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Insights into bioactive microbial natural products and drug
discovery
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Recently, natural products have attracted much attention as a valuable source for
the discovery of new and potential lead compounds with widely diverse biological
activities. Among all-natural product sources, microorganisms emerged as a
potential pipeline for new drug leads and new chemical entities with promising
biomedical applications. Since the discovery of the first bioactive microbial product,
penicillin, the exploitation of microorganisms has led to the production of a variety of
natural products ranging from alcohol to antibiotics with multiple applications,
including inhibition of infectious diseases such as (antifungal, antibacterial, and
antiviral) and noninfectious diseases like obesity, some kinds of diarrhea, cancer,
anemia, atopic dermatitis, and diabetes. In this review, we aim to highlight the
current literature describing the bioactive microbial natural products, produced by
bacteria, fungi, and algae, which have distinct chemical structures that may serve
as a robust platform for drug discovery inspiration.
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Introduction
Nature has always been a ‘treasure trove of natural
products’ with a tremendous biodiversity including
millions of species of animals, marine organisms,
plants, and microorganisms [1]. This magnificent
biodiversity has led to the creation of remarkable
chemical assortments [2]. Throughout history,
nature has inspired humans to meet their basic
needs and prepare their medicines [2]. The first
records for using natural products as medications
were found written on clay tablets in cuneiform
from Mesopotamia dated ca. 2600 before the
common era (BCE) [3]. Another ancient record
back to the ancient Egyptian civilization (2900
BCE), in the Ebers Papyrus that documented more
than 700 plant-based drugs for the treatment of many
diseases (2900 BCE) [4,5]. Additional pioneers in
using natural products were the Chinese, while
Chinese Materia Medica (1100 BCE), an excellent
documentation for using natural products to treat
diseases (Wu Shi Er Bing Fang with 52
prescriptions) [6].

The scientist and peripatetic philosopher,
Theophrastus (∼300 BCE), dealt with the herbs as
medicines, whilst the Greek physician, Dioscorides
‘The Father of Pharmacognosy’, (100 A.D.)
Wolters Kluwer - Medknow
recorded the use of medicinal herbs [7]. In the eight
century, the Arabs were the first to establish
pharmacies, and Avicenna, a talented Persian
pharmacist, significantly contributed to the sciences
of medicine and pharmacy through his works such as
the Canon Medicine [6].

Furthermore, the use of natural products for the
treatment of diseases has been described in the
form of traditional medicines, while many of these
bioactive natural products still being unidentified [7].
These traditional medicinal practices have created
the basic knowledge for drug discovery through
extensive chemical, pharmacological and clinical
studies [8].

Since then, scientists started searching for natural
products (NPs) with new structures and potential
applications such as pharmaceuticals, agrochemicals,
cosmetics, and nutraceuticals. Despite there are several
sources that could be used for natural products
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mailto:s.bardaweel@ju.edu.jo


2 Egyptian Pharmaceutical Journal, Vol. 23 No. 1, January-March 2024
production including microbes, plants, insects, or other
animals [1], plants, and marine invertebrates are
considered vital suppliers of bioactive chemical
components for the development of pharmaceutical
products with significant antimicrobial, antiviral, and
anticancer properties [9]. Natural products from
microbial origins are also well-known for their
chemical diversity, and their myriad range of
biological properties [10].
Microorganisms as a prolific source of
natural products
By the early 19th century, about 80% of all medicines
were obtained from plants [11,12]. The discovery of
penicillin antibiotics by Alexander Fleming in 1928,
has led to a remarkable shift from plants and other
sources to microbes as natural product sources [13].
Since then, natural products frommicrobes have served
as a potential source for new chemical entities and new
drug leads [14].

