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Ferulic acid attenuated diethylnitrosamine-provoked hepato-
renal damage and malfunction by suppressing oxidative stress,
abating inflammation and upregulating nuclear factor erythroid
related factor-2 signaling
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Background
Diethylnitrosamine (DEN) is a potent environmental toxin that can reach humans
through the food chain. It induces proliferative, degenerative and cancerous lesions
in the liver and kidneys.
Objective
The principal goal of the existing research was to assess the preventive impacts of
ferulic acid (FA) versus DEN- provoked hepato-renal damage and malfunction.
Materials and methods
Adult male rats were divided into four groups: group 1 (normal control) animals
orally received saline every day for 14 weeks; group 2 (DEN) animals
intraperitoneally received DEN (150mg/kg twice a week) for 2 weeks; group 3
(DEN+FA) animals were injected intraperitoneally twice a week with DEN for 2
weeks besides to oral administration of FA (100mg/kg/day) for 14 weeks; group 4
(FA) animals were given a similar dose of FA for a similar period.
Results
The results revealed that FA treatment reversed the DEN-mediated elevation in
serum values of the liver enzymes activities as well as urea and creatinine levels; it
also augmented the hepato-renal antioxidant system that overcame DEN-induced
oxidative stress deteriorations. Moreover, FA markedly reduced the DEN-induced
elevated hepato-renal levels of immuno-inflammatory markers (IL-1β and TNF-α)
as well as downregulated the inflammatory mediators (Bcl-2, NF-κB, and nuclear
factor erythroid related factor-2 (Nrf-2), reflecting its protective potential.
Conclusion
The existing results elucidate that ferulic acid could prevent and ameliorate DEN-
induced hepato-renal toxicological changes and can restore livers and kidneys’
functions; this effect could be mechanized through activation of anti-inflammatory
and antioxidant systems, as well as regulation of NF-κB, Bcl2, and nuclear factor
erythroid related factor-2 expression.
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Introduction
Hepatocellular carcinoma ranks as the fifth most
common cancer globally and the third leading cause
of cancer-related death [1]. Although the liver can
regenerate and fully recover from most acute
noniterative circumstances [2], this ability of
hepatocytes can be rendered dysfunction by several
conditions such as hepatitis, chronic alcohol use,
frequent use of antibiotics-associated drugs and
nonalcoholic fatty liver disease [3].
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When exposed to medications, xenobiotics, or toxins,
the kidney is frequently the target organ for toxicity and
damage [4]. The exact pattern of kidney toxicity and
damage depends on the physiochemical characteristics
of the medications and their dose, chemicals, or
xenobiotics, toxicokinetic properties, renal clearance
profile, local kidney tissue concentration, metabolic
characteristics and length of exposure [5]. Kidney
injury can be caused by endogenous nephrotoxic
chemicals being produced, immunological processes,
changes in kidney hemodynamics, immunological
processes, or direct cytotoxic harm to the renal
structures from environmental toxins [6]. Due in
part to transporter expression that controls the
release and reabsorption of xenobiotics, the renal
tubules were also toxicity targets [7–9].

Mittal and colleagues [10] reported that a powerful
environmental carcinogen from the nitrosamine class
that enters the food chain is diethylnitrosamine
(DEN). Endogenous sources of DEN include
industrial environments, tobacco smoke, processed
meat, alcoholic beverages, agricultural chemicals,
cosmetic products and pharmaceuticals and
agricultural pesticides [11]. Under typical
physiological conditions, mitochondria and NADPH
oxidase were the principal contributors to the moderate
amounts of reactive oxygen species (ROS) that were
produced. Oxidative stress is formed when the amount
of ROS produced is greater than what the cell’s internal
antioxidant systems can handle. A significant way that
DEN contributes to the development of kidney injury
is by the excessive generation of ROS and/or the
depletion of endogenous antioxidants [12].
According to reports, DEN’s metabolized end-
product, which plays a role in oxidative stress and
cell injury, causes the formation of free radicals; it
also results from the metabolism of several
medicines [13]. It results in liver lesions that are
proliferative, degenerative, and malignant. It can
alkylate DNA molecules while being transformed
into a highly reactive molecule by oxygenase that
depends on CYP450 and produces reactive oxygen
species (ROS) that cause oxidative stress. In the
liver, DEN creates alkyl DNA adducts that cause
chromosomal abbreviations, micronuclei, and
chromatid exchanges. These liver mutations caused
by DEN are what cause liver cancer to arise [14,15].

