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ABSTRACT 

In this paper, projectile trajectory optimization is investigated. The main objective is to 

determine the optimal launch angle that maximizes the projectile achieved total distance (arc 

length). We investigated the process of determining the most effective launch angle, the angle at 

which an object is projected to achieve the greatest horizontal distance covered. One of the key 

determinants of this angle is the initial velocity of the projectile, the impact of air resistance, and 

the nature of the landing surface.  The application of the reinforcement Q-learning to optimize the 

projectile total traveled distance is explored whereas, traditional methods of optimizing projectile 

trajectories often rely on mathematical models and iterative approaches. However, in this study, 

we leverage the flexibility and adaptability of Q-learning to optimize projectile trajectory by 

learning optimal actions through interaction with the environment. The result is proven 

graphically, furthermore, the performance of the achieved range and the maximum height at the 

optimum angle is investigated. 

 

Keywords: reinforcement learning, Q-learning, launch angle, artificial intelligence, parameter 

optimization. 
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1- Introduction 

Scientists have long been fascinated by projectile motion, a cornerstone of physics and 

engineering. Optimizing projectile trajectories is crucial for diverse applications in sports, space 

exploration, and the military. The launch angle is a critical factor in projectile motion, influenced 

by initial velocity, air resistance, and the nature of the landing surface. Understanding these 

physical mechanisms is essential for achieving optimal trajectories. This study utilizes 

reinforcement Q-learning to find the optimum launch angle that maximizes the projectile’s total 

distance traveled (arc length) to reduce undesirable effects like energy loss from air resistance and 

trajectory deviations. Unlike traditional methods that rely on static mathematical models and 

iterative calculations, Q-learning provides a dynamic approach by learning optimal actions through 

environmental interactions. This adaptability enables continuous optimization of the launch angle, 

resulting in more effective trajectory control. Besides, pure rolling, the motion of an object along 

a surface without slipping, is crucial in mechanics. It occurs when the object's translational motion 

matches its rotational motion about its center of mass. This concept is significant in analyzing its 

relation with projectile motion and optimizing the trajectory and efficiency of launched objects. 

Determining the optimum launch angle for projectiles relies on this understanding, impacting the 

range, accuracy, and efficiency of various applications in engineering and physics. Optimizing the 

launch angle and initial velocity is crucial for improving projectile performance [1-2]. Karadag [3] 

investigated the intricate relationship between the projectile launch angle and the features of the 

final trajectory to identify the launch angle that would maximize the projectile's overall distance 

traveled during flight (the projectile arc length). He derived an analytical solution and illustrated 

the results graphically. In addition, he determined the launch angle to be about 56.5°.  

Regodić et al. [4] used integration methods to calculate the projectile's movement over time 

while accounting for the wind, Coriolis inertial force caused by the reactive force, rotation of the 

Earth, and acceleration due to gravity. These studies have improved our comprehension of the 

many subtleties associated with projectile motion optimization. In addition, modern developments 

in resources of optimization and optimization methods have greatly broadened the field of 

projectile motion study. In (Kahrizi et al., 2020) [5], the authors proposed a global optimization of 

the projectile trajectory using a novel metaheuristic technique. Similarly, machine learning 

methods were utilized to optimize the projectile trajectory using the Long Short-Term Memory 

[6]. In the context of using optimization algorithms for optimizing the projectile firing angle and 
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velocity, Alridha utilized the five different techniques, Nelder-Mead, Powell, Limited-memory 

Broyden-Fletcher-Goldfarb-Shanno with Box constraints LBFGS-B, Truncated Newton 

Conjugate-Gradient TNC, and Sequential Least-Squares Quadratic Programming SLSQP to find 

the optimum launch parameters which maximize the achieved range [2] The author investigated 

the resulting trajectory for each algorithm and compared the results. In (Amer et al., 2024) [7], the 

authors transformed the stability analysis of an asymmetric rigid body under constant torque and 

gyrostatic moment from a two-dimensional phase plane to a three-dimensional phase space. It 

examines stationary torques on different axes, revealing new analytical and simulation results on 

equilibrium manifolds and periodic solutions. The findings have significant applications, 

particularly in gyro theory. The dynamic motion of a two degrees-of-freedom auto parametric 

system with a rolling cylinder and damped spring under excitation, deriving solutions using 

Lagrange’s equations and multiple scales method was examined in (Amer, 2022) [8]. Stability and 

resonance are analyzed, revealing novel insights into the system's behavior. explores the rotational 

motion of a symmetric gyrostat under magnetic and Newtonian fields were studied in (Amer, 2021) 

[9], simplifying the system to find asymptotic solutions and analyze stability using Poincaré's 

method. The results, relevant to submarines, aircraft, and satellites, are illustrated with graphical 

plots and phase planes. In (Escobar et al., 2022) [10] the authors investigated the distance between 

the projectile and the object. The results show the for launch angles greater than approximately 

70.53°, the distance between the projectile and the object temporarily decreases between two 

points of maximum and minimum distance. Assuming a ground launch without air friction, the 

authors used dimensionless coordinates.  

