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Salvia hispanica L. (chia seeds) alleviates paracetamol-induced
acute liver injury in mice by modulating oxidative stress and
inflammation
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Background
Paracetamol [N-acetyl-p-aminophenol (APAP)] is one of the frequently prescribed
antipyretics and analgesics; yet going over the recommended dose still poses a
major clinical challenge and leads to serious drug-encouraged liver damage.
Objective
Our study aims to discover the hepatoprotective effect of Salvia hispanica L. [chia
seeds (CS)] against APAP-induced acute liver injury in male mice.
Materials and methods
Paracetamol (300mg/kg bw, once a day for two successive days) was orally
administered to establish a liver injury model. Forty male albino mice were
randomly divided into four groups (10/group); control, APAP group, CS-4%
+APAP group: was pretreated with CS (4%) for 21 days before receiving APAP,
CS-20%+APAP group: was pretreated with CS (20%) for 21 days before receiving
APAP. At the end of the experiment, the levels of liver injury indices, hepatic nitro-
oxidative stress, and inflammatory-associated biomarkers along with
histopathological examinations were determined. Additionally, inflammatory
responses of some primer sequences (nuclear factor kappa B, p38 mitogen-
activated protein kinases, monocyte chemoattractant protein-1, and toll-like
receptor 4) were determined by quantitative real-time PCR in liver tissues.
Results
CS markedly stabilized the APAP-motivated alterations in liver function markers,
cytochrome P450 2E1 level, hepatic nitro-oxidative stress, and pathological
changes. The anti-inflammatory activity of CS improved tumor necrosis factor-
alpha and myeloperoxidase production. Furthermore, mRNA expression of nuclear
factor kappa B,monocyte chemoattractant protein-1, p38mitogen-activated protein
kinases, and toll-like receptor 4 were significantly downregulated. Such effects
were found to be responsible for its hepatoprotective effect in a dose-dependent
way.
Conclusion
Our results showed evidence that the hepatoprotective effect of CS against APAP-
induced liver injury wasmediated through the reduction of oxidative stress damage,
enhancement of antioxidant status, and inhibition of different inflammatorymarkers.
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Abbreviation: APAP, N-acetyl-p-aminophenol; CS,
chia seeds; CYP2E1, cytochrome P450 2E1; MCP-
1, monocyte chemoattractant protein-1; MPO,
myeloperoxidase; NF-kB, nuclear factor kappa B;
p38MAPK, p38 mitogen-activated protein kinases;
TLR4, toll-like receptor 4; TNF-α, tumor necrosis
factor-alpha.
This is an open access journal, and articles are distributed under the terms

of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

License, which allows others to remix, tweak, and build upon the work

non-commercially, as long as appropriate credit is given and the new

creations are licensed under the identical terms.
Introduction
Acute liver failure (ALF) is a potentially critical
problem of severe hepatic sickness resulting from
viral hepatitis or drug use [1]. Paracetamol
[acetaminophen or N-acetyl-p-aminophenol
(APAP)] is considered one of the most important
causes for drug-encouraged ALF. Also, it has been
Wolters Kluwer - Medknow
widely studied for its liver injury [2]. When
administered at curative doses, the majority of
APAP is transferred into nontoxic compounds
which are secreted in the urine. Only a very small
portion is excreted unchanged in the urine. The
residual APAP, about 5–9% is metabolized by the
cytochrome P450 enzymes (CYPs), mostly
cytochrome P450 2E1 (CYP2E1), into the highly
reactive intermediate metabolite N-acetyl-p-
benzoquinone imine (NAPQI) [3]. Generally,
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NAPQI is quickly detoxified by conjugating with
glutathione (GSH). On the other hand, when
metabolizing enzymes are saturated after APAP
overdose, excessive NAPQI depletes GSH, resulting
in the covalent binding of sulfhydryl groups in cellular
proteins, especially mitochondrial proteins, which
leads to the pathogenesis of ALF [4,5].

Although N-acetyl cysteine is considered the only
permitted antinode for APAP poisoning, its side
effects and high dose requirement, along with the
extended duration of treatment that may counteract
liver regeneration, have led to a search for alternative
agents that are safer and more efficient in treatment of
APAP toxicity [6].

