
Original article 445
Black cumin seed oil and its nano-form ameliorate
lipopolysaccharide-induced brain inflammatory injury in mice
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Backgrounds and objectives
Microglia play a regulatory role in central nervous system inflammatory diseases,
such as Alzheimer’s, Parkinson’s, and multiple sclerosis. Natural remedies like
black cumin seeds (Nigella sativa) are rich in bioactive compounds that potentially
can modulate inflammatory processes in the brain. In the current work, we studied
the protective and anti-inflammatory properties of black cumin seed oil (BCSO) and
its nano-form on lipopolysaccharide (LPS)-induced neurotoxicity in mice.
Materials and methods
Forty-eight mice were divided randomly into eight groups (n=6), three control
groups (negative control, BCSO control, nano-BCSO control), LPS group, and
four treatment groups [BCSO+LPS, nano-BCSO+LPS, indomethacin (5mg/kg)
+LPS, BCSO+indomethacin(2.5mg/kg)+LPS]. At the end of the experiment, the
brain tissues were removed for histopathological and biochemical assessments.
Malondialdehyde and interleukin (IL)-10 were assessed using enzyme-linked
immunosorbent assay while the gene expression of IL-6, toll-like receptor-4,
brain-derived neurotrophic factor, nerve growth factor, cyclooxygenase-2, and
B-cell lymphoma-2 were assessed by real-time PCR. IL-1β was quantified
immunohistochemically along with the histopathological studies of the cerebral
cortex of mice brains.
Results and conclusions
In our study, BCSO and its nano-form demonstrated a reduction in LPS-induced
neurotoxicity, exhibiting comparable or better anti-inflammatory effects to
indomethacin. These treatments significantly elevated the gene expression
levels of neuroprotective factors brain-derived neurotrophic factor and nerve
growth factor in LPS-treated mice. Pretreatment with BCSO and its nano-form
reduced the malondialdehyde levels, in addition to gene expressions of
cyclooxygenase-2, toll-like receptor-4, IL-6, and B-cell lymphoma-2.
Immunohistochemical analysis indicated a decrease in IL-1β with BCSO and the
lowering effect of the nano-form was superior. The histopathological studies
corroborated with biochemical and molecular findings, suggesting that BCSO
and its nano-form attenuated the inflammation and enhanced the microglial
antioxidative and anti-inflammatory status. BCSO could enhance the anti-
inflammatory activity of indomethacin, so lower doses of indomethacin with
BCSO may be suggested for protecting against the adverse effects of high
doses of NSAIDs as gastritis. Consequently, BCSO can serve a potential
stimulatory supplement of the immunity for neurodegenerative conditions.
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Introduction
The inflammatory processes and immune system are
involved in a widespread diversity of physical and
mental health ailments, which was found to be one
of the most significant medical findings [1,2].
Nowadays, chronic inflammation-related diseases
account for 50% of all deaths globally [3]. Currently,
the research is directed toward the central nervous
system (CNS) inflammatory diseases, which are also
known as focal diseases, such as multiple sclerosis
(MS), Alzheimer’s, and Parkinson’s diseases [4–6].
Wolters Kluwer - Medknow
It was found that when microglia, an indispensable
part of the brain’s innate immune system and serve a
number of regulatory roles during CNS inflammation
[7–9], become activated in response to inflammatory
stimuli (e.g. microbes and toxins), a cascade of
inflammation in the CNS microenvironments occurs
DOI: 10.4103/epj.epj_415_23
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accompanied with the release of inflammatory
mediators such as inducible NO synthase, nitric
oxide (NO), tumor necrosis factor-α (TNF-α),
interleukin (IL)-1β, and IL-6 in the CNS,
eventually leading to the progression of
neurodegenerative diseases [9–11]. From the well-
recognized inflammatory stimuli, lipopolysaccharide
(LPS), a main component of the outer surface of
Gram-negative bacteria [12], acts on toll-like
receptor-4 (TLR-4), leading to the release of
proinflammatory and neurotoxic agents. Moreover,
the differentiation of macrophages (MQs) into
inflammatory type 1 macrophages (MQ1)
consequently occurs [13–15]. Normally these MQs
own a vital role against injuries and harmful stimuli.
However, overactivation of this type of cells can trigger
several inflammatory ailments, like neurodegeneration,
MS, and other autoimmune diseases [15]. On the other
side, type 2 macrophage (MQ2) cells are known as
healing MQs, through the production of anti-
inflammatory mediators involving IL-4 and IL-10
[11,14,15].

The immune system deregulation is the main cause
of several diseases; therefore, managing the
immunological responses could present a beneficial
therapeutic approach for handling these diseases.
Medicinal plants could influence the immune
system through modulation of its function like the
production or release of cytokines, the actions of
immune cells, in addition to the expression of
cellular receptors [16]. The natural products as well
as essential oils are well known for their anti-
inflammatory and immunomodulatory effects [17].

