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Cyber-attack incidents are increasing daily, with the adoption of modern 

communication technologies, cloud services, and the Internet of things. Providing 

high accuracy real-time protection for networks against network vulnerabilities is 

of paramount importance. In machine learning, one of the crucial items, which 

influence models’ performance enhancement in detecting and preventing these 

threats, is feature selection. This paper evaluates two feature selection 

methodologies, which are: (1) feature selection using traditional statistical 

approaches, such as Mutual Information (MI) and correlation-based; and (2) 

automated feature selection using embedded methods, such as LightGBM. The 

evaluation is performed on six established cybersecurity datasets which are CIC-

DDoS2019, ISCX-IDS2012, UNSW-NB15, CIC-IDS2017, NSL-KDD, and CSE-

CIC-IDS2018. 

 

The datasets are used to train and test various models. Each feature selection 

methodology is applied to get the optimal combination of features. Subsequently, a 

comparison analysis of multiple metrics, including time cost, is conducted across 

the models. The findings show that there is a huge variation in model performance, 

regardless of the dataset or the feature selection methodology. The time cost 

reduced significantly for the models with LightGBM feature selection method. 

Some models improved their metrics when using LightGBM. This makes 

LightGBM a promising choice in cybersecurity applications. 
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1. Introduction 

The evolution of the information technology 

sector facilitated communication over networks. The 

attack surface has expanded significantly. The 

security threats that are facing these systems and 

devices are increasing massively. This has led to 

more difficulties to achieve robust network security. 

Different toolkits and services are being used as the 

foundation of network security defense. The intrusion 

detection and prevention systems (IDS/IPS) and the 

network intrusion and detection systems (NIDS) are 

part of these tools [1]. 

The cyber threats landscape is always changing. 

This adds more challenges to the defense 

mechanisms, which require advanced and flexible 

security measures. Machine learning (ML) has 

become a vital tool for tackling these issues, allowing 

for automated threat detection, the anomaly 

recognition, and proactive defense strategies [2]. In 

Intrusion Detection Systems, ML models can 

examine large volume of network traffic, system 

logs, and user behavior data to spot patterns that 

suggest malicious activities [3]. The effectiveness of 
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these ML models depends on the quality, relevance, 

and selection of features used. Feature selection is 

essential for boosting model performance by 

reducing the dimensionality, preventing overfitting, 

and enhancing interpretability. High-dimensional 

datasets often include irrelevant or redundant 

features, which can negatively impact model 

accuracy and training efficiency. Feature selection 

can help ML models focus on the most informative 

features, thereby delivering more accurate predictions 

by concentrating on relevant patterns [4]. 

Additionally, feature selection can improve the 

interpretability of ML models in cybersecurity. By 

highlighting the most influential features that are 

driving model decisions, the security analysts will 

understand the reasoning behind threat detection and 

response activities, building trust and informing 

better decision-making. 

Development of ML models that can handle 

massive amounts of traffic in modern networks 

requires that the model should perform the malware 

identification in real-time. This can be achieved by 

increasing the processing resources, but it would not 

be a practical solution as it would increase the 

hardware required and the cost of the cybersecurity 

systems. On the other hand, developing robust and 

effective ML models for cybersecurity applications 

faces challenges due to the complexities of real-world 

cyber threat data. Selecting the most relevant features 

from often high-dimensional datasets poses a critical 

hurdle. 

Cybersecurity datasets have many characteristics 

that make feature selection difficult, which are: 

 High Dimensionality: The datasets may contain 

hundreds or even thousands of features that 

represent a variety of network traffic patterns, 

system logs, user behaviors, and other potential 

indicators of compromise [5]. 

 Imbalanced Class Distribution: Most 

cyberattacks happen in rare cases compared to 

normal activities. This leads to bias in models 

toward the majority class due to an imbalance in 

the dataset, resulting in poor detection of actual 

threats. 

 Feature Redundancy and Noise: Datasets may 

contain features that are redundant or irrelevant, 

which can impact model performance negatively 

and increase training time. Identifying and 

removing such noise is crucial for effective 

feature selection [6]. 

For example, ISCXFlowMeter software [7], more 

than 80 features can be generated for characterizing 

data traffic; for the network analyst this is 

challenging to handle this huge amount of 

information. In this regard, a very important feature 

selection pre-processing step is highly valued. Lack 

of a standardized approach to feature selection in 

cybersecurity exacerbates these challenges further. 