Bioactive substances of natural origin have been
demonstrated to protect the development of diseases
related to reactive oxygen species (ROS) [7].
Accordingly, developing new efficacious complementary
naturalproductswithantioxidativeandanti-inflammatory
properties becomes an advanced strategy in APAP-
induced acute liver injury prevention [8].

Chia (Salvia hispanica L.) is a herbaceous plant native
to southern Mexico and northern Guatemala. It
belongs to the mint family (Lamiaceae) [9]. In
recent years, chia seeds (CS) have received more
consideration and were included in human diets due
to their massive nutritional and medicinal potential
[10,11]. CS is a plentiful source of protein, dietary
fiber, vitamins, minerals (such as calcium),
carbohydrates, unsaturated fatty acids (mainly
omega-3 and omega-6 PUFAs), and pigments [12].
Additionally, CS contains many bioactive substances
with high antioxidative activity, such as phytosterols,
α-tocopherol, and polyphenolic compounds. These
compounds include but are not limited to rosmarinic
acid, caffeic acid, gallic acid, ferulic acid, cinamic acid,
quercetin, kaempferol, myricetin, flavonol glycosides,
and chlorogenic acid [13]. These mentioned
compounds has documented antioxidant effects
which guards against the oxidative stress that
represent a cornstone in initiating drug-stimulated
hepatotoxicity [14].

The published data about the possible protective effects
of CS on liver insult is slim.

Following the previous findings and as a part of our
goal to find effective natural materials for protection
against APAP intoxication, we need to investigate the
hepatoprotective effect of dietary CS intake against
APAP-motivated acute liver injury in mice.
Materials and methods
Animals
The present experimental study was carried out on the
male albino mice.

Animals were obtained from The National Cancer
Institute of Cairo University. Mice were kept in wire
mesh cages under a regulated environment (25±2°C
temperature, 55±5% relative humidity, and 12 : 12 h
light/dark cycle), and they were given food and water
supply ad libitum. Unnecessary disturbance of animals
was avoided. Animals were treated kindly; squeezing,
pressure, and tough maneuvers were avoided.
Commercially available pellet diet and CS were
grinded, and either 4 g of milled CS was mixed with
96 gofmilledpellets to prepare4%,w/wor 20 gofmilled
CSwasmixed 80 g ofmilled pellets to prepare 20%w/w.
Next, 100ml of distilled water was added to blend the
mixture, then dried in an oven at 50°C for 24 h and kept
in a dusky dry stoppered glass container for weekly use
[15]. Diet was offered to mice in specific food cups to
avoid any loss in diet. All animal procedureswere carried
out in compliance with the rules established by
Institutional Animal Care and according to the
guidelines for the handling and use of laboratory
animals. All procedures were carried out according to
the research ethics committee for experimental studies at
the National Organization for Drug Control and
Research NODCAR/I/27/2021 in November 2021.

Chemicals
Paracetamol was purchased from Sigma-Aldrich (Saint
Louis, Missouri, USA); CS were purchased from
Imtenan Health Shop (Cairo, Egypt). Other
chemicals and analytical grade reagents were
obtained from El-Gomhoria Company, Cairo, Egypt.

Induction of experimental liver injury
Mice were fasted for 12 h before paracetamol
administration and given free access to water to
generate a similar condition for paracetamol
metabolism [16]. Following the fasting period, liver
injury was induced in healthy male albino mice by oral
administration of APAP (300mg/kg, once a day, for
two successive days) dissolved in 0.9% sodium chloride
at 30°C in water bath [17].
Experimental design
Following 1 week of acclimatization, mice were divided
into four groups (10 animals each) as per the following:

Group 1 (control): mice were fed a commercial pellet
diet and administered a daily oral dose of 0.9% sodium
chloride (1ml/kg b.w.) for 23 days.
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Group 2 (APAP group): mice were fed a commercial
pellet diet and administered a daily oral dose of 0.9%
NaCl (1ml/kg b.w.) for 21 days then administered
paracetamol orally at a dose of 300mg/kg b.w./day for
another two successive days and served as a positive
control [17].

Group 3 (CS-4%+APAP):micewere fedCS containing
food pellets daily at a dose of 4% w/w [18] for 21 days
then administered paracetamol orally at a dose of
300mg/kg b.w./day for another two successive days.