Nigella sativa, also known as black seed or black cumin,
is considered a herbal medicine. It grows in southwest
Asia and belongs to the family Ranunculaceae.N. sativa
seeds are used as traditional remedies for the treatment
of a variety of neurological disorders [18,19]. The
analysis of black cumin seed phytochemical
compounds showed an existence of fatty acids [20],
ascorbic acid [21], phospholipids [22], and vitamins
[23], along with thymoquinone, dithymoquinone,
carvacrol, and thymol, which demonstrated
antioxidant [24], analgesic [25], and anticancer
therapeutic effects in addition to the
immunomodulatory activities [26,27]. Furthermore,
the anti-inflammatory impacts of black cumin seed
extract and its active constituents have been reported
on several inflammation models like paw edema
induced by carrageenan [28], rheumatoid arthritis in
rats [29], eicosanoid generation in white blood cells
[30], allergic lung inflammation in mice [31], allergic
encephalomyelitis as a model for MS [32], ulcerative
colitis [33], and NO production by murine
macrophages [34].

Hence, the current research was meant to investigate
the impact of black cumin seed oil (BCSO) and a
prepared nano-form of BCSO on the LPS-induced
neurotoxicity in mice. The study highlighted the
signaling pathways involved in inflammation-
mediated brain toxicity in mice. Indomethacin was
used as a positive control with its regular dose. In
addition, another tailored dose of indomethacin in
combination with the oil was investigated to
decrease the adverse effects of synthetic NSAIDs.
Materials and methods
Kits, reagents, and chemicals
The BCSO was purchased from Imtenan (El Obour
City, Egypt). LPS (Escherichia coli, 0111: B4) was
obtained from Sigma, Aldrich (St. Louis, MO,
USA). Indomethacin (Liometacen) was obtained
from the Nile Co. for pharmaceuticals and
chemical industries (Cairo, Egypt). TE buffer was
bought from Solarbio (Beijing, China).
Malondialdehyde (MDA) (Cat No. MBS741034)
and IL-10 (Cat No.: MBS018124) enzyme-linked
immunosorbent assay (ELISA) kits were all
purchased from MyBioSource Company (San Diego,
USA). RNA extraction kit: GeneJET RNA
purification kit (Cat. No.: K0731), cDNA synthesis
kit: RevertAid first-strand cDNA synthesis kit (Cat.
No.: K1622), and SYBR Green kit: Maxima SYBR
qPCR green master mix (K0252) were purchased from
Thermo Scientific/Applied Biosystems (Logan, Utah,
USA). The primers were obtained from Willofort
(Birmingham, UK).

Black cumin seed oil administration
To deliver the appropriate doses of BCSO to mice, the
oil was emulsified in a 1% solution of Tween 20 [35].
The obtained suspension had a yellowish-white
appearance and was stored in a dry, cold place in a
dark-tinted container. Based on the lot number, a
certificate of analysis was obtained for the purchased
oil. The standardized BCSO fixed constituents include
linoleic acid (58.64%), oleic acid (21.82%), palmitic
acid (12.36%), stearic acid (3.16%), eicosadienoic acid
(2.5%), myristic acid (0.21%), arachidic acid (0.2%),
and trace amounts of capric acid, pentadecanoic acid,
palmitoleic acid, margaric acid, and behenic acid. The
oil also contains essential constituents that include
thymoquinone (84.34%), o-Cymene (9.17%) and
dodecanal (2.98%) and traces of alpha-thujene and
alpha-farnesene.
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Antioxidant assay of black cumin seed oil, 2,2-diphenyl-
1-picryl-hydrazyl-hydrate radical scavenging activity
The 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH)
radical assay was done following the method of Boly
et al. [36]. A measure of 100 μl of freshly prepared
DPPH reagent (0.1% in methanol) was mixed in 96-
well plates (n=6) with 100 μl of serial dilutions of
BCSO or reference compound Trolox (Cat. No.
53188-07-1; Sigma Aldrich), and the reaction was
incubated in dark for 30min at room temperature.
Finally, the color intensity decline of DPPH was
measured at 540 nm using a microplate reader
FluoStar Omega (BMG LABTECH, Offenberg,
Germany). The percentage of inhibition was
calculated according to the following formula:

% inhibition=[(average blank absorbance–average
absorbance of the test)/average absorbance of
blank]×100.

The IC50 was calculated through converting the
concentrations to their logarithmic value and
applying nonlinear inhibitor regression equation [log
(inhibitor) vs. normalized response–variable slope
equation] using GraphPad prism software (San
Diego, California, USA).

