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Antibacterial impact of nonthermal atmospheric plasma on
catheter-based biofilms of Staphylococcus epidermidis and
Klebsiella pneumoniae isolated from small ruminants in vivo
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Background
Nonthermal atmospheric pressure sterilization is one of the suggested and efficient
techniques to hinder the spread of illnesses. Reactive species such as oxygen,
hydroxyl, and other radicals play a prime role in the mechanism of plasma
sterilization. Staphylococcus epidermidis is the most prevalent cause of primary
bacteremia and infections of indwelling medical instruments. The ability to induce
disease is related to its natural niche on the skin and capability to adhere and form a
biofilm on foreign surfaces. Klebsiella pneumoniae is a zoonotic pathogen
frequently isolated from infections related to the presence of bacterial biofilm on
devices, such as catheters, which are responsible for loss of patients’ health.
Objective
S. epidermidis and K. pneumoniae are being combated due to their high frequency
of occurrence and ability to form biofilms as survival and virulence characteristics.
These particular benefits impose a significant financial burden on hospitals.
Materials and methods
In this study, the nonthermal plasma treatment induced by surface dielectric-barrier
discharge was used to destruct the developed biofilm formed by clinical S.
epidermidis and K. pneumoniae isolated from clinical cases of small ruminants.
The biofilms were induced in vivo by catheter-based rat model preparation. The
biofilms were examined before and after the treatment using a scanning electron
microscope.
Results and conclusion
The produced nonthermal plasma degenerated and reduced the number of
adherent and aggregated viable bacteria.
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Introduction
Nowadays, numerous devices are commonly used in
the diagnosis and treatment of patients. They are, to a
great extent, constructed from materials that are
intended for contact with the live tissue of the
patient, and hence are termed to ‘biomaterials.’
However, the implantation of the biomaterial by
surgical intervention may share in the initiation of
the process of microbial adherence to the surface.
Relying on the time of formation, species merits and
environmental circumstances, the size of such biofilm
may be from a few microns to several millimeters in
thickness. Portions of mature biofilm may separate
from the surface and migrate through blood vessels
to distant body places, and resulting in the formation of
new biofilm layers in other locations causing
generalized infections [1,2]. The most prevalent
reasons of nosocomial infections are biofilms formed
on urological and vascular catheters, various kinds of
Wolters Kluwer - Medknow
artificial heart valves, peritoneal dialysis catheters, as
well as artificial ventilation equipment and infusion
pumps.

Staphylococci are common bacterial colonizers of the
skin and mucous membranes of humans and other
mammals. Staphylococcus epidermidis stands first
among the causative agents of nosocomial infections,
representing the most prevalent cause of infections on
medical devices [3].

Klebsiella pneumoniae is one of the zoonotic pathogens
that exhibit a very high ability to form biofilms, which
frequently occupy the form of mucoid, cohesive slime.
DOI: 10.4103/epj.epj_172_22
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The ability of K. pneumoniae to change the pH of urine
(by means of urease) is of high significance in the
pathogenesis of urinary tract infections (UTIs) [4,5].

UTIs are one of the most prevalent infections in
humans and certain animals as pets and as much as
80% of hospital urinary infections are accompanied
with the administration of a urinary catheter.
According to statistical data, 30% of bacterial UTIs
cases lead to generalized inflammatory process and/or
to urosepsis [6]. Before the pivotal role of biofilm in
UTI pathogenesis was known, the acquisition and
spread of resistance mechanisms among urinary
pathogens were looked as the greatest challenges in
UTI therapy.

Klebsiella spp. are characterized by exceptional
quickness in acquiring the plasmid-encoded enzymes
with inactivating β-lactams, extended spectrum
β-lactamases, metallo-β-lactamases, and
carbapenem-resistant. Moreover, K. pneumoniae is
implemented in 6–17% of opportunistic UTIs,
which is primarily related to the formation of
biofilms inside the urinary catheter or at the catheter
insertion parts [7].

Therefore, prevention and sterilization techniques
become urgent requirements to evade the spread of
the illnesses; one of the efficient sterilization methods
is nonthermal atmospheric pressure plasma
sterilization [8,9]. Several techniques have been used
to overcome the limitation to induce nonthermal
plasma at atmospheric pressure; one of them is using
dielectric-barrier discharges [10], pulsed power source
[11], microhollow cathode system [12], as well as a
segmented cathode [13]. Moreover, some researchers
used gliding arc discharge and some others use several
kinds of plasma jets [14]. It is believed that a
corporation of the various techniques can be used to
achieve the requirement for inducing nonthermal
atmospheric plasma (APP) with possessing high rate
of reactive species generation on a large scale. The
generation of nonthermal APP conquers many
applications in various fields including sterilization
[15], medical therapy [16], and other biomedical
applications [17].