Through mechanisms that scavenge ROS, the
antioxidants lower the levels of oxidative stress [16].
The functionalities of lipids, nucleic acids and proteins
may change as a result of ROS damage. When the
balance between ROS production and antioxidant
defense is deactivating, oxidative stress results [17].
Unchecked and ongoing liver imbalances between
ROS production and ROS elimination by defense
mechanisms (antioxidants) cause chronic illness and
harm to crucial macromolecules and cells [18].
Phytonutrients are plant-based nutrients or
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phytochemicals that may have health advantages to
maintain bodily health and function as well as lengthen
life [19].

Chemo-preventive agents are recognized for their
antimutagenic, anti-inflammatory and antioxidant
activities that can decrease proliferation and induce
apoptosis, which are crucial components of their
anticancer efficacy. Chemoprevention has made
significant strides in recent years, which is quite
encouraging. Currently, the benefits of a plant-based
diet are being assessed for ameliorating various chronic
illnesses, including those of the liver, such as cirrhosis,
hepatic ulcerative syndrome, and fibrosis. Natural
phenolics, abundant in tea, red wine, whole grains,
fruits, vegetables, coffee, chocolate and legumes are
frequently found in plant-based diets [20]. The
consumption of polyphenols has been directly
correlated with a lower incidence of numerous liver
diseases in humans, including hepatocellular
carcinoma. Polyphenols function as natural
scavengers for hazardous substances because they are
rich in antioxidants [21]. They also possess anti-
proliferative properties and may induce apoptosis in
cancer cells via increased intracellular calcium, resulting
in these individuals in lower tumor growth and a higher
likelihood of recovery [22]. Ferulic acid (FA) is a
phenolic compound present in the cell wall of plants
like rice and barley, as well as in the seeds of fruits like
apples, oranges and grapes. FA has neuroprotective,
reno-protective, hepatoprotective, antitumor, anti-
inflammatory, antiapoptotic, antioxidant and
antiaging properties [23]. FA has become a part of
various medications, supplements and functional foods
since it can be digested and eliminated without
accumulating in the body through the urine [24]. It
has been used for treating vascular endothelial damage,
platelet aggregation, cancer, inflammation, fibrosis,
apoptosis, and oxidative stress [4]. FA’s anticancer
activity is mostly associated with its ability to
promote apoptosis [25]. In an experimental animal
model, it has been found that FA dramatically
lowers the plasma levels of liver biomarkers and the
lipid peroxidative index in the hepatic and renal tissue
after exposure to carbon tetrachloride (CCl4). The
antioxidants (SOD, CAT, GPx and GSH) that
were depleted in CCl4 treated animals, were greatly
enhanced by FA therapy. FA reduces the toxicity of
some chemicals, including formaldehyde,
acetaminophen, diosbulbin B, carbon tetrachloride
and others that cause hepatocytic inflammation [26].
Ferulic acid is a chemical with activity that exhibits
antioxidant properties as well as the ability to stop the
proliferation of cancer cells. Previous research looked at
how ferulic acid, a dietary supplement, affected
hepatocellular carcinoma cells’ ability to proliferate
and induce apoptosis [27].