Black cumin seed oil nano-form preparation
Preparation of the nano-emulsion

An oil-in-water emulsion containing BCSO as an
internal phase was prepared following the method by
Gumus et al. [37] with slight modifications. It was
prepared using a single-step method involving the use
of lecithin and Tween 80. The ratio of the oily phase in
form of BCSO with 3% lecithin to the aqueous phase
containing 3% Tween 80 was 20 : 80 by volume,
respectively. Briefly, both phases were mixed and
sonicated with a probe sonicator (Vibra cell, Sonics,
USA) at 50% amplitude in an ice bath for 10min with a
30-s period off following each minute of sonication till
the formation of the nano-emulsion. Then, the formed
nano-emulsion was stored at 4°C protected from light
till the investigation.

The characterization of black cumin seed oil nano-
emulsion
Droplet size analysis and surface charge measurement

The mean droplet size and droplet size distribution
expressed by the polydispersity index (PDI) were
evaluated using the dynamic light scattering (DLS)
technique. ZP value was expressed in mV and
measured based on the electrophoretic mobility. All
values were measured using Zetasizer (Nano ZS;
Zetasizer, Malvern Instruments Ltd, UK). To avoid
multiple scattering effects, suitable dilution was done
for the nano-emulsion before measurement using
double distilled water. The measurements were done
in triplicates and mean±SD was calculated.
Transmission electron microscopy

The morphology of the droplets of BCSO in water
nano-emulsion was evaluated using transmission
electron microscopy with JTEM-1010 microscope
(JEOL, Tokyo, Japan) by the application of negative
staining technique. In brief, one drop of the nano-
emulsion was put onto a carbon-coated copper grid
coating. Then, the excess liquid droplets were removed
gently using filter paper. After 5min, one drop of
uranyl acetate solution (2%w/v) was then dropped
onto the grids. The sample was then dried by air
at room temperature and the examination was done
at 80 kV.
Animals
Forty-eight male BALB /C mice aged 8±1 weeks and
weighing (30±5 g) were purchased from VACSERA
animal center (Helwan, Cairo, Egypt). Mice were left
to adapt to the laboratory conditions for 2 weeks before
starting the experiment. They were housed in
polypropylene cages with stainless steel grid covers
in a 12-h light/dark cycle at optimum humidity and
a temperature of 25±2°C and had access to water and
food ad libitum through the experiment. All
procedures in the current research were compliant
with the ethical standards of the Ethics Committee
of Faculty of Pharmacy, Helwan University, Egypt.
(Ethical No.02A2020; date 13/10/2020). The study
was performed following the guidelines of directive
2010/63/EU for animal experiments.
Induction of inflammation in mice and experimental
design
The inflammation was induced in mice by a single
intraperitoneal injection (i.p.) of 2.5mg/kg body
weight of LPS [38]. The studied groups were as
follows: control group: healthy mice were treated
with vehicle only for 2 weeks. BCSO control group:
mice were (i.p.) treated with BCSO (0.2ml/kg/day) for
14 consecutive days [39]. Nano oil control group
(nano-BCSO): mice were (i.p.) treated with nano-
BCSO formula (0.2ml/kg/day) for 14 consecutive
days. LPS group: mice were treated with a single
(i.p.) dose of 2.5mg/kg body weight LPS 6 h before
termination. BCSO+LPS group: mice were (i.p.)
treated for 14 consecutive days with BCSO followed
by a single intraperitoneal injection of LPS. Nano-
BCSO+LPS group: mice were (i.p.) treated for 14 days
with BCSO nano formula followed by a single
intraperitoneal injection of LPS. Indomethacin
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(5mg/kg)+LPS group: mice were (i.p.) treated with
indomethacin (5mg/kg) for 3 days before termination
followed by LPS (i.p.) single dose. Indomethacin
(2.5mg/kg)+BCSO+LPS group: mice were
intraperitoneally treated for 14 consecutive days with
BCSO (0.2ml/kg/day), then with i.p. of indomethacin
half dose (2.5mg/kg) for 3 days before termination
followed by LPS (i.p.) single dose (2.5mg/kg body
weight).