Recently, nonthermal APP technology has emerged to
overcome the barriers of thermal treatments [18,19].
On the other side, nonthermal plasma technology has
not only been used to decontaminate and extend the
shelf life of food products, but it is also utilized to
improve the bioactive components of food products
[20]. The reactive radicals produced during
nonthermal plasma treatment may share in the
elevation of nutritious and bioactive compounds [21].

In this study, surface dielectric barrier discharges
(SDBD) were used to prohibit the growth of S.
epidermidis and K. pneumoniae biofilm. The
degenerative effects of SDBD plasma on bacteria
biofilms were examined by an scanning electron
microscope (SEM).
Material and methods
Construction of the plasma system
The electric circuit for SDBD (Fig. 1a) was set in a
Teflon box (Fig. 1b), and the plasma treatment was
performed in a honeycomb configuration (Fig. 1c) as
previously established [22]. The creation of plasma
criteria was performed according to the described
physical circumstances [23–25].
Ethical approval
All experimental procedures were carried out according
to the following protocol approved by the Medical
Research Ethics Committee, National Research
Centre, number (1179102021).

Biofilm formation in vivo by catheter-based model
preparation from S. epidermidis and K. pneumoniae
biofilm.

BALB/c female rats weighing average 125 g were
anesthetized by injecting 0.4–0.75mg of
tribromoethanol/g of body weight intraperitoneally.
The dorsal flanks of each rat were shaved and
cleaned with betadine and alcohol. Fourteen-gage
Teflon intravenous catheter was prepared, precut
into 1 cm segments and sterilized by autoclaving.
The biofilm-producing S. epidermidis and K.
pneumonia isolates that were previously obtained
from clinically diseased sheep and goat cases [26].
The isolates were refreshed in brain heart infusion
broth, and adjusted 108 CFU was transferred to
conical tubes (Falcon; Corning, Dokki, Giza, Egypt)
containing 2ml of Tryptic Soy Broth growth medium
with 2% glucose. The tubes were incubated under
constant stirring at 100 rpm/37°C for 24 h to permit
bacterial growth. The flank of each tested rat was
antiseptic with povidone–iodine pads, and a small s/
c incision was made just above the hind leg using a
sterile blade. A blunt probe is inserted to create an s/c
pocket for applying the catheter as shown in Fig. 2.
Note that catheters must be advanced to a sufficient
distance from the primary incision site to avoid catheter
extrusion from the rat over time. The sterile catheter



Figure 1

SDBD (a) electric circuit, (b) Teflon box, (c) honeycomb configuration [22]. SDBD, surface dielectric barrier discharge.

Figure 2

Insertion of catheter pieces in model rats (a, b, and c).
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was inserted using forceps. After that, 5 μl suspension
of 2×107 CFU of S. epidermidis and K. pneumonia in
20 μl of sterile PBS was injected through the skin into
the catheter lumen [27]. After 10 days the catheter
segments were removed and immersed in a 2.5%
glutaraldehyde solution, fixed in an increasing
alcohol series (15, 30, 50, 70, 90, and 100%) for
15min each, dried in a vacuum centrifuge for 5min,
sputtered with gold and visualized under a SEM to
examine biofilm formation [28].
Endpoint determination of bacterial colony counts
The catheter section was placed in 1ml sterile saline;
the sample was sonicated for 10min and then placed in
a suitable volume of saline and homogenized. Serial
dilutions (1:10) of the catheter fluid were inoculated on
triple sugar agar plates and incubated for 24 h at 30°C
and bacterial colony counts were enumerated.
Results and discussion
The administration of an SDBD device as an
antibacterial and safety agent was applied using
human dermal specimens. The performance of
biofilm prohibition using such plasma device was
demonstrated in vivo [29]. Bacterial biofilms were
formed, then catheters were removed from tested
rats 10 days following bacterial inoculation, and
processed for SEM analysis. These biofilms were
composed from dense and uniformed cell masses. S.
epidermidis cells were organized around a polymer
matrix composed of exopolysaccharides, proteins,
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and even nucleic acids. The smooth surface at the
periphery of the figure represented the catheter with
a biofilm visible on the internal face as shown in Fig. 3.
Biofilm-forming cells and presence of the mucoid
structure indicated the secretion of an
exopolysaccharide matrix, characteristic to the
biofilm of S. epidermidis grown on catheter
segments. Slime formation was clearly apparent
filling the space between the grape-like clusters
colonies as displayed in Fig. 4.