Group 4 (CS-20%+APAP): mice were fed on CS
containing food pellets daily at a dose of 20% w/w [19]
for21days, thenadministeredparacetamolorally at adose
of 300mg/kg b.w./day for another two successive days.

At the end of the experimental period, after 24 h of
paracetamol administration, blood samples were
collected from retro-orbital venous plexus and left at
37°C for 20min. The coagulated blood was
centrifuged at 3000 rpm for 20min to separate
serum and stored at −20°C for further biochemical
analyses such as alanine aminotransferase (ALT),
aspartate aminotransferase (AST), alkaline
phosphatase (ALP), total protein, total cholesterol
(TC) and albumin]. Afterwards, mice of all groups
were euthanized by decapitation, and the liver of
different groups were excised and washed with cold
isotonic saline. Part of the liver tissues were weighed
and homogenized in ice-cold phosphate-buffered
saline (10% homogenate) for evaluation of nitro-
oxidative stress biomarkers as nitric oxide (NO),
malondialdehyde (MDA), reduced GSH contents,
and superoxide dismutase (SOD) activity,
inflammatory markers as myeloperoxidase (MPO)
activity, tumor necrosis factor-alpha (TNF-α) level
and CYP2E1 level. One lobe of liver was fixed in
10% (v/v) formalin for histopathological
examinations, while the last part was stored at
−80°C for further biochemical analysis.
Biochemical analysis
Assessment of serum hepatotoxicity indices

The activities of ALT, AST, and ALP, as well as the
levels of TC, total protein, and albumin were
determined through using commercial diagnostic kits
obtained from Biodiagnostic Inc. (Giza, Egypt) as
instructed by the manufacturer.
Evaluation of hepatic nitro-oxidative stress biomarkers
MDA level was assessed by recruiting the method of
Uchiyama andMihara [20]. GSH content was prepared
according to themethod illustrated byBeutler et al. [21].
SODactivitywasdeterminedaccording to theprocedure
of Nandi and Chatterjee [22]. NO level was determined
according to Miranda et al. [23].
Evaluation of hepatic myeloperoxidase activity and
tumor necrosis factor-alpha, cytochrome P450 2E1
levels
MPO activity was evaluated according to the method
of Bradley et al. [24]. The levels of TNF-α and
CYP2E1 were quantitatively detected in liver tissue
by using mouse enzyme-linked immunoassays kits
(TNF-α; Abbexa, UK and CYP2E1, MyBiosource
Inc., San Diego, California, USA), respectively, as
instructed by the manufacturer.
Quantitative real-time PCR for the mRNA expression
levels of nuclear factor kappa B, p38 mitogen-activated
protein kinases, monocyte chemoattractant protein-1,
and toll-like receptor 4 in hepatic tissues
Using TRIzol reagent (Invitrogen, Sigma-Aldrich)
and following the manufacturer’s protocols, total
RNA was extracted from hepatic tissue. The
conversion cDNA reverse transcription kit (Clontech
Laboratories, Takara Bio Inc., Shiga, Tokyo, Japan)
was utilized for cDNA synthesis as per the
manufacturer’s instructions. Real-time quantitative
reverse transcription PCR(RT-PCR) was executed
using SYBR Green PCR Master Mix (QIAGEN,
Venlo, The Netherlands) in reaction volume of 25 μl
with the subsequent thermal cycling conditions: 50°C
(reverse transcription) for 5min, 95°C for 10 s, then 40
cycles of 95°C for 15 s, and 60°C for 30 s. Primer pair
sequences for each gene are displayed in Table 1. For
calculating the results from real-time assays, Applied
Biosystems Software (Foster City, California, USA)
was applied. Using the comparative threshold
cycle method (Ct), the relative quantification of
mRNA expression was determined. Glyceraldehyde
3-phospate dehydrogenase mRNA expression was
used as invariant endogenous control (reference
gene) for normalizing all data [25].
Histopathological evaluation
Prefixed liver tissues (48 h in 10% buffered formalin)
were cleaned and dehydrated in escalating grades of
alcohol, clarified in xylene, processed into paraffin
blocks, sectioned (5μm thick), and stained with
hematoxylin and eosin. Histopathological lesions were
examined through the lightmicroscope according to the
method described by Bancroft and Layton [26].
Statistical analysis
Statistical analysis was calculated using one-way
analysis of variance, followed by the Tukey–Kramer