At the end of the experiment course, mice were
sacrificed by cervical dislocation after blood sample
collection from their retro-orbital sinus veins.
Sample preparation
Brain tissues were collected, rinsed, and weighed.
Cerebral cortices of the brain tissue were either fixed
in 10% buffered formalin for histopathological
investigations or stored at −80°C for investigating
biochemical parameters after homogenate preparation.
Homogenate preparation
The cerebral cortices were homogenized with a
proportion of 1 g to 5ml cold saline using high-
speed glass Teflon Dounce homogenizer (Glas-Col
homogenizer). The resulted homogenate was
centrifuged for 15min at 5000 rpm at 4°C, and the
supernatant was separated and divided into aliquots
and was kept at −80°C for further ELISA and
quantitative real-time PCR tests.
Quantitative detection of lipid peroxidation and anti-
inflammatory markers in brain using enzyme-linked
immunosorbent assay
MDA and IL-10 levels in the brain tissue were assayed
using mice-specific ELISA kits (MyBioSource
Company, San Diego, California, USA) following
manufacturer’s procedures.
Quantitative real-time PCR
The total RNA was isolated from brain tissue
homogenates using GeneJET RNA purification kit,
Table 1 Primer sequences of the genes investigated by RT-PCR

Gene Forward 5′-3′

Actb CTCTAGACTTCGAGCAGGAGATGG AT

IL-6 AGTTGCCTTCTTGGGACTGA

TLR-4 ATGGCATGGCTTACACCACC

BDNF CATACTTCGGTTGCATGAAGG

NGF CAGATAGCAATGTCCCAGAAGG

COX-2 ACACACTCTATCACTGGCACC

BCL-2 CTGAGTACCTGAACCGGCAT

BCL-2, B-cell lymphoma-2; BDNF, brain-derived neurotrophic factor; CO
receptor-4. *According to GenBank Primer-Blast Program, NCBI.
Thermo Scientific/Applied Biosystems following the
directions of the manufacturer. The concentration of
extracted RNA was evaluated using nanodrop, after
that, it was reverse transcribed into cDNA by using
RevertAid first-strand cDNA synthesis kit, Thermo
Scientific/Applied Biosystems following the provider’s
protocol. To assess the effect of BCSO and its nano-
form on the expression of some related genes, mRNA
of nerve growth factor (NGF), and brain-derived
neurotrophic factor (BDNF) as brain injury specific
markers, TLR-4, IL-6, and cyclooxygenase-2 (COX-
2) as inflammatory markers, in addition to B-cell
lymphoma-2 (BCL-2) as an apoptotic marker were
all determined in brain tissue using Maxima SYBR
qPCR green master mix along with beta-actin gene
(Actb) as the housekeeping gene. Quantitative PCR
was performed using Rotor-Gene Q (QIAGEN,
Hilden, Germany). The relative gene expression
levels were evaluated using the 2−(ΔΔCt) method
[40], and the results were expressed in the form of
the mean fold change of three experiments. The
primers sequences are listed in Table 1.
Immunohistochemical examination of interleukin-1β in
the cerebral cortices of the brain tissues
Immunohistochemistry technique was used to examine
the IL-1β expression on the prepared brain paraffin
slices of control and treated mice groups using
avidin–biotin peroxidase (A-B peroxidase) in
accordance with the method mentioned by El-
Rahman and Fayed [41]. In brief, at a dilution of 1
: 200, a monoclonal antibody for IL-1β (Abcam,
Cambridge, USA) was incubated with tissue sections
along with the peroxidase kit, Vectastain ABC, Vector
Laboratories) for the revelation of the complex
constituted by the union of antigen and antibody.
3,3-Diaminobenzidine tetra hydrochloride (Sigma
Chemical Co.) was used as a chromogen to visualize
each marker’s expression. The immune-stained slides
were assessed using image analysis tools in seven
microscopic fields of high-power magnification
(Image J, 1.46a, NIH, USA).
Reverse 5′-3′ Accession number*

GCCACAGGATTCCATACCCAAGA NM_007393.5

TCCACGATTTCCCAGAGAAC NM_031168.2

GAGGCCAATTTTGTCTCCACA NM_021297.3

AGTGTCAGCCAGTGATGTC NM_007540.4

AGTGATGTTGCGGGTCTGC NM_013609.3

TTCAGGGAGAAGCGTTTGC NM_011198.5

GGTATGCACCCAGAGTGATG NM_009741.5

X-2, cyclooxygenase-2; NGF, nerve growth factor; TLR-4, toll-like
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Brain tissue staining protocol and histopathological
examination
The histopathological examination was performed by
an expert at the Department of Pathology Faculty of
Veterinary Medicine, Cairo University, Giza, Egypt.
Mice cerebral cortices of brain tissues were fixed in 10%
buffered formalin. Tissue specimens were rinsed with
tap water, then serial dilutions of ethyl alcohol were
used to dehydrate them. They were cleared in xylene
and lastly embedded in paraffin. The thickness of
paraffin block sections were averaged between 4 and
5 μm, and they were stained with hematoxylin and
eosin [42]. The histological sections were examined
under light microscope (Olympus, Tokyo, Japan), and
their photomicrographs were taken at X 400
magnification.
TEM micrograph of BCSO nano-emulsion. BCSO, black cumin seed
oil; TEM, transmission electron microscopy.
Statistical analysis
Data were depicted as means±SD and analyzed by
GraphPad Prism 5 software (GraphPad San Diego,
California, USA). Analysis of variance (ANOVA) test
followed by Tukey–Kramer multiple comparison post-
hoc test were used to draw comparisons between
groups. P values lower than 0.05 were regarded as
statistically significant.
Results
The characterization of nano-black cumin seed oil
Droplet size, polydispersity index, and zeta potential