Over time, microorganisms remained an attractive
source for a variety of lead compounds with a wide
range of applications including agrochemicals,
immunosuppressants, antibiotics, anticancer and
antiparasitic agents [15]. Out of approximately one
million already known natural products, 250 000 are
biologically active, and large numbers of these
biologically active compounds are derived from
microorganisms [16]. Microorganisms have been
recognized to be one of the optimal systems to
produce natural products due to their biosynthetic
pathways that can be easily predicted, characterized,
and manipulated. Additionally, microorganisms are
also known for their high productivity in a very
short incubation period. One microbe can produce
many secondary metabolites [15]. About 50
secondary metabolites have been isolated from
Micromonospora, a gentamicin-producing strain, and
38 different epothilones were obtained from the gram-
negativeMyxococcus xanthus [17,18], 16 compounds by
Aspergillus ochraceus and 19 compounds by the fungus,
Sphaeropsideles sp., F-240707. These large numbers of
natural products were obtained by optimizing physical
parameters, nutritional conditions, and/or modifying
the chemical environment [19].
Bacteria as a source of bioactive natural
products
Production of natural products from bacteria has
always been one of the optimal systems for the
generation of bioactive materials due to the easy
manipulation of bacterial genetic DNA and the high
productivity [20,21]. Moreover, several gram-positive
and gram-negative bacteria have been studied for their
ability to produce numerous bioactive compounds
including bacteriocins [22], peptides/glycopeptides
[23], tetracyclines [24], phenazines [25],
anthraquinones [26], anthracyclines [27], and beta-
lactams [28].
Bacillus subtilis
Bacillus species are gram-positive, aerobic, or
facultatively anaerobic with rod-shaped structures
[29]. Bacillus species belong to phylum Firmicutes,

which includes 266 termed species [30,31]. To
protect themselves, Bacillus species, under harsh
conditions, can form and surround themselves with
oval endospores to keep them safe in a dormant state
for years. Some species could survive in the dormant
state over 420°C [32]. For many years, Bacillus species
were one of the most important sources of enzymes.
Approximately, 50% of all enzymes in the market
originate from Bacillus species [33]. Over 200
Bacillus species have been classified as pathogenic;
however, Bacillus subtilis is a nonpathogenic strain
that can grow in different habitats due to its unusual
genetic adaptability [34]. Moreover, the effortless
genetic manipulation of Bacillus subtilis attributed to
natural competence, absence of outer membrane, high
secretory capacity, and well-known expression systems,
make it a suitable organism for a wide range of studies
[35]. All these features make Bacillus subtilis a
distinguished candidate as a laboratory model strain
[36]. Biotechnologically, Bacillus subtilis is a well-
established candidate for the synthesis of many
valuable products ranging from small molecules to
vital NPs including enzymes such as stable alkaline
cellulase, alkaline protease, and alkaline a-amylase as
well as chemicals like (Bacillomycins D-L and
bacitracin) which act as antibiotics [35,37].

From the biological control point of view, Bacillus

subtilis has gained great attention from researchers in
the agriculture field due to its ability to kill and control
plant pathogens [38]. In the same context, many
reports demonstrated that Bacillus subtilis also plays a
vital role in promoting plant growth [38]. In addition
to its application in the bioproduction of cyclic
lipopeptides, several wild-type strains from different
sources have displayed a powerful inherent biosynthetic
potential. These biosynthetic pathways are dedicated
natural products such as complex cyclic lipopeptides,
including fengycins iturins, and surfactins with several



Bioactive microbial natural products Hamed et al. 3
biotechnological and pharmaceutical applications as
biosurfactants and antibiotics [34,39,40]. The first
documented natural products obtained from Bacillus

subtilis were cyclic lipopeptides [34]. Their potent
activity and unique chemical structures made them a
very attractive group of metabolites as candidates with
surfactant and antibiotic activity [34]. In general, the
cyclic lipopeptides produced by B. subtilis are grouped
into three families namely surfactin (1), iturin (2), and
fengycin (3) (Fig. 1) [41]. The iturin family comprises a
class of lipoheptapeptides with antimicrobial activity
against several bacterial and fungal strains [42]. Iturin
A (2) is an example of the iturin family produced by
Bacillus subtilis, which showed antimicrobial activity
through its ability to permeate the cell membrane by
insertion into the cytoplasmic membrane [43–45].
Even though iturin A (2) antibacterial activity is
limited to certain gram-positive bacteria, it possesses
a remarkable antifungal activity against a wide range of
fungi [46].
Figure 1