The current study aimed to explore the chemo-
preventive effectiveness, immune modulatory, and
antioxidative regulatory response of ferulic acid
against DEN-induced hepato- and renal toxicities
via its antioxidant, anti-inflammatory and chemical
detoxifying activities.
Materials and methods
Experimental animals
Age-matched (8-9 weeks) 40 male Wistar rats
(150–180 g) were obtained from the Animal Colony,
National Research Centre, Giza, Egypt and housed in
standard cages under standard conditions for 10 days
before starting the experiment for acclimatization. The
animals were supplied with a standard diet and had free
access to drinking water. All experiments were
performed in line with the ethical guidelines
approved by the Medical Research Ethics
Committee of the National Research Centre, Giza,
Egypt that approved the proposal of experimental
study (No. 2020-20150).
Chemicals
DEN was purchased from Sigma-Aldrich (St. Louis,
MO, USA); FA was purchased as pure powder from
Alpha Aesar, Germany.
Experimental protocol and drug administration
After the acclimatization, animals were randomly
categorized (Fig. 1) into four groups (10 rats each)
as follows:

Group I (control): rats received saline solution daily for
14 weeks.

Group II (DEN): rats injected intraperitoneally with
DEN (150mg/kg twice a week) for 2 weeks [28].

Group III (DEN+FA): rats injected intraperitoneally
with DEN (150mg/kg twice a week) for 2 weeks
concomitant with the oral administration of FA
(100mg/kg/day) for 14 weeks [29].

Group IV (FA): rats orally received 100mg/kg body
weight of FA daily for 14 weeks [29].
Blood and tissue sampling
24 h after the last treatment and under light anesthesia,
blood samples were collected and left for coagulation



Figure 1

Schematic Illustration of the animal grouping and experimental design.
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and cool-centrifuged (Hettich centrifuge,
NEWTOWN CT USA, at 3000 rpm for 10min);
then the sera were separated and preserved at
−80°C. Post blood collection, the animals were
sacrificed by sudden decapitation and the livers and
kidneys were excised, washed in ice-cold phosphate-
buffered saline; then one part of liver and kidney tissues
was homogenized (SONICS homogenizer,
FRANCE) in Tris-HCl buffer (pH 7.4) at
concentration of 10% (w/v). The homogenates were
cool-centrifuged at 3000 rpm for 20min; then the
supernatants were separated and frozen at −80°C.
Other parts of the livers and kidneys were
immediately immersed and fixed in buffered
formalin saline solution (10%) for 48 h, then
dehydrated in ascending grades of alcohol, cleared in
xylol, and finally embedded in paraffin blocks.
Detection of hepato-renal function
Spectrophotometrically (MY 1345003
spectrophotometer, China) and using kits purchased
from Biodiagnostic (Egypt), serum alkaline
phosphatase (ALP) activity was estimated kinetically
according to the method described by Kind and King
[30]; serum lactate dehydrogenase (LDH) activity was
measured according to Young’s method [31]; alanine
and aspartate aminotransferases (ALT and AST)
activities were estimated as described by Reitman
and Frankel’s method [32]; urea and creatinine levels
were estimated according to the methods of Patton and
Crouch [33] and Bowers and Wong [34], respectively.
Estimation of pro-inflammatory cytokines and survival
markers
The hepato-renal levels of interleukin-1β (IL-1β), tumor
necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-
κB), nuclear factor erythroid related factor-2 (Nrf-2), and
B-cell leukemia/lymphoma 2 (Bcl-2) were measured in
livers and kidneys homogenates using ELISA technique
(UV-2401Shimadzu, Japan) and ratsELISAreagent kits
purchased fromSinoGeneClonBiotechCo., Ltd,China.
Measurement of oxidative stress and antioxidant
biomarkers
Using reagent kits obtained from Biodiagnostic
(Egypt) and spectrophotometrically, hepato-renal
level of reduced glutathione (GSH) was measured
according to Beutler and colleagues [35]; lipid
peroxidation/malondialdehyde (LPO/MDA) level
was measured according to Ohkawa and colleagues
[36], Catalase (CAT) activity was determined
following the method of Aebi [37]; Nitric oxide
(NO) level and superoxide dismutase (SOD) activity
were estimated according to Grisham [38] and
Marklund and Marklund [39], respectively.
Histological examination
After embedding the tissues in paraffin blocks, serial
sections (5 μm thick) were mounted on glass slides,
washed in a water bath and left in an oven for dewaxing.
Finally, the sections were stained with hematoxylin and
eosin. Histological changes were assessed under an
electrical light microscope (Olympus CX 41 RF,
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TOKYO, JAPAN) Adobe Photoshop version 8.0 was
used for processing the photomicrographs.
Statistical analysis
The obtained data were analyzed post–hoc by one-
way analysis of variance followed by Duncan-Kramer
methods and presented as mean ± standard error.
Data were considered statistically significant when
p less than or equal to 0.05, as calculated by
the GraphPad Prism 5 software for statistical
analysis (San Diego, CA, USA). Percentage of
change was calculated using the formula