Table 1 Primers sequence for QRT-PCR analysis

Gene primer sequence

NF-κB forward 5’-CCTCTGGCGAATGGCTTTAC-3‘reverse 5’-GCTATGGATACTGCGGTCTGG-3‘

p38MAPK forward 5’-CGAAATGACCGGCTACGTGG-3‘reverse 5’-CACTTCATCGTAGGTCAGGC-3‘

MCP-1 forward 5’-TGCTGTCTCAGCCAGATGCAGTTA-3‘reverse 5’-AGAAGTGCTTGAGGTGGTTGTGGA-3‘

TLR4 forward 5’-CACTGTTCTTCTCCTGCCTGAC-3‘reverse 5’-TGGTTGAAGAAGGAATGTCATC-3‘

GAPDH forward 5’-ACCACAGTCCATGCCATCAC-3’reverse 5’-GTCCTCAGTGTAGCCCAGGA-3’
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multiple comparisons test. Values of P less than 0.05
were considered significant. GraphPad PRISM
program was used for statistical analysis (version 5,
San Diego, California, USA). All experimental results
were represented as mean±SEM.

Results
The protective effects of chia seeds intake on hepatic
markers
Figure 1 depicts the hepatic plasma markers: APAP-
induced liver injury inmice manifested by a pronounced
Figure 1

Effect of CS at doses 4% and 20% on serum levels of (a) ALT, (b) AST, (c)
asmean±SEM; n=6; statistical analysis was carried out by one-way ANOV
control group at P value less than 0.05. #Significantly different from APAP
(CS-4%+APAP)-treated group at P value less than 0.05. ALP, alkaline
variance; APAP, N-acetyl-p-aminophenol; AST, aspartate aminotransfer
elevation in serum ALT, AST, ALP, and TC by 114,
113, 110, and 115%, respectively, along with a reduction
in albumin level by 27% as compared to the control
group. In contrast, pretreatmentwithCSat a dose of 4 or
20% significantly attenuated APAP-induced alterations
in liver function markers as revealed through the
reduction of ALT by 32 and 41%, AST by 27 and
40%, ALP by 25 and 40%, TC by 35 and 45%,
respectively, in addition to a significant elevation in
albumin level by 16 and 25%, respectively, as
compared to APAP-treated group.
ALP, (d) TC, (e) albumin, and (f) TP in mice. Results are represented
A test followed by Tukey post-hoc test. *Significantly different from the
-treated group at P value less than 0.05. @Significantly different from
phosphatase; ALT, alanine aminotransferase; ANOVA, analysis of
ase; CS, chia seeds; TC, total cholesterol; TP, total protein.
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The antioxidant effects of chia seeds intake in N-
acetyl-p-aminophenol-toxicated mice
As illustrated in Fig. 2, mice challenged with APAP
triggers a pronounced elevation in oxidative stress
evidenced by the decline in the level of endogenous
antioxidants (SOD and GSH by 19 and 29%,
respectively), concomitant with an elevation in
hepatic MDA and NO levels by 129 and 86%,
respectively, compared to the control group. On the
contrary, pretreatment with 4 or 20% CS efficiently
elevated SOD activity by 86 and 126%, respectively,
and GSH content by 9 and 29%, respectively,
associated with a marked decrease in MDA level by
40 and 52%, respectively, and NO level by 21 and 35%,
respectively, as compared to APAP-treated group.
Effect of chia seeds intake on hepatic
myeloperoxidase activity, tumor necrosis factor-alpha,
and cytochrome P450 2E1 levels in N-acetyl-p-
aminophenol-toxicated mice
As illustrated in Fig. 3, the APAP-treated group
exhibited a profound elevation in hepatic MPO
Figure 2