In (Abu-Bakr et al., 2019) [11], the authors theoretically examined heat production in a system 

of magnetically interacting ferromagnetic particles subjected to both rotating and linearly polarized 

magnetic fields. Using a mathematically regular approximation for pair interactions, results show 

that interparticle interaction significantly enhances heat production, with a greater thermal effect 

in rotating fields. magnetic hyperthermia in single-domain ferromagnetic particles within an 

oscillating magnetic field modeled in (Abu-Bakr et al., 2020) [12], showing that particle 

clusterization weakens the thermal effect. These findings are crucial for optimizing practical 

applications of magnetic hyperthermia. 
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Even with the projectile’s motion field advancements, there are still gaps and untapped prospects 

in the topic of projectile motion optimization. Projectile launch angle optimization using a 

reinforcement machine learning algorithm called Q-learning is the subject of this article. 

 

 

2- Problem Statement 

    To solve the challenging task of optimizing the projectile trajectory, a methodological approach 

is implemented where the projectile starts its motion by velocity 𝑣𝑜 and a positive launch angle δ 

An optimization problem is formulated to find the optimal launch angle δ aiming to maximize the 

achieved total distance (arc length) at a fixed positive initial velocity 𝑣𝑜. D (δ) is the total distance 

traveled by the projectile which is a function of the launch angle δ and can be represented as 

follows 

 

D (δ) = 
𝑣𝑜

2

𝑔
[sin(δ) + cos2(δ) ln (

1+sin(δ)

cos(δ)
)].                                       (1) 

where 𝑔 is the gravitational acceleration (𝑔 equals 9.81 meters per second squared). 

 

 

Figure 1: The trajectory of a projectile motion. 

 

In Figure 1, 𝐻 is the maximum height achieved during the projectile motion and 𝑅 is the 

maximum horizontal distance achieved by the projectile. 
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3- Problem Formulation 

     Considering the motion of the projectile, where the objective is to fire the projectile from a 

starting point to achieve the maximum arc length of the projectile's trajectory 𝐷(δ), the goal is to 

find the optimal launch angle δ that achieves the maximum arc length. This issue may be presented 

as an optimization problem which can be expressed as: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
δ

  𝐷(δ).                     (2) 

Subject to 

𝐶:    0 ≤ δ ≤ 90 

By constraint 𝐶, the launch angle is guaranteed to be within the feasible launch angle range of 0°to 

90°. The main goal of this research paper is to methodically investigate the Q-learning algorithm 

to effectively and accurately solve this optimization problem. Finding the ideal launch angle (δ) 

that produces the largest achievable traveled distance for the proposed projectile motion scenario. 

 

4- The Proposed Reinforcement Q-Learning Algorithm 

     To the best of our knowledge, this article marks the pioneering effort in enhancing projectile 

trajectory optimization through the application of the Q-learning algorithm. To tackle the 

challenging problem of parameter optimization in the projectile motion domain, a Q-learning 

algorithm is proposed which was proposed by Dayan as one of the reinforcement learning 

algorithms in [13-14]. The agent is enabled to learn optimal actions in the environment by 

associating each pair of action instances with a value Q, which represents the expected cumulative 

reward. It explores the environment, updating Q-values based on received rewards and 

transitioning to states with higher Q-values. Through repeated iterations, Q-learning converges to 

an optimal policy, guiding the agent to make informed decisions and maximize cumulative rewards 

[15]. 

     The agent in reinforcement learning is modeled as a finite Markov Decision Process (MDP), if 

the states and actions spaces are finite. The MDP can be expressed as the tuple (ℛ, 𝒜, 𝒮), where 

ℛ denotes the reward function for the agent, 𝒜 defines the agent’s action space and 𝒮 denotes the 

discrete environment states. At each time step 𝑡, the agent is at the state 𝑆𝑡∈𝒮, and performs an 

action 𝐴𝑡∈𝒜, which will change the system state to 𝑆𝑡+1∈𝒮, and receiving a reward 𝑟𝑡∈ ℛ. In this 

manner, the set of discrete environment states 𝒮 represents all the possible projectile launch angels. 
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While the set of actions 𝒜 represents the two possible actions that are increasing or decreasing the 

angel δ  by 1 degree, which is 𝒜= { δ + 1 or δ -1}, an action is chosen based on an epsilon-greedy 

strategy, where a random action is chosen from the action space with probability ξ, was set to 0.1. 