This paper compares two feature selection 

methodologies with the objective of finding the most 

effective methodology that would improve the 

performance of ML models in cyber threats detection 

and mitigation. The test of these methods on different 

datasets is performed, including old and modern 

datasets. Nine widely used machine learning models 

in cybersecurity tasks have been trained and tested on 

a wide variety of publicly available datasets. 

Therefore, the performances of these models have 

been compared using various methodologies to 

highlight the influence of feature selection on 

different model metrics. This paper’s contributions 

are as follows: 

 Comparative Analysis: This provides a 

comparison of how statistical feature selection 

and LightGBM approaches draw valuable insights 

from the cybersecurity datasets regarding the 

various strengths and weaknesses associated with 

using each method. 

 Performance Enhancement: Finding the best 

feature selection technique for any given dataset 

and model could significantly improve 

performance in intrusion detection and other 

security tasks. 

 Practical Guidelines: The study provides 

guidelines that are useful for researchers and 

practitioners in the choice of appropriate feature 

selection methods to optimize machine learning 

models for cybersecurity applications. 
 

The remainder of this paper is organized as 

follows. Section 2 provides an overview of related 

work. Section 3 explains the methodology of the 

research, describing the process, the used datasets, 

and the ML models. Section 4 explores the results of 

each ML model on the various datasets. Section 5 

concludes the paper. 

2. Literature Review 

ML and DL are technologies on which intrusion 

detection systems depend to enable real-time 

anomaly and attack detection on networks [3]. AI in 

cybersecurity [8] is also expected to make advances 

in the predictive threat hunting and automating the 

process that analyzes potential threats before they can 

become actual threats. This predictive capability will 

be useful in dealing with advanced forms of cyber 
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threats. 

Additionally, AI will be able to personalize 

security, user activity countermeasures, and system 

configurations, strengthening overall security. 

However, there is a problem with increased usage of 

AI in cybersecurity, such as the vulnerabilities that 

the enemies use to launch attacks [8]. 

Moreover, when it comes to real applications, 

attackers exploit vulnerabilities to carry out cyber-

attacks. Recent attacks have exploited the 

vulnerabilities of IoT systems in smart cities [9]. 

Previous research has shown that feature selection 

is a critical aspect of ML models. [10] presented a 

computationally efficient filter-based method for 

feature selection on correlation for data containing 

high features count. Their study has shown that 

removing redundant and irrelevant features can 

significantly improve the learning efficiency and 

model accuracy. According to the authors, one 

critical challenge in feature selection involves high-

dimensional spaces, which they proclaim is crucial to 

be resolved to improve machine learning 

performance. The results here confirm the importance 

of the step of data preprocessing; indeed, it is the 

preliminary step in classification task optimization. 

Multiple ways can be used to categorize the 

Feature selection methods. The most common way is 

to categorize it into filter, wrapper, embedded, and 

hybrid methods [11]. 

A well-balanced perspective on feature selection 

was offered by [5]. It addressed not only established 

methodologies but also crucial emerging issues such 

as class imbalance, dataset shift, and scalability. The 

discussion of real-world case studies and the 

identification of key open research questions make it 

a source of great value for practitioners and 

researchers alike in the field. 

[4] An overview of feature selection methods from 

traditional filters to recent hybrid approaches, is 

presented in [4]. This paper systematically classifies 

various methods and emphasizes their application 

across different domains, such as text mining, image 

processing, and bioinformatics. 

Software probes are being used in modern NIDS. 

These probes are responsible for analyzing network 

traffic based on some characteristics, including 

percentages of forward and reverse flows, arrival 

time distribution, packet size distribution, and the 

presence of a particular TCP/IP flags. This 

information is usually instrumental in underpinning 

anomalous traffic, usually the cause of distributed 

denial of service (DDoS) attacks [12], [13], covert 

VoIP sessions [14], threat diffusion [15], and Peer-2-

Peer traffic. The conventional signature-based NIDS 

would allow these different flows to go unobserved 

in many instances. 

Machine learning model developed for 

cybersecurity improves its performance based on the 

selected features. [16], in the concluding remarks of 

their survey on the various supervised feature 

selection techniques employed in NIDS, pointed out 

the feasibility of using feature selection in networks 

for practical benefits. Using recent datasets and a 

broad spectrum of feature selection algorithms for 

experimental evaluation, they showcase the ability of 

feature selection in reducing computational time, 

often by a factor, while the effects on model 

performance remain low. The authors have remarked 

that their assessment framework serves to support 

network/security management practitioners on the 

importance of feature selection toward identifying the 

most key characteristics for accurate, effective, and 

interpretable models within NIDS. The paper also 

identified promising future directions involving 

unsupervised feature selection techniques, streamed 

data, the analysis of adaptive techniques dealing with 

the dynamic nature seen in modern network 

environments to stand as a bedrock in facilitating 

further innovation in related domains. 