Effect of CS at doses of 4% and 20% on the antioxidant levels of (a) MDA,
in mice. Results are represented as mean±SEM; n=6. Statistical analysis
hoc test. *Significantly different from the control group at P value less than
less than 0.05. @Significantly different from (CS-4%+APAP)-treated grou
analysis of variance; CS, chia seeds; GSH, glutathione; MDA, malondia
activity and TNF-α, CYP2E1 levels by 3.8, 4.6, and
2.3 folds, respectively, as compared to the control
group. Meanwhile, pretreatment with 4 and 20% CS
resulted in a considerable reduction inMPO activity by
41 and 60%, respectively, TNF-α level by 50 and 67%,
respectively, and in CYP2E1 level by 41 and 55%,
respectively, as compared to APAP-treated group.
Effects of chia seeds intake on mRNA expression
levels of hepatic nuclear factor kappa B, p38 mitogen-
activated protein kinases, monocyte chemoattractant
protein-1, and toll-like receptor 4 in mice
As shown in Fig. 4, APAP-intoxication caused a
marked increase in the inflammation-associated
factors as evidenced by the significant (P<0.05)
elevation in the mRNA expression levels of nuclear
factor kappa B (NF-kB), p38 mitogen-activated
protein kinases (p38MAPK), monocyte
chemoattractant protein-1 (MCP-1), and toll-like
receptor 4 (TLR4) by 5.7, 7.7, 2.9, and 7.6 folds,
respectively, as compared to control group.
Meanwhile, prefeeding with CS at a dose of 4 or
(b) NO, (c) SOD activity, (d) GSH content in APAP-induced liver injury
was carried out using one-way ANOVA test followed by Tukey post-
0.05. #Significantly different from the APAP-treated group at P value

p at P value less than 0.05. APAP, N-acetyl-p-aminophenol; ANOVA,
ldehyde; NO, nitric oxide; SOD, superoxide dismutase.



Figure 3

Effect of CS at doses of 4% and 20% on (a) MPO activity, (b) TNF-α, and (c) CYP2E1 levels in mice. Results are represented as mean±SEM;
n=6. Statistical analysis was carried out using one-way ANOVA test followed by the Tukey post-hoc test. *Significantly different from the control
group at P value less than 0.05. #Significantly different from the APAP-treated group at P value less than 0.05. @Significantly different from (CS-
4%+APAP)-treated group at P value less than 0.05. APAP, N-acetyl-p-aminophenol; ANOVA, analysis of variance; CS, chia seeds; CYP2E1,
cytochrome P450 2E1; MPO, myeloperoxidase; TNF-α, tumor necrosis factor-alpha.
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20% significantly (P<0.05) decreased mRNA
expression levels of NF-kB by 45.4% (0.55 fold) and
66.6% (0.33 fold), p38MAPK by 37.4% (0.63 fold) and
63.7% (0.36 fold), MCP-1 by 34.5% (0.66 fold) and
54.9% (0.45 fold), TLR4 by 37% (0.63 fold) and 64%
(0.36 fold), respectively, as compared to the APAP-
treated group. Notably, CS pretreatment of the
APAP-challenged group at a dose of 20% nearly
showed comparable results to the control group.
Histopathological examination
As illustrated in Fig. 5, the photomicrographs of the
liver tissue sections stained with hematoxylin and eosin
supported by histopathology scoring in Table 2: the
control group displayed conserved lobular architecture.
In addition, the APAP-intoxicated group showed
marked congestion, pyknosis, necrosis, steatosis, and
lymphatic infiltration compared to other groups,
whereas groups pretreated with CS-4% showed a
recognized decrease in the previous morphological
changes. The CS-20% group showed a better
amelioration in liver histology.
Discussion
Oxidative stress is implicated in the pathogenesis of
several diseases. In addition, it plays a pronounced role
in the damaging effect attributed to paracetamol
hepatotoxicity involving CYP system.

Consequently, supplementation of exogenous
antioxidants might normalize redox status
throughout oxidative stress. So, this work was
designed to investigate the ability of CS
pretreatment to counteract APAP-induced
hepatotoxicity in mice. Our results demonstrated a
marked increase in the levels of ALT, AST, ALP,
and TC, along with a considerable decrease in albumin
levels in the APAP-intoxicated group compared to the
control group. Additionally, the antioxidant status of
the cell as SOD activity and GSH content were
significantly decreased while the levels of CYP2E1,
MDA, NO, MPO, TNF-α were significantly elevated
associated with upregulation of NF-kB, p38MAPK,
MCP-1, and TLR4 mRNA expression in APAP-
treated group compared to the control group. Our