..
Results
FA alleviate serum hepatic and renal biomarkers in
rats receiving DEN
Compared with the normal group, serum AST, ALT,
ALP and LDH activities, as well as urea and creatinine
levels of the achieved results were markedly increased
(P ≤ 0.05) after DEN injection, while ingestion of
normal rats with FA only did not disturb the
mentioned measurements. Interestingly, rats treated
with FA besides to DEN intoxication showed a
Table 1 Effect of DEN on serum AST, ALT, ALP and LDH activities

G1 G2

Control DEN % Change

AST (U/l) 65.13a±1.9 115.88c ±7.2 77.92

ALT (U/l) 25.38a±2.2 42.75b±1.7 68.44

ALP (U/l) 35.96a±2.2 45.16b±2.8 25.59

LDH (U/l) 55.08 a±2.5 78.56b±2.4 42.63

Urea (mmol/l) 25.52a±1.1 39.36b±1.2 54.23

Creatinine (mmol/l) 1.07a±0.1 1.43b±0.1 33.64

Data are presented as mean±SEM (n=8). Within the same raw, means
P≤ 0.05. % change= [Treated Value − Control Value/Control Value]×10

Table 2 Effect of DEN on the levels of liver and kidney MDA, GSH,
effect of FA

G1 G2

Control DEN % change

Liver

MDA (nmol/g) 6.68a±1.2 14.05b±1.7 110.33

NO (μmol/g) 0.308a±0.02 0.547b±0.08 77.60

GSH (mmol/g) 26.11b±4.6 19.15c±3.1 −26.66

CAT (U/g) 64.14a±5.8 34.56b±0.6 −46.11

SOD (U/g) 7.42b±0.4 4.12a±0.9 −44.47

Kidney

MDA (nmol/g) 8.28a±2.4 12.65b±3.5 52.78

NO (μmol/g) 0.293a ±0.01 0.562b ±0.02 91.81

GSH (mmol/g) 6.49a±1.4 2.34b±1.2 −63.94

CAT (U/g) 44.81a ±5.8 21.34 c ±3.1 −52.38

SOD (U/g) 18.69a±2.6 13.85c±1.9 −25.89

Data are presented as mean±SEM (n=8). Within the same raw, means
P≤ 0.05. % change= [Treated Value − Control Value/Control Value]×10
marked reduction in AST, ALT, ALP and LDH
activities as well as urea and creatinine levels when
compared with the DEN-intoxicated group (Table 1).
FA prevents DEN-induced hepato-renal oxidative
stress in rats
Comparing with the control group, the study showed
that DEN-injection resulted in a significant elevation
(P ≤ 0.05) in the levels of hepatic and renal oxidative
markers (MDA and NO) coupled with a remarkable
reduction in the values of the antioxidative markers
(GSH, CAT, and SOD), while administration of
animals with FA alone did not negatively affect the
oxidative stress status of both liver and kidney tissues.
In a favorable manner, cotreatment of rats with FA plus
DEN showed a marked decrease in the levels of NO
and MDA matched with a notable raise in the level of
GSH and the activities of CAT and SOD in hepatic
and renal homogenates compared with those of DEN-
injected group (Table 2).