The survey conducted by [6] was a good addition 

to the field of cyber-attack feature detection. It 

studied the intrinsic details in addition to probing the 

filter-based feature selection methods. It also 

explored key technical components such as search 

algorithms and relevance measures. 

3. Methodology 

Network flow software, such as Cisco's NetFlow, 

introduces massive and high-dimensional 

characteristics. Most datasets in the cybersecurity 

field are imbalanced. To overcome this challenge, 

oversampling and under-sampling are used in 

intrusion detection using machine learning [17]. The 

process block diagram is described in Fig. [1]. 

 

Fig. 1 Block Diagram of the Process  
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 The proposed method includes modules for data 

cleansing, preprocessing, resampling, feature 

extraction, classification, and performance testing. In 

the data cleansing module, each dataset is cleaned to 

avoid unnecessary features, null values, and 

duplicates. The data preprocessing module includes 

normalization, scaling, and encoding of text features. 

Section 3.1 describes both cleansing and 

preprocessing modules. 

The feature extraction module contains two 

parallel methods for feature selection. Each 

methodology is used for feature selection on the 

resampled data, before applying the training module. 

The feature selection methodologies are described in 

section 3.2. 

In the classification module, different models, 

including gradient boosting, XGBoost, and 

LightGBM, are evaluated. 

In the performance test module, the full datasets 

are used for evaluation on each model. The 

classification module and performance test module 

are described in section 3.3. 

3.1. Datasets, cleansing and preprocessing. 

Multiple datasets have been introduced to the 

research area over the past years. These datasets vary 

in their features, classes, and size. This paper 

evaluates the impact of feature selection on multiple 

datasets. These datasets are summarized as follows: 

NSL-KDD: The NSL-KDD dataset is a filtered 

version of the original KDD Cup 1999 dataset for 

network IDS evaluation. It contains labeled traffic 

data of the network categorized either as "normal" or 

as one of several types of network attacks. This 

dataset is a multivariate one, containing features that 

describe the traffic, such as protocol type, service, 

and connection status, as well as other derived 

features like the failed login attempts count and the 

duration of connections. 51.88% of the records are 

regular traffic, while non benign traffic makes up 

48.12% [18]. 
 

UNSW-NB15: It is considered one of the modern 

network traffic datasets created for the purpose of 

IDS evaluation. The University of New South Wales 

generated this dataset, which contains approximately 

2.5 million records. Both normal and malicious 

traffic are characterized by 49 features. Nine attack 

categories are included. These categories represent a 

broad range of cyberattacks. In this regard, intrusion 

detection systems and machine learning models can 

use this helpful resource to be developed and tested 

[19]. 

ISCX-IDS2012: ISCX-IDS2012 is a publicly 

available dataset widely used in developing and 

evaluating IDS. The Information Security Centre of 

Excellence (ISCX) developed it by capturing data 

from an operating real-world network environment 

that involved benign and malicious activities. The 

dataset consists of attack scenarios, such as DoS, 

DDoS, port scans, and other network intrusions, 

combined with normal traffic. This is an essential 

source of packet and flow level features, in detail that 

can be used to learn ML models and IDS algorithms 

can. The ISCX-IDS2012 dataset serves as a realistic 

benchmark for testing the efficiency of network 

security systems in detecting and preventing cyber-

attacks [20]. 

CIC-IDS2017: The Canadian Institute for 

Cybersecurity (CIC) generated this dataset, which is 

a comprehensive collection of network traffic. Real 

network flow was included with benign and 

malicious activities contained. It covers many attack 

types. The dataset is considered high-dimensional, 

featuring over 70 flow-based and packet-based 

attributes [21]. 

CIC-DDoS2019: This dataset is aimed to facilitate 

research on DDoS attacks. It consists of labeled 

records for both benign and malicious traffic. The 

dataset was constructed by capturing multiple attack 

scenarios with varying intensities from real-world 

network environments. Features consist of packet 

size, packet duration, flow rate, and protocol type 

among many others. Its wide range of usage is in 

testing and training ML models for protection 

techniques against DDoS. It has been constructed by 

CIC for research and development in cybersecurity 

[22]. 