Figure 4

Effect of CS at doses of 4% and 20% on mRNA expression of (a) NF-kB, (b) p38 MAPK, (c) MCP-1, and (d) TLR4 in APAP-induced liver injury in
mice. The levels of mRNA in the liver were analyzed by QRT-PCR assay. GAPDHwas used as an invariant internal control for calculatingmRNA
fold changes. Results are represented as mean±SEM; n=5. Statistical analysis was carried out using one-way ANOVA test followed by the
Tukey post-hoc test. *Significantly different from the control group at P value less than 0.05. #Significantly different from the APAP-treated group
at P value less than 0.05. @Significantly different from (CS-4%+APAP)-treated group at P value less than 0.05. APAP, N-acetyl-p-aminophenol;
ANOVA, analysis of variance; CS, chia seeds; GAPDH, glyceraldehyde 3-phospate dehydrogenase; MCP-1, monocyte chemoattractant
protein-1; NF-kB, nuclear factor kappa B; TLR4, toll-like receptor 4.
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results are in line with earlier studies reported that
APAP overdose induced increasing in hepatic MDA
level and decreasing in hepatic SOD activity and GSH
content [27–30]. Our results show that APAP
overdose results in a significant raise in AST, ALT,
ALP, and TC levels, along with a significant decline in
the level of albumin, suggesting the success of
establishing a liver injury model causing cellular
infiltration and loss of functional integrity, these
findings match with previous studies [28,29].
Conversely CS pretreatment causes a marked
ameliorative effect on these liver biomarkers levels
compared to the APAP-treated group, indicating its
hepatoprotective effect. These results are in accordance
with Helal et al. [31] who reported that feeding CS
powder decreased liver enzymes (ALT, AST, and
ALP) and TC in hypercholesterolemic rats. These
effects may be due to the plentiful content of potent
natural antioxidants especially omega-3 PUFAs and
polyphenolic compounds that have a preserving effect
on the integrity of the hepatocytes [32,33].

An increase in CYP2E1 level was observed after APAP
intoxication in several studies, which is well known as a
potent inducer for ROS and has a major effect on acute
hepatotoxicity [30,34], which is comparably proved by
our results. Interestingly CS pretreatment exerts an
important role in mitigating the early injury of APAP
hepatotoxicity through the decline of CYP2E1 level,
which is the embodiment of CS prohibiting APAP
hepatotoxicity from the source [35]. This effect of CS
may be attributed to its bioactive component of
polyphenolic compounds especially ferulic acid that
has a direct effect on inhibiting CYP2E1 [36].



Figure 5

Representative histological micrographs of mice liver tissue sections stained with hematoxylin and eosin (×100). (1) The control group showed
no histological alterations. (2) The APAP-treated group showed lymphatic infiltration, vacuole steatosis, pyknoysed hepatocyte, and degen-
erated hepatocyte. (3) CS-4% +APAP group showed moderate cell degeneration, better morphology of sinusoid and hepatocyte. (4) CS-20%
+APAP group showed no sign of steatosis or lymphatic infiltration, normal portal component, and hepatocyte (scale bar=12 μm) [where bold
arrow: central vein (CV); thin arrow: hepatocyte (H); wavy arrow: sinusoid (S); curved arrow: Kupffer cell (Kc); blue arrow: vacuole steatosis (Vs);
red asterisk*: lymphatic infiltration; and double head arrow: degenerated hepatocyte (DH)]. APAP, N-acetyl-p-aminophenol; CS, chia seeds.
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As was mentioned earlier, excessive intake of APAP
and the abnormal transformation to NAPQI by the
action of CYP2E1 causes GSH depletion in the
cytoplasm and mitochondria, which has immense
pressure on the formation of ROS [37]. ROS
accumulation triggers lipid peroxidation, reduces
detoxifying enzymes, and damages cellular redox
homeostasis as increased MDA as well as NO levels,
and decreased SOD activity, causing further liver tissue
injury [29,38,39]; this can lead to the leakage of liver
enzymes into the serum of APAP-intoxicated animals
Table 2 Histopathology scoring

Congestion Lymphatic infiltration Ne

Control − −

Paracetamol ++++ ++++ +

4% CS +++ ++

20% CS ++ +

CS, chia seeds; −, normal; +, mild; ++, moderate; +++, severe; ++++, e
[40]. These results are markedly reversed by CS
treatment, highlighting the antioxidative effects of
CS that may be attributed to the free radical
scavenging activity and augmentation of the
antioxidant status of its bioactive component omega-
3 PUFAs [35,41].