Cyclic lipopeptides obtained from Bacillus subtilis.
Another lipopeptide produced by Bacillus subtilis is
Surfactin (1) [47,48]. It is considered one of the
strongest biosurfactants due to its remarkable
surfactant activity. Interestingly, the amphiphilic
structure of Surfactin (1) makes it suitable for a
broad range of pharmaceutical applications, ranging
from antibiotic and cancer therapy [49]. Fengycins A
(1) are fungicidal decapeptides also produced by
Bacillus subtilis. Their ring structure is formed via
macro-lactonization between the acyl moiety of the
isoleucine (Ile) and tyrosine hydroxylase (TyrOH).
Fengycins are less toxic to plants while displaying a
selective antifungal activity against some pathogenic
filamentous fungi, such as Paecilomyces varioti and
Rhizoctonia solani Loeffler and colleagues, [50–52].
Gageostatins A-C (4−6) (Fig. 2) were reported as
the first example of the linear lipopeptides from B.

subtilis 109GGC020 [53–55]. Gageostatins A-B (4-5)
displayed potent antifungal activity against destructive
pathogenic fungi such as R. solani, C. acutatum, and B.



Figure 2

Linear lipopeptides obtained from Bacillus subtilis.
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cinereal. While gageostatin C (6) displayed only weak
antimicrobial activity. Interestingly, gageostatins A (4)
and B (5) synergistically act against fungi, gram-
positive, and gramf-negative bacteria, as a mixture of
both components is strikingly more potent than the
individual compounds [34].

Another interesting group of metabolites is the
isocoumarins, which also have been reported from B.

subtilis. The first reported dihydroisocoumarins from
Bacillus were amicoumacins A-C (7-9) (Fig. 3).
Notably, compounds 7-9 exhibited potent anti-
Figure 3

Isocoumarins and macrolactin A obtained from Bacillus subtilis.
inflammatory and antibacterial activities, which
highlight such a group of compounds as attractive
lead structures for drug development. Additionally,
due to the strong antibacterial activity of
amicoumacin A (7) against S. aureus, it has gained
great attention [56,57]. Moreover, macrolides are
bioactive metabolites produced by B. subtilis. It is
reported that most of the macrolides are biosynthetic
derivatives of macrolactin A (10) (Fig. 3). The
macrolactins have attracted attention due to their
potent bioactivities as antimicrobial and cytotoxic
agents. It was shown that they have inhibitory
 



Bioactive microbial natural products Hamed et al. 5
activity against S. aureus, murine tumor cells, Herpes

simplex type I and II, and several fungi [58–60].
Streptomyces species
The genus Streptomyces is a gram-positive bacteria
that grow in different environments of air, water,
and soil. Streptomyces has been shown as a
promising source of bioactive pharmaceutical agents
as antibacterial, antifungals, antivirals, antitumors,
immunosuppressants, antihypertensives, and
antibiotics. Streptomyces species grow in different
environments ranging from normal to extreme
habitats [61]. The classification of Streptomyces is
based on the morphology involving the formation
of hyphae with a chain of spores [62,63]. For more
than 70 years, Streptomyces has proven to be a
promising manufacturer of unique structurally
bioactive natural products producing about 70-80%
of the natural bioactive substances pipelined for
pharmaceutical applications [64]. Loads of new
metabolites with completely different biological
activities are isolated from Streptomyces strains [65].
Approximately, more than 60% of antibiotics such as
chloramphenicol and neomycin originated from
Streptomyces sp [66]. Several studies have reported
other bioactive metabolites of the same class such
as nystatin by (Streptomyces noursei) [67], natamycin
by (Streptomyces natalensis) [68], and amphotericin B
by (Streptomyces nodosus) [69]. Additional groups of
bioactive metabolites have been isolated from
Streptomyces sp. and displayed antibacterial activity,
such as aminoglycosides, which include neomycin by
(Streptomyces fradiae) [70], streptomycin by
(Streptomyces griseus) [71], erythromycin by
(Streptomyces erythraea) [72], kanamycin by
(Streptomyces kanamyceticus) [73], vancomycin by
(Streptomyces orientalis) [74], chloramphenicol by
(Streptomyces venezuelae) [75] and thienamycin by
(Streptomyces cattleya) [76]. Besides antibiotic uses,
nowadays, cytotoxic studies for Streptomyces-
derived bioactive products have gained great
attention as possible candidates as chemotherapeutic
drugs including plicamycin (Streptomyces plicatus) and
bleomycin (Streptomyces verticillus) [77].