Otherwise, the action returns the current state highest Q-value is selected, exploiting the learned 

information. On the other hand, the reward  𝑟𝑡 is calculated to represent the total achieved traveled 

distance by the projectile as follows: 

              r = 𝐷 (δ).                                                             (3) 

 

The agent’s goal in reinforcement learning is to learn an optimal policy 𝑄π(A, 𝑆) that denotes 

the action A selection probability at state S to get maximum rewards over time (i.e., it is a mapping 

from states to actions).  

The algorithm depends on the value of the action-state function 𝑄𝜋(A, 𝑆) that encapsulates the 

agent’s anticipated return starting from state S∈ 𝒮 and performing action A∈ 𝒜 and following the 

policy 𝑄π(A, 𝑆) (i.e. Q-function). 

             𝑄𝑡+1
𝜋 (𝐴𝑡, 𝑆𝑡) = (1 − 𝛼𝐿)𝑄𝑡

𝜋(𝐴𝑡, 𝑆𝑡)  + 𝛼𝐿 [𝑟𝑡 + 𝛾 
𝑚𝑎𝑥
𝐴𝑡+1

𝑄𝑡
𝜋(𝐴𝑡+1, 𝑆𝑡+1)].          (4) 

 

Where S𝑡, 𝑆𝑡+1 ∈ 𝒮, 𝐴𝑡, 𝐴𝑡+1 ∈ 𝒜 , and 𝛼𝐿 is the learning rate which was set to 0.1, 𝛾 is the 

discount factor set to 0.9. Algorithm 1 illustrates in detail the steps of the Q-learning algorithm 

used in the projectile arc length optimization. After initialization (line 1), and at each episode of 

the predefined number of episodes 𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 which was set to 10000, the initial state (i.e., initial 

launch angle) is determined randomly. Then, an action is selected and executed based on the ξ-

greedy policy at each state [16], which represents the random action selection  (i.e., the 

exploration) and action with the maximum Q-value selection (i.e., the exploitation) trade-off (lines 

4,5). After that, 𝑟𝑡 is determined according to (3) based on the state 𝑠𝑡+1, and the table of action-

state pairs is updated (lines 6-8). The algorithm terminates when either the Q-table converges or 

when it reaches the predetermined number of iterations. 
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Q-learning algorithm for projectile parameters optimization  
 

 

1. Initialization: update the environment states 𝒮 considering the boundaries. Initialize the 

action-state table 𝑄𝑡
𝜋(A𝑡, 𝑆𝑡) with random values within the state space. Initialize the 

algorithm hyperparameters such as the discount factor 𝛾, the learning rate 𝛼𝐿 ,  the 

exploration rate, the number of episodes, and the number of steps for each episode 

𝑁𝑠𝑡𝑒𝑝𝑠. 

2.  For 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 𝑡𝑜 𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 do. 

3. Get an initial state 𝑆1.  

4. For steps: = 1 𝑡𝑜 𝑁𝑠𝑡𝑒𝑝𝑠 do  

5.  𝐴𝑡 = {  
𝑟𝑎𝑛𝑑𝑜𝑚 , 𝑤𝑖𝑡ℎ  𝜀 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

 𝑚𝑎𝑥, 𝑄𝜋(A𝑡, 𝑆𝑡) ,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                   

  
   

6.  Execute action 𝐴𝑡, and obtain 𝑆𝑡+1.  

7. Determine 𝑟𝑡 using (3).  

8. An action 𝐴𝑡+1  is selected based on the state 𝑆𝑡+1, and update the action-state table   

𝑄𝑡
𝜋(𝐴, 𝑆)       based on (4).  

9. Replace 𝑆𝑡← 𝑆𝑡+1 

10. End for  

11. End for  

12. Result: Optimal state (lunch angle) with maximum traveled total distance (𝑟𝑚𝑎𝑥). 

 

 

5- Results and Discussion 

The application of the Q-learning algorithm in solving the optimization problem has produced 

insightful results that clarify the effectiveness of the algorithm for optimizing projectile motion 

parameters. The findings from the simulation in this area are investigated. 