The mean droplet size obtained using the DLS
technique is 60.44±4.05 nm. Droplet size of very
small size (smaller than 100 nm) offers a large
surface area and hence better bioavailability [43].
Similar droplet size was obtained by Gumus et al.
[44], who prepared the nano-emulsion using the
same method. The PDI represents the homogeneity
of droplets, and it ranges from 0 to 1 [45]. The
obtained PDI value was 0.24±0.3. When the PDI
value is smaller than 0.3, it is considered acceptable
and indicates a narrow particle size distribution
[46,47]. High ZP value is an indication of good
stability of colloids. ZP values higher than +30mV
or more negative than −30mV are considered highly
stable [48]. The ZP value was −32.0±2.17 indicates low
probability of coalescence and size increase of the
prepared nano-emulsion with time.
Table 2 2,2-diphenyl-1-picryl-hydrazyl-hydrate scavenging
effect for black cumin seed oil

Test IC50 (μg/ml)

BCSO 39.24±4.26

Trolox 63.69±0.87

Data are displayed as mean±SD.
Morphological analysis

As seen from Fig. 1, the negatively stained oil droplets
are relatively homogeneous and spherical in shape.
There are no signs of coalescence or aggregation. A
comparable droplet size was obtained using the DLS
technique.
The 2,2-diphenyl-1-picryl-hydrazyl-hydrate radical
scavenging impact of black cumin seed oil
The data represented in Table 2 shows that the BSCO
has an efficient scavenging power against DPPH when
compared with Trolox. The lower IC50 value of the
sample indicates a stronger ability to neutralize free
radicals [49].

The effects of black cumin seed oil and its nano-form
on lipid peroxidation in lipopolysaccharides-induced
brain toxicity
Considering MDA levels, a significant elevation of
MDA (P<0.05) was noticed in the LPS-treated
group (19.20±2.35 ng/g tissue) when compared with
the control group (6.92±0.90 ng/g tissue). However,
pretreatment with BCSO or its nano-form before LPS
induction caused a significant reduction inMDA levels
(P<0.05) in all animal groups. Moreover, MDA levels
did not significantly differ between the groups
pretreated with indomethacin (5mg/kg) only (9.04
±1.01 ng/g tissue) and that pretreated with BCSO
followed by half indomethacin dose (2.5mg/kg)
(10.73±1.18 ng/g tissue) before LPS induction (Fig. 2).
The effects of black cumin seed oil and its nano-form
on interleukin-10 in lipopolysaccharides-induced brain
toxicity
Regarding the levels of IL-10, there were no significant
variations between mice in all groups. However, IL-10
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level in the LPS group (409.60±26.17 pg/g tissue) was
lower than that in the control group (482.20±26.64 pg/
g tissue) (Fig. 3).
Effects of black cumin seed oil and its nano-form on
gene expression of brain-derived neurotrophic factor
and nerve growth factor in lipopolysaccharides-
induced brain toxicity
As indicated in Fig. 4, BDNF and NGF gene
expression levels were significantly decreased in the
LPS-treated mice compared with the normal control
group. In all pretreated mice groups before LPS
induction, both genes expression levels were
significantly (P<0.05) improved. It was noticed that
pretreated animals with BCSO followed by half
indomethacin dose (2.5mg/kg) showed increased
BDNF and NGF expression levels more than those
treated with indomethacin (5mg/kg) only. However,
this increase was significant only for BDNF expression
levels.
Effects of black cumin seed oil and its nano-form on
gene expression of cyclooxygenase-2, toll-like
receptor-4, interleukin-6, and B-cell lymphoma-2 in
lipopolysaccharides-induced brain toxicity
Regarding the expression levels of inflammation-
related genes such as COX-2, TLR-4, and IL-6,
Figure 5
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LPS treatment induced an inflammatory reaction
indicated by statistically significant elevation in
expression levels (P<0.05) of these genes compared
with the normal control group. In contrast, BCSO,
BCSO nano-form, and indomethacin pretreatment
before LPS induction diminished the inflammation
through significant reduction (P<0.05) in these genes’
expression levels compared with the LPS group.
Remarkably, BCSO nano-form pretreatment
significantly reduced TLR-4 and IL-6 expression
levels compared with BCSO pretreatment (P<0.05).
But both treatments showed almost the same effect on
COX-2 expression levels. Furthermore, pretreatment
of animals with BCSO followed by half indomethacin
dose (2.5mg/kg) declined COX-2 and TLR-4
expression levels significantly (P<0.05) compared
with those treated with indomethacin only (5mg/
kg). However, this effect was not seen for IL-6 (Fig. 5).