Up to 60% of antibiotics produced Streptomyces genus
showed great applications in the agricultural industry
[78] and medicinal applications. The reason relates to
its wide applications and different functions [79], such
as antibacterial [80], antiviral [81], antifouling [82],
antiparasitic [83], anti-inflammatory, antitumor,
insecticidal [83], enzyme inhibitors [84], and
insecticidal [83]. Historically, the origins of the
biggest number of new antibiotic drugs were
obtained from Streptomycetes when compared with
bacteria and fungi [85]. Today, Streptomyces species
are approximately responsible for more than 75% of
both commercial and medical antibiotics. It has also
been shown that the optimization of nutritional and
cultural conditions may provide control over how
Streptomyces produce their antibiotics [86].

Several bioactive secondary metabolites have been
isolated and/ or identified from Streptomyces. These
compounds belong to different chemical families
including meroterpenoids, pyrrolosesquiterpenes,
sesquiterpenes, polyketides, peptides, quinones, and
macrolides. It is worth noting that such compounds
showed a broad spectrum of biological activities. For
instance, glaciapyrroles A, B, and C, SBR-22,
salinamides A and B, tetracenomycin D,
resistoflavine, himalomycins A and B, and bonactin
exhibited antibacterial activities. While daryamides,
piperazimycins, piericidins C7 and C8,
tetracenomycin D, resistoflavine, chinikomycins A
and B, trioxacarcins, and streptokordin demonstrated
anticancer activities, other compounds like cyclomarin
A, resistomycin, and komodoquinone A showed anti-
inflammatory, antiviral, and neuritogenic activities,
respectively [80–85].

Streptogramins are bioactive natural products
produced by Streptomyces that showed antibacterial
activity through the inhibition of bacterial ribosomal
protein synthesis. Etamycin and streptogramin
antibiotics were produced by S. griseus in the 1960s
[87], Etamycin displayed a strong activity against
methicillin-resistant S. aureus, including hospital-
acquired type (HA-MRSA) (MIC=8-16 μg/ml) and
community-acquired type (CA-MRSA) (MIC=1-
2 μg/ml). Etamycin also showed antibacterial activity
toward Streptococcus pyogenes (S. pyogenes) and S.

agalactiae (MIC=8 μg/ml) strains [88]. S. virginiae

produces two streptogramin antibiotics,
virginiamycin S (VS) and virginiamycin and both
compounds show strong synergetic co-activity [89].
Isoquinoline JS-1 (11) (Fig. 4) is a bioactive
isoquinoline derivative; it was produced by
Streptomyces sp. 8812. It exhibited antibacterial
activity through inhibition of DD-carboxypeptidases/
transpeptidases enzymes involved in bacterial cell wall
biosynthesis. Isoquinoline JS-1 (11) showed inhibition
activity toward MRSA and Bordetella bronchiseptica.

Moreover, compound 11 does not have any genotoxic
or hemolytic properties, so its antibacterial activity can
be increased by potential modifications [90].
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Isoquinoline JS-1, tirandamycin, essramycin, and fujianmycin C obtained from Streptomyces sp.
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Tirandamycin (12) (Fig. 4) was produced by
Streptomyces sp. 307-9 and showed a potent
inhibition activity against vancomycin-resistant
Enterococcus faecalis [91]. Tirandamycin weakens the
transcription process through the inhibition of
ribonucleic acid polymerase in the bacteria [92].
Additionally, essramycin (13) (Fig. 4), is a
triazolopyrimidine derivative, obtained from
Streptomyces sp. Merv8102. It showed a strong
broad-spectrum antibacterial activity against P.

aeruginosa, E. coli, S. aureus, B. subtilis, and M. luteus

[93]. Fujianmycin C (14) (Fig. 4), a bioactive
compound and a member of the angucyclinone
family, was produced by Streptomyces sp. B6219 [94].
Fujianmycin A and B were isolated alongside
fujiamycin C (14), which were known previously.
Previous reports revealed that fujianmycin C (14)
showed antibacterial activity against S. aureus B.

subtilis, and E. coli [95]. Tigecycline, a derivative of
minocycline, was produced by Streptomyces aureofaciens
and demonstrated antibacterial activity [91].