CSE-CIC-IDS2018: It is a dataset containing 

network traffic used for the IDS evaluation. It 

includes normal and attack scenarios, such as DDoS, 

brute force, and SQL injection, among others, with 

detailed features. It contains over 80 features per 

flow, including packet count, flow duration, protocol 

type, and more [21]. 

In the cleansing module, each dataset is cleaned of 

features considered to be metadata features [23]. 

Duplicate and null data are also removed from the 

used datasets. Text features are converted to 

numerical values using categorical encoding for 

features with a small number of categories and one-

hot encoding for features with a large number of 

categories [24]. 

To accelerate model training, methods such as 

data normalization are necessary. In this paper, the 
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maximum and minimum normalization scaling 

equation [25] is adopted to normalize the data in the 

range of [0,1]. The maximum-minimum 

normalization equation is as follows: 

 

             
      

          
 [26],  (1) 

where Xmax and Xmin represent values of both 

maximum and minimum data in each column in 

which the feature X is located, respectively. 

The target label of each dataset is converted into 

two classes {0 => Normal, 1 => Anomaly} to prepare 

for binary classification. 

3.2. Feature selection methodologies 

Two distinct feature extraction methods are 

applied in parallel to each dataset. The first method is 

statistically based, using a correlation matrix heatmap 

to identify highly correlated features within the 

dataset. A threshold has been applied: if the two 

features exhibit a correlation higher than 90%, they 

are considered highly correlated. The number of 

highly correlated features are reduced by dropping 

one feature from each highly correlated pair. The 

correlation between the remaining features and the 

target label has been measured to ensure that the 

selected features have a meaningful relationship with 

the target label. Next, the MI score between the target 

label and features has been calculated to obtain and 

used for further filtering. Features with MI score less 

than 0.001 have been dropped. The following 

equation conducts the MI score [27]. 

 

 (   )  ∑ ∑  (   )    (
 (   )

 ( ) ( )
)       (2) 

 

where: 

 X and Y are random variables. 

 x represents the variable X specific value. 

 y represents the variable Y specific value. 

 p (x, y) is X and Y's joint probability mass 

function. It is the likelihood that X will take the 

value x, and Y will take the value y. 

 p (x) is the marginal probability mass function of 

X. It is the likelihood that X will take the value x, 

independent of Y's value. 

 p (y) is the marginal probability mass function of 

Y. It is the likelihood that Y will take the value x, 

independent of X's value. 

 log is the logarithm (typically base-2 for 

information in bits, or natural log for nats). You'll 

often see log base 2 used when thinking about 

bits, and natural log when dealing with entropy 

calculations. The difference is just a constant scale 

factor, so it doesn't really affect what the MI is 

telling you. 

[28] stated that a special case of feature extraction 

methods is feature selection. 

The second method involves using LightGBM to 

calculate the feature importance for each dataset and 

then filtering the features with an important score 

higher than 80. This threshold is determined through 

trial and error from multiple values including 50, 70, 

80, and 100. 

3.3. ML Models 

In recent years, research on ML-based IDS models 

have demonstrated reasonable detection rates. have 

Algorithms including KNN, SVM, Random Forests, 

Neural Networks, Naive Bayes, XGBoost and 

LightGBM had been used in previous studies. 

According to [29] . 

Nine different ML models are used in this paper in 

training and testing two methodologies for feature 

selection. The models are used with their standard 

parameters to isolate and evaluate the effect of the 

feature selection methods under consideration. 

Support Vector Machine (SVM): The SVM is a 

model of ML that can perform classification and 

regression. It tries to find the best possible 

hyperplanes that separate classes of data. SVMs work 

well for high-dimensional data and support multi-

type kernel functions. However, there are some 

disadvantages of SVMs: require accurate tuning, 

especially in those cases where the number of input 

dimensions exceeds the number of samples, large-

sized datasets, multi-classification problems, and 

imbalanced datasets result in poor performance of 

SVMs [30]. 

Logistic Regression: This is an ML model 

generally used in binary classification; however, it 

can also be used in multiclass tasks using the one-vs-

rest approach. Using a linear model and the sigmoid 

function, it produces outputs ranging from 0 to 1, 

where values closer to 1 indicate a higher likelihood 

of belonging to a specific class [31]. 

Decision Tree (DT): This is a supervised ML 

techniques used for solving classification and 

regression problems. It has a tree-like structure, 

making it easy to interpret and visualize using 

various ML tools [32]. 