Finally, the expression level of BCL-2 was measured in
the brain tissues of all animal groups, and we found that
LPS treatment significantly upregulated BCL-2
expression compared with the normal control group.
It was noted that BCSO, BCSO nano-form, and
indomethacin pretreatment before LPS induction
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(P<0.05) in the brain tissues compared with the LPS
group (Fig. 6).
Immunohistochemical quantification of interleukin-1β
As shown in Figs 7 and 8, mice of the normal control
group, BCSO, and nano-BCSO control groups
showed negative expression of IL-1β in the cortical
neurons (Fig. 8a–c), respectively. The LPS induction
demonstrated marked expression of IL-1β in the mice
cerebral cortical neurons (arrow) (Fig. 8d). Regarding
the groups pretreated with BCSO, BCSO nano-form,
and indomethacin before LPS induction, they showed
variable degrees of marked decreased expression of IL-
1β (Fig. 8e–h). The uppermost decrease was noticed in
the BCSO nano-form-treated mice as designated by
the quantitative analysis of the positive brown color
using the image analysis software.
Figure 7
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Histopathological examination of hematoxylin and
eosin-stained brain tissue sections
As depicted in Fig. 9, microscopic examination of
various sections of cerebral cortices of normal control
mice (Fig. 9a), BCSO control mice (Fig. 9b), and
nano-BCSO control mice (Fig. 9c) demonstrated
normal histological structure of the cerebral neurons
and normal organization of cerebral layers.
Examination of cerebral cortices of LPS-treated
mice showed intracellular edema of the cerebral
neurons, marked neuronophagia, vacuolar
degeneration, and nuclear pyknosis (Fig. 9d).
However, pretreatment of mice with BCSO before
induction with LPS showed mild degree of protection
with scarce apoptotic cells and vacuolation in some
neurons with few necrotic ones (Fig. 9e). Likewise,
cerebral cortex of mice pretreated with BCSO nano-
form or indomethacin (5mg/kg) before induction
Control
LPS
BCSO+LPS
Nano-BCSO+LPS
Indo.(5mg/kg)+LPS
BCSO+Indo.(2.5mg/kg)+LPS

b

β (IL-1β) immune expression in LPS-induced brain toxicity. BCSO,
The values are expressed as mean ±SD. a, b, c, or d indicates a
cin (5mg/kg)+LPS groups, respectively. Results are considered
VA followed by Tukey–Kramer multiple comparison post-hoc test.
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with LPS showed a great degree of protection of the
cerebral neurons against the action of LPS with only
very few degenerated and pyknotic neurons (Fig. 9f
and g), respectively. Cerebral cortices of mice
pretreated with BCSO followed by half
indomethacin dose (2.5mg/kg) and induction with
LPS showed few scattered neuronophagia and mild
Figure 8

Immunohistochemical expression of IL-1β in cerebral cortices of the brain (
seed oil groups, respectively, showed negative expression of IL-1β amon
expression of IL-1β in the cytoplasm of most of the cerebral neurons (ar
showed mild expression of IL-1β in scattered cerebral neurons (arrow).
showed scarce expression of IL-1β (arrow). g: Indomethacin (5mg/kg)+LP
cumin seed oil+indomethacin (2.5mg/kg)+LPS mice group showed mod
interleukin; LPS, lipopolysaccharides.
degree of neuronal cell degeneration and pyknosis
(Fig. 9h).
Discussion
Previous studies have shown that stimulation of
microglial cells results in the production of several
×400). a, b, c: mice of control, black cumin seed oil, nano-black cumin
g the cerebral neurons. d: LPS-administrated mice showed a marked
row). e: Black cumin seed oil followed by LPS induction mice group
f: Nano-black cumin seed oil followed by LPS induction mice group
S mice group showed moderate expression of IL-1β (arrow). h: Black
erate expression of IL-1β (arrow). BCSO, black cumin seed oil; IL,
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proinflammatory cytokines, such as TNF-α, ILs, NO,
and reactive oxygen species (ROS) [50,51] causing
neuroinflammation and neuronal death, which has a
crucial role in the etiology of some neuroinflammatory
ailments like Parkinson’s, Alzheimer’s, and MS
diseases [14,52].
Figure 9