Amphotericin B was isolated from S. nodosus, a
macrolide polyene antibiotic is an antifungal
compound with a broad-spectrum activity [96]. The
mechanism of inhibition includes the inhibition of
fungal chitin synthase: nikkomycins and polyoxins
[97]. Polyoxins produced by S. cacaoi var. asoensis
showed antifungal activity against phytopathogenic
fungi (e.g., Pricularia oryzae, Alternaria kikuchiana)
[97]. Nikkomycins (nikkomycin Z) are more active
against Candida albicans than polyoxins. Nikkomycins
have been isolated from S. tendae and S.

ansochromogenes, which showed inhibition activity
against Botrytis cinerea and Rhizopus carcinans [97].
Another compound produced by Streptomyces

hygroscopicus was everolimus, which showed an
immunosuppressive activity [92]. Streptomyces also
have proven to be a potential candidate for the
production of several antitumor metabolites. One
example of these antitumor natural products is
brostallicin, which is produced by Streptomyces

distallicus and showed anticancer activity [93].
Chinikomycin A (15) (Fig. 5) obtained from
Streptomyces sp. exhibited antitumor activity towards
different human cancer cell lines. Marinomycins (16)
(Fig. 5) were produced by S. peuceticus, which showed
anticancer activity [98]. Epirubicin is an anthracycline
compound, which was approved by the FDA in 1999
due to its potential therapeutic profile with less-adverse
effects than doxorubicin [99]. It is used in the
treatment of different forms of carcinomas including
ovarian cancer, lung cancer, breast cancer, and
leukemia. Bleomycin is an antitumor compound
produced by S. verticillus, which was approved for
clinical treatment by the FDA in 1973 [100]. Other



Figure 5

 
Chinikomycin A, marinomycins, mansouramycins, and carboxamycin obtained from Streptomyces sp.
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metabolites produced by S. caesptitosus are mitomycins,
which demonstrated high antitumor activity.
Mitomycins exhibited limited uses due to their
toxicity [101]. Streptozotocin, also obtained from S.

achromogenes, revealed selective toxicity toward
pancreatic β cells. It was approved by the FDA in
1982 as a pancreatic islet cell antitumor drug [102].
Mansouramycins (17) (Fig. 5) are isoquinoline
quinones metabolites produced by marine-derived
Streptomyces sp. These metabolites showed antitumor
activity toward breast cancer, melanoma, lung cancer,
and prostate cancer cells [103]. Tartrolons are a distinct
group of bioactive compounds obtained originally from
Actinomycetes. Tartrolon D was obtained from
Streptomyces sp. MDG-04-17-069. It showed
cytotoxicity against human tumor cell lines: colon
(HT29), lung (A549), and breast (MDA-MB-231)
[104]. Carboxamycin (18) (Fig. 5) was produced by
Streptomyces sp. NTK 937 isolated from sediments of
the Canary Basin. It showed antitumor activity against
hepatocellular carcinoma (HepG2), gastric
adenocarcinoma cell lines (AGS), and breast
carcinoma (MCF7) [105].

Besides their ability to produce antibiotic metabolites,
streptomyces have proven to be a powerful candidate for
the production of metabolites with anti-inflammatory
activities. S. arenicola produces the anti-inflammatory
metabolites cyclomarin A and C. Moreover, it was
reported that cyclomarin A has antituberculosis and
antimalaria activities [106]. Cyclomarin A (19) (Fig. 6)
produced by Streptomyces sp., is a cyclic heptapeptides
metabolite, which displayed potent anti-inflammatory
activity in both in vivo and in vitro assays [107].
Salinamides A (20) (Fig. 6) obtained from
Streptomyces sp. CNB-091, derived from jelly fish
Cassiopeia xamachana. These metabolites are
considered potential anti-inflammatory and
antibiotic agents [108]. Complestatins, known as
peptides, are obtained from Streptomyces lavendulae.
These peptides did not display any inhibitory activity
against HIV enzymes. Where they act by interacting
with target cells’ surface molecules and inhibiting the
adsorption of human immunodeficiency virus type 1
(HIV-1) to cells [109]. Benzastatin C (21) (Figs 6), 3-
chloro-tetrahydroquinolone alkaloid, produced by
Streptomyces nitrosporeus displayed antiviral activity
against herpes simplex virus type 1 and 2 (HSV-1, 2)
and vesicular stomatitis virus (VSV) [110].