FA ameliorates inflammatory markers and mediators in
DEN-treated rats
The obtained results showed that FA ingestion neither
disturb the hepatic nor the renal levels of inflammatory
, urea and creatinine levels and the ameliorative effect of FA

G3 G4

DEN+ FA % Change FA % Change

99.25b±4.3 52.39 63.75a±3.1 −2.12

34.71b ±0.9 36.76 24.88a±0.5 −1.97

30.56a±3.3 −15.02 32.2a±2.0 −10.46

59.16 a±8.0 7.41 54.76 a±4.5 −0.581

32.85b±2.3 28.72 23.11a±0.8 −9.44

1.01a±0.1 −5.61 0.98a±0.1 −8.41

with different superscript. Letters are significantly different at
0.

NO and the activities of CAT and SOD and the ameliorative

G3 G4

DEN+ FA % change FA % change

8.01a±1.2 19.91 6.05a±1.7 −9.01

0.391c ±0.1 26.94 0.290a±0.04 −5.84

22.55a ±3.1 −13.63 26.36b±4.1 0.96

59.21a ±1.2 −7.69 61.87a ±1.7 −3.54

6.17b±0.5 −16.85 7.61b±0.3 2.56

9.04a±1.4 9.18 8.01a±1.00 −3.26

0.374c ±0.05 27.65 0.281a±0.5 −4.09

4.67c±1.0 −28.04 6.55a±0.1 0.92

33.51b ±6.0 −25.22 45.30a±3.7 1.09

16.95b±2.3 −9.31 20.03a±1.1 7.16

with different superscript. Letters are significantly different at
0.
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markers (TNF- α and IL-1β) or inflammatory
mediators (NF-κB, Bcl-2, and Nrf2) levels; while
DEN injection led to a significant elevation (P ≤
0.05) in the hepatic and renal inflammatory markers
and mediators levels compared with the corresponding
values of the normal group. Interestingly, animals
orally administered with FA concomitant with DEN
injection showed a considerable down regulation in the
levels of both inflammatory markers (TNF- α, IL-1β)
and mediators (NF-κB, Bcl-2 and Nrf2) when
compared with DEN-intoxicated group (Table 3).
Histopathological changes
The histopathological results revealed that control
group showed normal hepatic architecture with
central vein that surrounded by radiating hepatic
cord (Fig. 2a); while liver sections of DEN-
administered group showed histological
abnormalities as distorted liver architecture, loss of
hepatocyte cells, ballooning of hepatocytes, marked
steatosis, focal inflammatory cells with bridging
fibrosis (early cirrhosis was noticed), and focal
necrotic areas (Fig. 2b & c). Treatment with FA
alone did not negatively affect the normal hepatic
architecture and showed normal appearance
(Fig. 2d). Animal cotreated with DEN together
with FA showed obvious improvement in the
hepatic histological pattern, and restored to normal
structure with mild steatosis, dilated portal tract
surrunded by periportal fibrosis and dilated
sinusoidal spaces (Fig. 2e & f).

Regarding the microscopic examination of the kidneys’
sections, the histological findings illustrated that
normal rats showed normal tubular architecture and
normal glomeruli (Fig. 3a). Dramatically, DEN-
Table 3 Effect of DEN on liver and kidneys’ TNF-α, IL-1β, Bcl-2, Nrf
effect of FA