Histopathological examination of cerebral cortices of the brain (hematoxyli
black cumin seed oil groups, respectively, showed normal histological s
cerebral layers. d: LPS-administrated mice showed intracellular edema (a
e: Black cumin seed oil followed by LPS induction group showed mild v
(dashed arrow) with general good degree of protection. f: Nano-black cu
degenerated and pyknotic neurons (arrow) g: Indomethacin (5mg/kg)+LP
(arrow). h: Black cumin seed oil+indomethacin (2.5mg/kg)+LPS mice gr
scattered neuronophagia (dashed arrow), and few pyknotic neurons. LP
In the present work, we studied the protective and
anti-inflammatory effects of BCSO and its nano-
form on LPS-induced inflammatory neurotoxicity in
mice. Indomethacin was used as a reference anti-
inflammatory drug at a dose of 5mg/kg. Moreover,
the effect of a combination of BCSO with a
n and eosin, ×400). a, b, c: Mice of control, black cumin seed oil, nano-
tructure of the cerebral neurons (arrow) and normal organization of
rrow) of the cerebral neurons and many pyknotic cells (dashed arrow).
acuolar degeneration of few neurons (arrow), scarce apoptotic cells
min seed oil followed by the LPS induction mice group showed few
S mice group showed good degree with only few degenerated cells
oup showed mild degree of neuronal cell degeneration (arrow), few
S, lipopolysaccharides.
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reduced dose of indomethacin (2.5mg/kg) was also
studied.

Generation of ROS was reported in LPS-stimulated
microglia [53]. Our results have showed that LPS has
induced lipid peroxidation demonstrated by elevated
levels of MDA. Changes in MDA levels have been
indicated in several inflammatory disorders such as
human immunodeficiency virus, cystic fibrosis, and
acute respiratory distress syndrome [54].
Furthermore, the NADPH oxidase role was reported
in LPS-stimulated microglial activation. NADPH
oxidase activation was shown to increase the
intracellular ROS levels, which sequentially increased
the proinflammatory gene expression [55]. In the
current research, significant reduction of lipid
peroxidation was seen by the administration of
BCSO or its nano-form. Thymoquinone, the major
BCSO component, has shown antioxidant properties,
which may be attributed to the redox capability of its
quinone structure and the unrestricted ability of
thymoquinone to go across extensive obstacles to cell
niches [56]. This effect is consistent with our results in
which BCSO has demonstrated good in-vitro
scavenging activity against DPPH along with its
impact on reducing lipid peroxidation in mice brains.

However, groups treated with BCSO alone or in
combination with indomethacin demonstrated a
comparable outcome. Some reporters suggested that
ROS are a major contributor in gastric injuries induced
by indomethacin as it has a prooxidant action [57]. The
use of vitamins C and E as well as sodium selenate was
found to reduce indomethacin-induced side effects on
gastric mucosa, possibly due to their free radical
scavenging action [58]. Other studies suggested that
the induction of antioxidant enzymes through the
formation of in-vivo metal complexes is another
mechanism for the anti-inflammatory effect of
indomethacin [59].

Notably, activated microglia also generate IL-10, a
strong anti-inflammatory cytokine. In the initial
phases of neuroinflammation, IL-10 is present in
modest amounts, yet its role in influencing the
inflammatory response is crucial. As time progresses,
microglia increases the production of IL-10,
contributing to the resolution of inflammation [60],
which aligning with our findings.

Also, increased expression of neurotoxic and
inflammatory factors, such as IL-6, TLR-4, and
COX-2, in addition to IL-1β in response to LPS
was found in the current work.
Focusing on the TLRs, activation of the microglial
TLR-2 and TLR-4 has been related to
neuroinflammation and neuronal cell death [61,62].
Therefore, governing the LPS-stimulated microglia
activation through downregulation of the TLR-4
receptor and its mediated signaling pathway proteins
in addition to the suppression of the production of
neurotoxic proinflammatory cytokines would be an
efficient therapeutic approach for neuroinflammatory
ailments. The current results indicated that BCSO and
its nano-form can repress the gene expression of TLR-
4 with a better effect than indomethacin. A recent
study has shown that indomethacin augmented the
LPS-induced expression of Nos2 gene and inducible
NO synthase protein in mice brains [63].

Regarding COX-2, its production is known to be
stimulated by LPS in microglial cells in vitro
[64,65]. COX-2 is a major player in the brain
inflammatory responses, and elevated COX-2
expression has been thought to promote
neurodegeneration [66]. BCSO, BCSO nano-form,
and indomethacin have significantly reduced COX-2
gene expression in the LPS-treated mice. However,
their effect on levels of COX-2 was not prominent.
There is ongoing debate on the precise role of COX-1
inhibition in systemic inflammation induced by LPS
and their impacts on neuroinflammation.
Indomethacin is an inhibitor of COX-1 and COX-2
with higher selectivity toward COX-1 [67]. There was
evidence indicating that COX-1 and COX-2 have
separate roles in the brain in comparison to
peripheral tissues. Both COX-1 and COX-2 are
constitutively expressed in the brain. COX-1 is
mainly expressed in the microglia and can be
stimulated in the endothelium in brain injuries [68].
COX-1 has an inflammatory role in the brain, which
was indicated by the lower inflammatory reaction after
intracerebral injection of LPS in COX-1 lacking mice
in comparison to the wild-type mice [69]. COX-2 is
specifically expressed in the cortical glutamatergic
neurons and the hippocampus [70]. In spite of the
direct neurotoxic effects of COX-2, there are some
implications that the effect seen in the brain after
injection of LPS may be attributed to a role of
COX-1 as well [71].