Gaussian Naive Bayes: This is a probabilistic ML 

classifier based on Bayes' theorem, which assumes 

that some features follow a Gaussian distribution. It 

is simple, efficient, and particularly effective for 

large datasets with independent features [33]. 

Bernoulli Naive Bayes: It is a probabilistic model 
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that can be used for both binary and multi-class 

classification problems. It assumes that features are 

binary (i.e., either 0 or 1) and uses Bayes' theorem to 

predict class probabilities. This classifier works well 

for tasks where the features indicate the presence or 

absence of a given attribute [34]. 

Gradient Boosting Classifier: It is a ML model 

that sequentially constructs a series of decision trees. 

By focusing on incorrectly classified data points, 

each tree fixes the mistakes of the one before it. It 

works well for both classification and regression 

tasks by optimizing a loss function using gradient 

descent. Gradient Boosting boasts outstanding 

accuracy and is widely used in cybersecurity 

applications [35], but it is prone to overfitting if its 

parameters are not appropriately set. 

Random Forest Classifier: Several decision trees 

are combined in this ensemble learning model, which 

increases classification accuracy. It trains multiple 

trees using random subsets of the data and features to 

create a 'forest', and then combines their predictions, 

typically through majority voting. This method 

reduces overfitting, improve generalization, and 

robust to noise, making it effective for large and 

complex datasets [36]. 

XGBoost Classifier: This model is an ML 

algorithm and is considered efficient and scalable for 

supervised learning tasks. It performs well in 

classification and regression problems. It constructs a 

group of decision trees in a sequential way, with each 

tree attempting to perform correction on the errors of 

the previously built trees. It implements several 

advanced techniques, such as regularization, feature 

importance, and parallel processing, which enhance 

accuracy and speed up its training, improving 

generalization compared to traditional boosting 

techniques. It is capable of handling large datasets, 

feature interactions, and missing values [37]. 

LightGBM: LightGBM is a gradient boosting 

framework that uses tree-based learning algorithms. 

It is a fast, distributed, high performance gradient 

boosting (GBT, GBDT, GBRT, GBM or MART) 

framework based on decision tree algorithms, used 

for ranking, classification and many other machine 

learning tasks [38]. 

Each ML model is trained with each dataset using 

two distinct features selection methods. The mode 

used with standard parameters to ensure that the 

observed results are primarily driven by the feature 

selection process itself, without interference from 

model-specific parameter tuning. Additionally, the 

models’ performance measured using different 

familiar metrics and the prediction time cost. 

4. Experiments and Results 

ML models’ performance of different binary 

classification, on multiple datasets after pre-

processing, and data resampling, is presented in this 

section. To address class imbalance, each dataset has 

been resampled to include 100,000 records for each 

class (benign and anomaly). Then, 80% and 20% of 

the 200,000 records are split into training and testing, 

respectively. The performance of each model has 

been evaluated on the entire dataset. As an exception, 

for large dataset, CSE-CIC-IDS2018, only the 

leading five million records have been used. The 

experiments were conducted on a Dell host with 

64GB DDR4 memory, an Intel i7-7920HQ 3.1 GHz 

processor, and Python 3.9 as the programming 

language. The scikit-learn, XGBoost, and LightGBM 

libraries have been used to build the models. 

4.1. Evaluation Metrics  

Four metrics — precision, accuracy, F1 score, and 

recall — are used to assess model performance 

during training and testing. Prediction time was 

included as a fifth metric in the models' performance 

evaluation to measure how long each model takes to 

make a prediction on a given dataset. The F1 score, 

recall, accuracy, and precision are calculated using 

the following formulas [39]: 

 

         
     

           
  (3) 

 

          
  

     
   (4) 

 

       
  

     
   (5) 

 

            
                

                  
 (6) 

 

Where: TP = True Positives, TN = True Negatives, 

FP = False Positives, and FN = False Negatives. 

4.2. Results and Analysis 

CIC-DDOS2019, CSE-CIC-IDS2018, CIC-

IDS2017, NSL-KDD, ISCX-IDS2012 and UNSW-

NB15 are used for binary classification experiments. 

The features in these datasets are selected through 

preprocessing. Table 1 and Fig. 2 compare the 

selected number of features for each dataset. 
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Table 1 Comparison of features count 

Dataset Statistical  LightGBM 

CIC-DDOS2019 57 12 

CSE-CIC-IDS2018 61 13 

CIC-IDS2017 68 12 

UNSW-NB15 30 12 

NSL-KDD 30 15 

ISCX-IDS2012 16 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Number of selected features for each dataset 

The number of features selected using LightGBM 

is significantly lower than the count of statistically 

selected features. This observed variation highlights 

that the various feature selection methods can adapt 

to different characteristics in datasets. Further, this 

variation indicates that selection should be guided by 

the peculiar features of the data, including, but not 

limited to, its dimensionality, feature redundancy, 

and sample size. 