G1 G2

Control DEN % change

Liver

TNF-α (ng/g) 145c±2.8 481a±3.9 331.7

IL-1β (ng/g) 121c±0.8 336 a±0.2 177.7

Bcl-2 (ng/g) 36.99a± 1.1 107.9 c ±3.1 191.7

NF-κB (ng/g) 147c±0.8 336a±3.1 128.6

Nrf-2 (pg/g) 808 a±4.9 2036c±12.7 151.9

Kidney

TNF-α (ng/g) 71.3c±1.7 183.4 a±3.2 157.2

IL-1β (ng/g) 107c±1.2 191a±2.3 78.5

Bcl-2 (ng/g) 22.3a±1.1 60.7 c±0.8 172.2

NF-κB (ng/g) 117.6 c±1.6 245.2 a±4.2 108.5

Nrf-2 (pg/g) 267.9c±2.2 2434a±11.5 808

Data are presented as mean±SEM (n=8). Within the same raw, means
p≤0.05. % change= [Treated Value − Control Value / Control Value]×10
treated animals showed histological abnormalities as
presence of protein cast in tubular lamina and increase
the number of abnormal glomeruli as congestion,
shrunken and tubular epithelial degeneration
(Fig. 3b & c). FA-administrated rats performed a
clear and normal kidney structure (Fig. 3d).
Favorably, cotreatment of rats with FA plus DEN
resulted in a pronounced improvement in renal
tubules and glomeruli with mild protein cast
deposition and normal appearance of kidney (Fig. 3e
& f).
Discussion
The most sensitive markers of liver injury, serum AST,
ALT, ALP and LDH activities are markedly elevated
in the presence of hepatocellular damage. The amount
of these enzymes in the blood stream reflects the degree
of liver damage. Because DEN-induced hepatic
damage caused the release of these cytosolic enzymes
into the blood stream, the rats in the current
investigation with DEN-induced liver lesions had
considerably greater serum biomarker levels than the
control rats. Due to liver hypofunction and decreased
integrity of hepatocyte cell membranes, this signals the
start of hepatocellular destruction Naughton, Mittal
and colleagues [11,13]. FA, on the other hand,
demonstrated hepatoprotective benefits by lowering
the elevated serum levels of these indicators. A
phenolic substance called FA possesses an
unsaturated side chain. They are hydroxyl and the
electrons from the phenoxyl groups in its phenolic
nucleus that neutralize the free radicals. It has been
demonstrated that the treatment with FA considerably
reduces the activity of these marker enzymes Banchroft
and colleagues [40]. The carboxylic acid group with
-2 and NF-κB protein expression levels and the ameliorative

G3 G4

DEN+ FA % change FA %change

271b±2.5 86.9 141c±2. 7 −2.75

208 b±0.2 71.9 119 c±0.2 −1.65

55.74b±2.6 50.68 34.77 a±1.4 −6.01

198b±1.6 34.69 143c±1.8 −2.72

1458 b± 7.0 80.3 794 a±3.0 1.73

103.3 b±1.7 44.9 72.4 c±1.6 1.54

123 b± 0.3 14.95 103c±0.1 −3.73

33.2 c±0.4 48.87 21.6 a±0.3 −3.14

152.4b±2.7 29.6 115.6 c±3.2 −1.7

854b±9.7 218.8 265c±4.0 −1.1

with different superscript. Letters are significantly different at
0.



Figure 2

Photomicrograph of hepatic tissues show (a): normal control show normal liver architecture with radiating hepatocytes around central vein. (b &
c): DEN-injected group shows distorted liver architecture with lobular cirrhotic pattern, fibrosis with infiltrating inflammatory cells (star), balloning
degeneated hepatic cells (arrow head) and scattered necrotic hepatic cells (thick arrow). (d): FA treated group shows few scattered fat cells (thin
arrow). (e & f): FA+DEN treated group shows dialed portal tract surrunded by periportal fibrosis (star), scattered fat cells and dilated sinusoidal
(DS) spaces (H&E; x200).
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unsaturated chain attached draws free radicals and
stops them from damaging cell membranes. The
electron donating groups on the benzene ring stop
free radical chain reactions. By squelching free
radicals and keeping them from damaging cell
membranes, FA prevents the leaking of liver markers
into circulation Tolba and colleagues [41].