Furthermore, LPS caused significant decrease in
BDNF and NGF mRNA expression in animal
brains. Many studies linked BDNF and NGF with
neuronal maintenance and survival, in addition to the
regulation of neurotransmitters. It was found that
patients with neurodegenerative disorders have
decreased BDNF levels in their brains. The



456 Egyptian Pharmaceutical Journal, Vol. 23 No. 3, July-September 2024
abnormal BDNF concentrations may be attributed to
the inflammatory state of the brain [72]. Moreover, a
marked reduction in NGF gene expression was
described in the cerebral cortex of experimental
allergic encephalomyelitis rat model [73].

The anti-inflammatory agents may provide protection
for the neuronal cells through the inhibition of
microglial stimulation [74]. In the present study,
BCSO and its nano-form have reduced LPS-
induced inflammation and showed a comparable or
better effect than indomethacin. This effect was
established through downregulation of COX-2,
TLR-4, and IL-6 mRNA. The studies have shown
that the black cumin seed extracts have reduced
inflammation in rat glial cells [75]. Likewise, black
cumin seed and its oil have diminished inflammation in
LPS-treated rats [76]. Moreover, thymoquinone, the
primary active constituent of BCSO, was shown to
reduce LPS toxicity in stimulated microglial cells [77]
through reducing cytokines such as NF-κB, TNF-α,
IL-1β, IL-6, and IL-10 [78], lipoxygenase [79], and
COX-2 [80] activities.

Our findings showed a high expression of the
antiapoptotic gene BCL-2 in LPS-inflamed brain
tissues. BCSO and its nano-form caused
downregulation of BCL-2. This finding is most
likely explained by the fact that different cytokines
and signaling molecules affects the regulation of BCL-
2. For instance, minimal concentrations of LPS
activate TLR-2 and TLR-4 receptors, which in turn
triggers mast cell production of IL-13, which raises the
expression levels of BCL-2 [81]. It was recorded that
BCL-2 inhibits NF-κB activation and consequently
the upregulation of proinflammatory genes.
Correspondingly, the dual role of BCL-2 as
antiapoptotic and anti-inflammatory accounts for its
cytoprotective function [82].

Notably, the LPS-induced histopathological
modifications in mice brains were alleviated by
BCSO and its nano-form. Thus, the histological
studies have supported the biochemical and
molecular effects shown in the current work.

The limitations of therapeutic substances to get to the
CNS restricts the effectiveness of noninvasive
treatment for neurological disorders. So far, various
nano-forms have been developed and used to treat
neurological disorders [83]. The thymoquinone
nanoparticles were used for brain targeting, and they
displayed more brain targeting than conventional
thymoquinone [84]. The biochemical evaluation
indicated that thymoquinone nanoparticles
demonstrated neuroprotective effects in rats with
occluded cerebral arteries through the reduction of
lipid peroxidation and raising the antioxidant
enzymes [85]. In this work, we have prepared a
nano-emulsion form of the BCSO and evaluated
this nano-form for its protective effect against LPS-
induced neurotoxicity. We found that BCSO nano-
form showed a promising neuroprotective potential.
The uppermost effect was noticed in reducing IL-1β,
TLR-4, and IL-6 expression in mice brains. Also, the
histopathological examination of mice cerebral cortices
showed a great degree of protection of the cerebral
neurons against the action of LPS in those treated with
the BCSO nano-form.
Conclusion
In a nutshell, BCSO pretreatment has contributed to
improve LPS-induced brain injury. The BCSO has
shown its ameliorative influence through its positive
effects on lipid peroxidation and inflammatory
markers. The BCSO has suppressed the
inflammatory response induced by LPS with
comparable or better effect than indomethacin.
Moreover, a combination of BCSO with a reduced
dose of indomethacin can be recommended as an anti-
inflammatory supplement to protect against NSAIDs
side effects.

Furthermore, BCSO nano-form has exerted a
neuroprotective effect against LPS-induced
inflammatory brain injury, which may offer a useful
neuroprotective brain targeting tool. The biochemical,
molecular, and histopathological results suggested
BCSO and its nano-form may be a potential
immunomodulator for various neurodegenerative
ailments.
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