In this study, we employed MATLAB to conduct simulations and implement the Q-learning 

algorithm for optimizing the launch angle of a projectile to maximize its total arc length. The 

simulation setup involved discretizing the state space into a number of bins representing different 

values of the launch angle (𝛅). Each action in the Q-learning algorithm corresponds to adjusting 

the launch angle by either increasing or decreasing it by one degree. The simulation environment 
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provided by MATLAB facilitated the exploration and exploitation of the action-state space, 

allowing the algorithm to learn the optimal launch angle through repeated trials. The simulation 

showed an optimum launch angle of 56.3964°   which produces the maximum total achieved 

traveled distance 𝐷(𝛿). However, the exact optimum value of the launch angle can be obtained 

graphically from the graph of the relation between the arc length 𝐷 and the angle 𝛿 as shown in 

Figure 1 where the optimum value of the angle 𝛿 at which the total traveled distance (arc length) 

has maximum value is 56.4865∘. This figure explains the effectiveness of the proposed algorithm 

that obtained a near value with a relative true error of 0.16%. 

 

Figure 1: The relation between the total distance traveled by the projectile D and 

the launch angle 𝛅, 𝒗𝒐 = 𝟐𝟎 𝒎/𝒔. 

 

Where the mathematical formula of the achieved range and the maximum height can be 

expressed as follows [2-3]. 

             𝑅𝑎𝑛𝑔𝑒 (δ) =
 𝑣𝑜

2 sin (2δ) 

𝑔
.                                                                                              (5) 

 

            𝐻𝑒𝑖𝑔ℎ𝑡 =
𝑣𝑜

2 sin2(δ) 

2 𝑔
 .                                                                                                    (6) 
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Figure 2: Comparison between the achieved total distance, range, and maximum 

height at 𝛅 = 𝟔𝟓. 𝟑𝟗𝟔𝟒°. 

 

 

Figure 2 shows that when launching the projectile at 56.3964° only the total distance traveled 

by the projectile is maximized, whereas the achieved maximum height and range are not in their 

maximum values. Also, it can be noticed that the achieved distance generally increased by 

increasing the initial velocity. 

 

 

Figure 4:  The total distance traveled (arc length) at different values of angle 𝛅. 
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Figure 4 illustrates the relation between the total distance traveled (arc length) and the initial 

velocity at different values of angle δ. It can be noticed that in general, the projectile’s arc length 

increases as the initial velocity increases. Also, it can be noted clearly that the maximum total 

distance traveled (arc length) occurs at  δ = 56.3964° which is the optimal value obtained by the 

Q-learning algorithm. 

 

Table 1: Comparison between the proposed work and the literature. 

 

 The optimal launch angle which maximizes the 

projectile arc length 

Mathematical solution [3] 56.5° 

The proposed graphical solution 56.4865° 

The proposed Q-learning algorithm 56.3964° 

 

Table 1 provides a detailed comparison of the results obtained from the proposed Q-learning 

algorithm, the graphical solution depicted in Figure 2, and the study conducted by [3] The table 

highlights the close agreement between the Q-learning algorithm's output and the other two 

methods. Specifically, the angles derived from the Q-learning algorithm are nearly identical to 

those obtained through the graphical solution and the methodology presented by Karadag. This 

comparison underscores the accuracy and reliability of the Q-learning algorithm in producing 

results that align well with established methods. 

 

6- Conclusion 

A framework is proposed in this paper to optimize the trajectory of the projectile using the 

reinforcement Q-learning algorithm by finding the optimum firing angle that maximizes the total 

distance traveled by the projectile (projectile’s arc length). The results showed an accurate angle 

of 56.9364 degrees with a 0.16% relative error which proves the effectiveness of the proposed Q-

learning algorithm. The range and the maximum height of the projectile are investigated at this 

optimum angle to conclude that this optimum angle maximizes only the arc length of the projectile. 

In contrast, the range and the maximum height have their maximum values at some other angles. 

The total traveled distance (arc length) of the projectile is investigated at different values of the 
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launch angle, the result indicated that the largest total traveled distance occurs at the launch angle 

obtained from the Q-learning algorithm. To evaluate the effectiveness of the proposed Q-learning 

algorithm, we compared it with related work in the literature and the graphical solution. This 

comparison shows that the results of our algorithm are in good agreement with those found in the 

literature. Consequently, Q-learning is highly adaptable to various environments and conditions 

without requiring a predefined model. It efficiently explores the solution space to find the optimal 

firing angle with minimal computational resources. Additionally, it is robust against variations and 

uncertainties, maintaining accurate results. 
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