ROS can initiate an inflammatory response by
activating NF-kB, which is transported to the
nucleus and induces the expression of target
inflammatory genes, especially proinflammatory
crosis Degeneration (pyknosis, karyolysis) Steatosis

− − −

+++ ++++ ++

++ ++ −

+ + −

xtremely severe.
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cytokines such as TNF-α and inflammatory mediators
such as iNOS [16,34]. NAPQ1 overload leads to the
mobilization of monocytes and neutrophils to the liver’s
damaged area generates more proinflammatory
chemokines as MCP-1 and cytokines as TNF-α. In
turn, TNF-α can exacerbate the inflammatory response
by inducing further NF-kB nuclear translocation and
activation, elevation neutrophil accumulation, and
induction of iNOS expression, resulting in the
pathogenesis of liver injury caused by APAP [42,43].
Our results demonstrated that CS pretreatment
decreased levels of MPO, NF-kB, TNF-α, and MCP-
1 in APAP-intoxicated mice, confirming its
hepatoprotective effect through suppression of NF-kB
pathway [44,45]. This could be attributed to its high
content of documented anti-inflammatory components
such as omega-3 PUFAs [12,46].

NF-kB activation is also controlled by various cellular
kinases, particularly the MAPKs family, which is
involved in the control of gene expression linked to
inflammation, cell propagation, and cell death in
APAP-induced hepatotoxicity [47]. Oxidative stress
and ROS accumulation activates p38MAPK which in
turn stimulates apoptosis and promotes cytokines
synthesis [48]. Accumulating evidence suggests that
p38MAPK plays an integral role in controlling the
expression of proinflammatory cytokines and
inflammatory mediators by regulating the activation
and canonical signaling of NF-kB in APAP-
intoxicated livers [49]. Subsequently, the activation
of MAPKs is another crucial molecular mechanism
to assess the inflammatory responses. Our results
demonstrated that up-regulation of p38MAPK
mRNA expression induced by APAP was inhibited
by CS pretreatment, suggesting that the inhibition of
p38 MAPK by CS may contribute to CS-mediated
suppression of the NF-kB pathway.

In addition, the APAP challenge leads to increased
mRNA expression of TLR4, which in turn stimulates
p38MAPK and NF-kB activation and the consequent
release of inflammatory mediators and
proinflammatory factors, resulting in aggravating
liver damage. Our findings are in concordance with
Liu et al. [50]. In contrast, CS pretreatment down-
regulates the expression of NF-kB, p38MAPK, and
TLR4, illustrating that the hepatoprotective effect of
CS may result from the potential of CS to mediate the
signaling pathway of TLR4/p38MAPK/NF-kB. The
positive effect of CS pretreatment may be related to the
hepatic TLR4 and p38MAPK lowering capacity of
omega-3 PUFAs and polyphenolic compounds,
especially ferulic acid and chlorogenic acid as
abundant constituents in CS, all of which exert anti-
inflammatory and hepatoprotective effects by blockage
TLR4-mediated MAPK and NF-kB pathways
[36,46,51].

Consistent with these results, our histopathological
investigation also declared that treatment of APAP-
intoxicated mice with CS significantly mitigates the
liver histological abnormalities observed in APAP-
treated mice, suggesting the hepatoprotective effect
of CS. Similar findings were shown by Apoorva
et al. [44], who demonstrated that treatment with
CS preserves the liver architecture against the INH-
RIF-induced histopathological and biochemical
changes in the rats.
Conclusion
In this study, we suggest that dietary intake of CS
displays significant hepatoprotective efficacy against
APAP-induced liver injury in mice in a dose-
dependent manner by suppressing oxidative stress,
and inhibiting the production of inflammatory and
proinflammatory mediators such as MPO and TNF-
α. Also, CS hepatoprotective effect could be explained
through decreased CYP2E1 level and suppressed
TLR4/p38MAPK/NF-kB pathways.
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