The increased levels of serum indicators including urea
and creatinine in the current results provided proof that
DEN could cause kidney injury in rats. These results
agree with many studies illustrated that the range of
serum creatinine levels reveals the glomerular function
and a rise in these levels signifies renal failure. By
causing oxidative stress, cytochrome P450-dependent
mono-oxidase systems metabolize DEN, starting the
process of mutagenicity, carcinogenicity and
cytotoxicity. As a result, DEN is known to cause
kidney injury and cancer Vilarnau and colleagues,
Ahmadipour and colleagues [42–44].
Oxidative stress is produced as a result of the metabolic
activation and detoxification of DEN, which worsens
liver damage. Rats treated with DEN in the current
study had considerably higher levels of NO and lipid
peroxidation and overall oxidative state, whereas their
levels of GSH, SOD, and CAT were decreased
(Fig. 4). FA administration restores these markers
toward normal levels. These findings coincide with
Niture and Jaiswal [45], who found that lipid
peroxidation is connected to the harmony between
oxidative stress and the body’s antioxidant defenses.
Additionally, numerous antioxidant enzymes as well as
nonenzymatic antioxidants may change throughout
this process. Among them, lipid peroxide is free
radical-related Sivaramakrishana and colleagues,
Jagadeesh and colleagues [16–18] and one of the
primary end-products of lipid peroxide is
malondialdehyde. It is thought that CAT and SOD
are crucial components of cells’ enzymatic defense
against the harm caused by oxidative stress. By



Figure 3

Photomicrographs of kidney sections of the tested groups. (a): normal control shows normal histological structure of renal parenchyma,
glomeruli. (b & c): DEN-injected group show distorted glomeruli (red arrow), scattered glomerular and tubular amyloid deposition (star) and
hydrophic tubular degeneration (blue arrow). (d): FA treated group shows normal renal glomerular and tubular histological structure. (e & f):
FA+DEN treated group shows normal appearance of kidney except for few amyloid (star) deposition (H&E; x200).
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converting H2O2 into molecular oxygen and water
without generating harmful free radicals [46].
According to its antioxidative properties, FA
reduced the oxidative status of DEN-induced
chronic liver injuries in rats Sadik and colleagues
[47]. Hepatocytes need to be protected from
oxidative stress and chemicals-induced damage and
Nrf2 and its downstream proteins are essential for
this Peskin and Cu [48]. A number of organic
substances work to protect the liver by stimulating
the Nrf2 signaling pathway Jelic and colleagues [49].
The antioxidant enzyme activities were enhanced by
FA treatment and MDA levels were dropped. FA
serves as an antioxidant system inducer, reduces
ROS and guards against tissue annihilation. The
majority of FA’s anticancer activity is linked to its
capacity to promote apoptosis Samuhasaneeto and
colleagues [50]. Numerous studies have shown that
oxidative stress is a key factor in the liver damage
brought on by drugs like alcohol, carbon
tetrachloride, acetaminophen and chemotherapy
drugs Moselhy and Ali [51]. DEN is a potent
hepatotoxin, mutagen and carcinogen. Reactive
metabolites generated from its metabolism by
cytochrome P450 2E1 are the ultimate toxicants
responsible for DEN-induced hepatotoxicity Schett
[52]. Repeated low doses of DEN administered to
rats result in hepatic necrosis, chronic inflammation
and liver and renal cancer. DEN-induced liver fibrosis
models have various advantages, such as progressive
and prominent pathological changes, high fibrosis
reproduction rates and relatively low mortality in the
experimental animals Parameswaran and colleagues
[53].



Figure 4

Diagram illustrating the processes through which ferulic acid affects oxidative stress, inflammation and apoptosis in rat liver treated with DEN.
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In the existing study, FA successfully ameliorated
TNF-α, Bcl2, IL-1B, Nrf2 and NF-κB levels that
worsen due to DEN administration. Hepatocyte
injury is followed by inflammation and elevated
levels of cytokines, such as TNF-α and IL-1β,
which are important proinflammatory mediators
induced by monocytes and macrophages. TNF-α
plays a pivotal role in inflammatory responses and
the induction of apoptosis Hoesel and Schmid [54].
TNF-α and IL-1β contribute to the pathogenesis of
liver diseases by activating the NF-κB signaling
pathway Tawfik and colleagues [55]. NF-κB
controls cell viability and inflammation in cancer
Karthikeyan and colleagues [56]. DEN-induced
hepatic cancer impacts Kupffer cells of the liver by
triggering NF-κB and controlling the levels of various
circulating inflammatory mediators like IL-6 and
TNF-α. NF-κB activation and the subsequent
upregulation of TNF-α and IL-1β in DEN-induced
liver injury were inhibited by FA treatment, suggesting
that FA exerts an anti-inflammatory effect by
inhibiting NF-κB activation and suppressing the
production of proinflammatory cytokines associated
with hepatic cancer Fahrioglu and colleagues [57].