Anti-parasitics drugs are a class of medications that are
indicated for the treatment of parasitic diseases.
Nanchangmycin is a polyether metabolite that
showed activity against chicken coccidial parasites,
and meilingmycin, which demonstrated antiparasitic
activities against arthropod parasites of domestic
animals. The two compounds were isolated from S.

anthogenesis and reported to be active against harmful
insects and nematodes [110]. While Pimentel-Elardo
and colleagues [83] isolated valinomycin,
staurosporine, and butenolide from a marine sponge-
derived Streptomyces sp., and by studying their
antiinfective activities, he reported their anti-
parasitic activities against Leishmania major and



Figure 6

Cyclomarin A, salinamides A, benzastatin C, and trioxacarcins obtained from Streptomyces sp.
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Trypanosoma brucei. Trioxacarcins (22) (Fig. 6) is a
complex metabolite with higher antimalarial activity
against malarial pathogens. Trioxacarcin A, B, and C
were produced by marine Streptomyces ochraceus [111].
Some of these compounds showed high antiplasmodial
activity when compared with artemisinin, the most
active antimalarial drug.
Fungi as a source of natural products
Statistically, ∼38% of the 22 000 microbial natural
bioactive metabolites were derived from fungi, and as
estimated, only 5% of the world’s fungal taxa have been
identified and studied [112,113]. Recently, fungi
presented tremendous importance for the discovery
of novel bioactive metabolites. After the discovery of
the first class of antibiotics, penicillins, fungal natural
products, and their effects have gained researchers’
major interest. Since then, fungi have served as a
source for many interesting bioactive metabolites
with a wide range of applications such as peptidic
terpenoids and polyketides. Currently, the
continuous increase of antimicrobial resistance is a
major global challenge, and an urgent need to
discover new bioactive secondary metabolites to
combat this global health risk [114].

Several therapeutic leads, such as mycophenolic acid,
cyclosporine, griseofulvin, fusidic acid, and other novel
semisynthetic antifungal drugs, such as caspafungin
and anidulafungin, have been obtained from fungal
natural products [8]. Another product derived from
fungal cyclosporine is Debio 025 which was clinically
approved as an antiviral agent [115]. Statin’s derivatives
are important drugs for the treatment of cardiovascular
diseases, including lovastatin obtained by Aspergillus

terreus and mevastatin obtained from Penicillium

citrinum [116–118]. Another fungal metabolite also
used for plant protection, strobilurins which were
isolated from Strobilurus species, led to the
production of synthetic fungicides such as
trifloxystrobin [119]. Fungal endophytes are a group
of fungi with rich chemistry and biodiversity, found
naturally in every plant species. It is noteworthy that all



Bioactive microbial natural products Hamed et al. 9
300 000 plant species found on the earth host at least
one endophyte [120]. Several natural products
including alkaloids, mycotoxins, terpenoids, fatty
acids, steroids, flavonoids, etc reported for their wide
range of applications [120–135]. Specifically, some of
these products have been identified or isolated from
fungal species like Rhinocladiella sp. (alcytochalasins)
[120], Aspergillus fumigatus (stearic acid, α-linolenic
acid, and physcion) [121], Penicillium sp. (n-trcosanyl-
n-octaced-9-enoate, and 7α, 9β, 15β-triacetoxy-3-
β-hydroxy jatropha-5E, 11E-diene) [124], Emericella
sp. (emericellamides A and B) [130], and Aspergillus

terreus (butyrolactone I) [130].

Between 2000 and 2006, 140 new bioactive secondary
metabolites were isolated from endophytic fungi [136].
Cryptocin, a potent antifungal compound that is
isolated from endophytic fungus Cryptosporiopsis

quercina and Tripterigeum wilfordii, has displayed
strong activity against plant pests, Pyricularia oryzae,

and other plant pathogenic fungi [137]. Another
interesting group is the fungi-derived marine
invertebrates, which are known for their pioneer
ability to produce unique structures. Aspergillus

similanensis isolated from a sponge yielded a deacetyl
Figure 7

Chevalone E, Asperpeptide A, chondrosterin I, J, and prenylated hydroq
analog of chevalone E (23) (Fig. 7). Chevalone E (23)
displayed a synergetic effect with the ampicillin and
oxacillin antibiotics against MRSA [138].
Asperpeptide A (24) (Fig. 7) is an acyclic
pentapeptide, which was yielded from the
Gorgonian Aspergillus sp [139]. The two prenylated
hydroquinone derivatives (25) and (26) (Fig. 7) were
also obtained from aGorgonian-derived Aspergillus sp.,
while (26) exhibited potent activity toward respiratory
syncytial virus (RSV) [140].