This appearance coincided with the previous biofilm
criteria of Staphylococci [30]. Our study declared that
the treatment with the nonthermal plasma emerged
from SDBD minimized the number of adherent and
aggregated bacteria cells in simple arrangements and
prevented the agglomerates from forming a biofilm
(Fig. 5). Also, failure of the bacterial cells to adhere to
Figure 3

Catheter-associated Staphylococcus epidermidis biofilm growth in vivo

Figure 4

Staphylococcus epidermidis biofilm showed visible slime in the space b
the catheter surface was observed. Similar to our
results, the APP was capable to reduce the growth
of microbial populations on any surfaces [31]. It is
known that in the adhesion stage, there are
fundamental processes that influence the appearance,
motility, gene expression, and permanence of the cells
that compose the biofilm. After that, the bacterium sets
up a dense multiplication and cumulation of
components that form the biofilm; teichoic acid and
polysaccharide intercellular adhesin share in the viscous
appearance and aggregation of colonies [32–35]. On
the other side, K. pneumoniae exhibited normal rod-
shaped cell structure with a smooth and regular surface
without any shrinkage or cavity formation under SEM
(Fig. 6). Exposure ofK. pneumoniae cells to nonthermal
plasma produced by SDBD showed multiple
distortions and the cells displayed puckered or
shrunken surfaces with a large number of bore
under SEM. SEM, scanning electron microscope.

etween clusters.



Figure 5

Biofilm of Staphylococcus epidermidis after exposure to nonthermal plasma.

Figure 6

SEM of Klebsiella pneumoniae cells in mature biofilms formed on catheter in vivo. SEM, scanning electron microscope.

Figure 7

SEM of Klebsiella pneumoniae biofilm after exposure showed damaged bacterial cells. SEM, scanning electron microscope.
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Figure 8

Correlation of biofilm formation of Staphylococcus epidermidis and Klebsiella pneumoniae with various time intervals of exposure to SDBD
nonthermal plasma. SDBD, surface dielectric barrier discharge.
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formation on the cell membrane constituted earlier
criteria of bacterial cell damage (Fig. 7). Data shown
in Fig. 8 declared great engagement between the time
of exposure to nonthermal plasma and biofilm
inhibition degree of examined bacteria on a catheter
inserted in rats comparable with the control one. In S.
epidermidis, the optical density of the biofilm declined
linearly from 0.818, 0.430, and 0.030 with increasing
the time of exposure to SDBD from 0, 1, and 10min.
Regarding K. pneumoniae, the optical density of the
biofilm declined linearly from 0.602, 0.481, and 0.074
with increasing the time of exposure to SDBD from 0,
1, and 10min.

In agreement with our results, the performance of low-
temperature plasma therapy versus bacteria using the
atmospheric-pressure plasma APP jet inhibited both
Gram-positive (Staphylococcus aureus) and Gram-
negative (Escherichia coli) bacteria on solid and
porous surfaces [36]. The nonthermal atmospheric
argon plasma was used to inhibit 78 genetically
divergent S. aureus strains for clinical and
epidemiological implications [37]. They indicated
that a high complexity of microbial defence versus
antimicrobial therapy and strain-relied susceptibility
of S. aureus to plasma treatment. Moreover, the degree
of microbial inactivation possibly depended on the type
of microorganisms, the number and the physiological
status of the cells, the inactivation medium, the
operating gas mixture, and the flow rate [38,39].
The antibacterial efficacy of the nonthermal plasma
was referred to the emergence of oxygen anions and
hydroxyl radicals, which induce severe irreversible cell
wall damage and destruction [40] and cell permeation
[41]. The antimicrobial performance of charged
particles, free radicals, and ultraviolet-emitting
species was depicted in previous investigations
[42–46]. In addition, the energized electrons and
ions were able to collide with the organic molecules
on the cells and disrupt their chemical bonds resulting
in exerting perforations to the cell membrane [47].
Conclusion
As a novel tool of decontamination technology, the
nonthermal plasma emerged from the SDBD system
was found to be effective against biofilm layers
produced by both Gram-positive (S. epidermidis) and
Gram-negative bacterial (K. pneumonia) isolates.
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