Treating DEN-intoxicated rats with FA activated
Nrf2 and enhanced the expression level of heme
oxygenase-1 and catalase activity. The cellular GSH
levels in the hepatocytes might be relevant for
upregulating the expression of GSH-related defense
enzymes, such as GSH synthase and GSH peroxidase,
which exist downstream of Nrf2 and contribute to
protecting cells from oxidative stress. The improved
oxidative status in DEN-intoxicated rats treated with
FA may result from Nrf2 activation combined with the
antioxidative effect of FA Limon-Pacheco and
colleagues [58].

FA was reported to inhibit H2O2-induced Bcl-2-
dependent apoptosis in cancer cells without affecting
the expression of Bcl-2, resulting in better recognition
of the cells by the immune system and apoptosis
Romero and colleagues [59]. It has been shown to
reduce cancer cell viability while inhibiting their
proliferation, migration and invasion Bocchetti and
colleagues [60].

FA prevents renal carcinoma in a concentration-
dependent manner. It is anticancer and proapoptotic
properties may be related to the upregulation of Bax
and caspase 3 and the downregulation of Bcl-2
Lampiasi and Montana [61].

Yuan and colleagues [62] demonstrated that ferulic
acid is a crucial anti-inflammatory agent in a variety of
pathophysiological conditions, either through reducing
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the expression of IL-6, IL-1b, TNF-α, MCP-1, etc. as
a proinflammatory cytokines or through elevating the
expression of anti-inflammatory cytokines, genes
which are specified for stress and some antioxidant
molecules modulating cell signaling pathways like
metallothioneins as MT-1, MT-2, . . . .etc.
Khanduja and colleagues [63]. Normal human
peripheral blood mononuclear cells (PBMCs) were
used in an anti-apoptotic and free radical scavenging
investigation, which demonstrated how FA prevents
lipid peroxidation and scavenges DPPH. In the
presence of FA, PBMC can develop a resistance to
H2O2-induced nucleosome damage and DNA
fragmentation. When H2O2 induces Bcl-2
dependent apoptosis in cancer cells, polyphenols like
FA prevent it without changing Bcl-2 expression. The
inhibition of the translocase enzyme in the presence of
FA results in the externalization of phosphatidyl serine.
As a result, the immune system’s detection of the threat
is increased and the cells experience apoptosis
Karimvand and colleagues [64]. Depend on its
concentration, FA prevented renal cancer. The
overexpression of Bax and caspase 3 and the
downregulation of Bcl-2 may explain its anticancer
and proapoptotic effects Peng and colleagues [65].

In the present study, DEN treatment cause destruction
of hepatic cells with necrosis in many of these cells,
hepatic fibrosis, inflammation, ballooning degeneated
hepatic cells, and steatosis this in aggreement with Abdo
andAlBogami [66].The study of Somade and colleagues
[67] is in accordance with our result in affection of DEN
onrenalglomeruli andtubules.TreatmentwithFAcauses
significant improvement indeteriorations thatoccurred in
liver or kidney by DEN in this study as decrease hepatic
fibrosis, steatosis and necrosis and improvement of
glomerular and tubular structures as previously proved
by Yang and colleagues [68].
Conclusions
The present study provides compelling evidence for the
adverse impacts of DEN on hepatic and renal cells and
the substantial protective effects of FA, mediated via its
antioxidant and anti- inflammatory properties.
Treatment with FA suppressed DEN-induced
hepatocellular and renal toxicities due to its ability to
attenuate ROS generation, LPO and inflammation,
while boosting antioxidant defenses. Our findings
propose a potent and cost-effective preventive agent
for people exposed to DEN toxicity. However, further
investigations and clinical studies are required to
elucidate other mechanisms by which FA improves
liver and kidney function.
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