table 3 Central composite design for optimization of levansucrase

Run Yeast (g/l) (A) Substrate weight (g/flask) (B) KCl (g/l) (C)

1 15 4.5 1.5

2 10 4 2

3 10 4 1

4 10 5 1

5 10 5 2

6 10 5 1

7 15 4.5 1.5

8 15 4.5 1.5

9 15 4.5 1.5

10 15 4.5 2.68

11 15 4.5 1.5

12 15 4.5 1.5

13 20 4 1

14 20 5 1

15 20 4 1

16 20 4 2

17 15 4.5 1.5

18 10 5 2

19 20 5 1

20 10 4 2

21 20 4 2

22 20 5 1

23 15 4.5 1.5
Statistical optimization by central composite design
The CCD detected the optimum concentrations for
the five significant factors selected by PBD, as
illustrated in Table 3. The optimum concentrations
of the significant variables were g/l yeast extract 15,
MgSO4.7H2O 1.5, KCl 1.5, potato peels weight 5.7 g
per flask, and incubation for 12 days. Application of the
CCD resulted in a massive increase in LS activity,
reaching 18870.3U/ml (run 50). However, LS
activities after statistical optimization of LS
production by different B. subtilis isolates reached
8.53U/ml, 1189 AU, and 1250U/ml as reported by
Neeta and Manjusha [11], Gonçalves et al. [24], and
Mantovan et al. [49] respectively. Erdal et al. [23] used
a response surface methodology statistical design to
Mean square F value P value Prob>F

119 329.1 211.401 0.0047 Significant

204 250.8 361.8466 0.0028

108 032.3 191.3878 0.0052

70 476.61 124.8549 0.0079

56 185.14 99.53645 0.0099

103 916.4 184.0962 0.0054

103 920.1 184.1028 0.0054

161 098.7 285.3992 0.0035

174 033.4 308.314 0.0032

92 048.33 163.071 0.0061

564.4679

dual sum of squares=40641.

production

MgSO4 (g/l) (D) Incubation period (days) (E) Activity (U/ml)

1.5 12 9100.5

1 14 9561.25

1 14 5100.15

2 10 11 568.39

1 10 12 334.75

1 10 10 770.28

2.68 12 8046.78

1.5 7 6240.36

1.5 12 9241.94

1.5 12 8028.53

1.5 12 9100.5

1.5 12 9100.5

2 14 11 568.39

2 10 12 935.25

2 10 8767.523

1 10 10 373.23

1.5 12 9100.5

2 10 10 017.42

1 10 14 800.18

2 10 4452.187

2 10 6120.55

2 14 15 374.4

0.31 12 11 988.06
(Continued )



Table 3 (Continued)

Run Yeast (g/l) (A) Substrate weight (g/flask) (B) KCl (g/l) (C) MgSO4 (g/l) (D) Incubation period (days) (E) Activity (U/ml)

24 20 5 2 2 14 14 706.81

25 3.1 4.5 1.5 1.5 12 5370.15

26 10 4 1 2 14 4141.99

27 20 4 1 1 14 11 477.15

28 10 4 2 2 14 4665.1

29 10 5 2 1 14 11 643.33

30 20 5 2 1 10 13 830.97

31 15 4.5 1.5 1.5 12 9100.5

32 20 4 1 1 10 8368.15

33 15 4.5 0.31 1.5 12 10 911.51

34 20 5 1 1 14 17 681.02

35 15 4.5 1.5 1.5 12 9100.5

36 26.89 4.5 1.5 1.5 12 12 554.8

37 10 4 1 2 10 3270.85

38 20 5 2 1 14 14 553.3

39 10 5 1 1 14 12 188.77

40 10 5 1 2 14 10 181.64

41 20 5 2 2 10 13 835.25

42 20 4 2 2 14 7955.55

43 10 4 1 1 10 5574.36

44 20 4 2 1 14 8000.25

45 15 4.5 1.5 1.5 17 9561.25

46 15 4.5 1.5 1.5 12 9100.5

47 10 5 2 2 14 11 458.91

48 10 4 2 1 10 3421.05

49 15 3.31 1.5 1.5 12 2919.47

50 15 5.69 1.5 1.5 12 18870.3

Table 4 Analysis of variance results for central composite design

Source Sum of squares DF Mean square F value P value (Prob>F)

Model 585 793 802.08 5 117 158 760.42 74.39935 <0.0001 significant

Yeast extract 137 189 682.34 1 137 189 682.35 87.11959 <0.0001

Substrate weight 408 396 508.22 1 408 396 508.22 259.3441 <0.0001

KCl 4 330 418.54 1 4 330 418.54 2.749947 0.1044

MgSO4 18 141 888.05 1 18 141 888.05 11.52065 0.0015

Incubation period 17 735 304.92 1 17 735 304.92 11.26245 0.0016

Residual 69 288 041.11 44 1 574 728.21

Cor total 655 081 843.19 49

SD=1254, mean=9762.7, coefficient of variance (%)=12.8, predicted residual sum of squares=92 388 599.
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optimize culture conditions for LS production from Z.
mobilis NRRL B-14023, and the maximum enzyme
activity reached was 13.3U. LS production in the
present study was higher than the enzyme produced
by the recombinant fructosyltransferase from A. niger
SG610 (2294.7U/ml) as investigated by Guo et al.
[50].

The high F-value of the model (74.4) indicated the
model significance (Table 4). The closeness of the
determination coefficient (R2=0.894) to 1
demonstrated the strength of the model. The
proximity of both predicted R2 (0.859) and adjusted
R2 (0.882) to each other advocated a good correlation
between the experimental and predicted enzyme
activities. The adequate precision (signal to the noise
ratio=33.6) was higher than 4, which indicated the
adequate signal of the model. The predicted LS activity
can be estimated by the following coded factor
equation:

Both the normal plot of residuals and perturbation plot
indicated the effectiveness and validity of the model
(Fig. 5). The straight line of the normal distribution



Figure 5

Normal plot of residuals and perturbation plot.
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plot confirms the normality of the data. The steep
deviation from the center point of both yeast extract
concentration (A) and potato peel weight (B) in the
perturbation plot indicated their significance in the LS
production process. The interaction effect of yeast
extract and potato peels weight on LS activity at
fixed values of other variables was graphically
described at the three-dimensional surface and two-
dimensional contour plots (Fig. 6). The validation of
the CCD model was confirmed by the reproducibility
of results and by the proximity among the experimental
and predicted LS activities (Fig. 7).
Conclusion
The isolated A. nigerMK788296 strain was a better LS
producer than the commonly used bacteria.
Optimization of the culture conditions positively
affected the enzyme yield which was declared by
using the SMF technique in the presence of potato
peels as the main carbon source. Both PBD and CCD
designs led to a massive increase in LS productivity
from 317.49U/ml under nonoptimized conditions to
18870.3U/ml with an overall 59.4-fold increase in LS
production. The optimum medium conditions were
achieved by using 5.7 g potato peels in 50-ml
statistically optimized medium (pH 7) for 12 days at
150 rpm at 30°C. The statistically optimized medium
was composed of (g/l) yeast extract, 15; sucrose, 5;
fructose, 5; KCl, 1.5; MgSO4.7H2O, 1.5;
MnCl2.4H2O, 0.001; and FeSO4.7H2O, 0.001.
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Figure 6

Three-dimensional surface and two-dimensional contour plots for CCD. CCD, central composite design.

Figure 7

Validation of the CCD model. CCD, central composite design.
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