Two sesquiterpenes chondrosterin I (27) and J (28)
were obtained from Chondrostereum sp. soft coral
derived from fungus (Fig. 7). Chondrosterin J (28)
showed strong activity against HTCLs [141].
Epigenetic modification treatment of Cochliobolus

lunatus using histone deacetylase (HDAC) led to the
isolation of two brominated 14-membered resorcylic
acid lactones (29) and (30) (Fig. 7).

On the other hand, fungi from mangroves have been
also recognized for their ability to produce very
important lead compounds. In 2014, up to 108 new
compounds have been identified. The co-culturing of
Alternaria with Phomopsis species resulted in the
uinone derivatives obtained from fungi.



Figure 8

Cyclic peptides, butyrolactones, and polyketides obtained from fungi.
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production of three cyclic peptides (31-33) (Fig. 8).
They displayed strong inhibition activity towards many
plants pathogenic fungi [142,143] while co-culturing
of two Aspergillus species isolated from brown alga
(Sargassum) produced a cyclic peptide, psychrophilin
E (34) (Fig. 8) [144]. Aromatic butyrolactone
flavipesin A (35) (Fig. 8) was obtained from
Aspergillus flavipes. Flavipesin A (35) showed
moderate to good antibacterial activity. Unlike
penicillin, it was able to penetrate the biofilm matrix
to kill live bacteria inside mature Staphylococcus aureus

biofilm [145]. Endophytic fungus Diaporthe sp. was
found to produce diaporine (36) (Fig. 8), a polyketide
that induces the conversion of tumor-associated
Figure 9

Bisindole alkaloids obtained from Algae.
macrophages from the M2 to the M1 phenotype in
both cellular and animal models [146,147]
Algae as a source of natural products
Algae are a diverse group of aquatic organisms that play
an important role in the supply of oxygen to the
atmosphere through photosynthesis [148].
Approximately 30 000 algal species could be served
as a very good nutritional source for fish and humans,
also, in medicine and fertilizers. Several groups of
secondary metabolites are obtained by algae which
including terpenoids, phenazine derivatives,
brominated derivatives, amino acids, guanidine
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derivatives, oxygen, and nitrogen heterocycles. The
racemosines A-C (37-39) (Fig. 9), bisindole
alkaloids produced by Caulerpa racemose [149,150],
caulerpin, also from a Caulerpa sp [151]. Caulerpin
is featured in studies of antinociception mechanisms
[152] and the antituberculosis activities of caulerpin
and synthetic analogs [153].
Conclusion
Microorganisms represent one of the biggest and the
most diverse eco-systems on earth. Since the discovery
of the antibiotic penicillin, microbial natural products
have been earth emerged as powerful and renewable
sources of pharmacologically active metabolites. Since
the 2000s, up to 77% of the approved antibiotics by the
FDA are natural products, originating from microbes
[154]. Several reports and reviews on microbial natural
products show the importance of microbes and their
secondary natural products for health and medicine
[155,156]. Each day, there is increasing evidence that
microbial natural products and their chemical diversity
will be the key to the successful improvement of the
drug discovery future [156]. Moreover, microbial
natural compounds are expected to form a great
achievement in the global drug market, with
estimation to reach by 2025 upto 400 billion USD
[157]. At the same time, the spreading of infectious
and noninfectious diseases creates an urgent need for
novel drug discovery with efficient bioactivity including
antimicrobial, antitumor, and immunosuppressant,
along with other pharmacological activities [158,159].
At present, several successful microbial-based natural
products have been approved for the treatment of many
diseases. This implies the distinguished participation of
microbial natural products in drug manufacturing, and
this recently motivates scientists to apply recent
biotechnology such as recombinant DNA, genetic
engineering, and epigenetic strategies to produce
novel therapeutic entities that can have a huge
commitment to the cure of humanity. Additionally,
the continuous improvement of analytical techniques
for chemical skeleton interpretation, overall chemical
synthesis, biosynthesis, and genetic engineering are all
critical for the success of microbial natural products as
drug leads [160]. Overall, microbial bioactive
compounds will continue to broaden their diverse and
integral role in human life.
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