Table 2 shows that the Logistic Regression model 

achieves similar metrics on dataset of CIC-

DDOS2019. However, the prediction time improves 

significantly, with a reduction of 68.53% when using 

features selected by LightGBM. On other dataset, the 

CSE-CIC-IDS2018, the model time cost improves by 

69.98%, and higher improvement in metrics is 

achieved. On the CIC-IDS2017, the model achieves a 

significant time cost improvement of 80.29% with 
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the LightGBM methodology. On other datasets, a 

slight reduction in model metrics is observed, but 

there is a noticeable improvement in time cost when 

LightGBM is used. 

Table 2 Logistic Regression Performance Metrics 

Dataset Feature Selection 

Method 

Prediction 

Time (s) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Time Cost 

Improvement (%)  

CIC-DDOS2019 Statistical 1.098 99.84 99.86 99.84 99.85  

LightGBM 0.346 99.84 99.86 99.84 99.85 68.53 

CSE-CIC-IDS2018 Statistical 0.573 92.48 97.90 92.48 94.46  

LightGBM 0.172 95.23 98.19 95.23 96.25 69.98 

CIC-IDS2017 Statistical 0.305 98.18 98.24 98.18 98.20  

LightGBM 0.060 95.66 95.97 95.66 95.76 80.29 

ISCX-IDS2012 Statistical 0.025 96.88 98.96 96.88 97.70  

LightGBM 0.017 95.79 98.87 95.79 97.05 34.38 

NSL-KDD Statistical 0.015 91.69 91.80 91.69 91.68  

LightGBM 0.008 91.39 91.54 91.39 91.37 48.26 

UNSW-NB15 Statistical 0.104 97.85 98.54 97.85 98.07  

LightGBM 0.066 97.80 98.43 97.80 98.01 36.48 

 

The results in Table 3 show that with the 

LightGBM methodology, the Support Vector 

Machine model improves in both metrics and time 

cost for the CSE-CIC-IDS2018 and UNSW-NB15. 

The largest improvement in time cost for the model is 

recorded for UNSW-NB15, at 49%. For the other 

datasets, a slight reduction is observed in the model 

metrics, but there is still a noticeable improvement in 

time cost when LightGBM is used.

Table 3 Support Vector Machine Performance Metrics 

Dataset Feature Selection 
Method 

Prediction 
Time (s) 

Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1 Score 
(%) 

Time Cost 
Improvement (%)  

CIC-DDOS2019 Statistical 430.58 99.85 99.87 99.85 99.86  

LightGBM 286.08 99.82 99.85 99.82 99.83 34 

CSE-CIC-IDS2018 Statistical 3359.73 95.29 98.21 95.29 96.30  

LightGBM 1890.82 95.53 98.25 95.53 96.46 44 

CIC-IDS2017 Statistical 501.88 99.29 99.30 99.29 99.30  

LightGBM 476.80 98.74 98.74 98.74 98.74 5 

ISCX-IDS2012 Statistical 144.85 98.55 99.31 98.55 98.81  

LightGBM 112.68 97.55 99.16 97.55 98.15 22 

NSL-KDD Statistical 81.80 95.78 95.90 95.78 95.78  

LightGBM 54.84 95.44 95.58 95.44 95.44 33 

UNSW-NB15 Statistical 1747.48 96.72 98.30 96.72 97.22  

LightGBM 885.25 97.97 98.68 97.97 98.18 49 

The results in Table 4 show that the Bernoulli 

Naive Bayes model improves in both metrics and 

time cost for the UNSW-NB15. The model's time 

cost improves by 76.66% for the CIC-IDS2017 when 

using the LightGBM methodology for feature 

selection. Time cost improvement is observed on the 

other datasets, though there is a slight reduction in 

the model metrics when using the LightGBM 

methodology. 
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Table 4 Bernoulli Naive Bayes Performance Metrics 

Dataset Feature Selection 

Method 

Prediction 

Time (s) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Time Cost 

Improvement (%) 

CIC-DDOS2019 Statistical 6.505 93.35 99.12 93.35 95.81  

LightGBM 1.946 93.31 99.16 93.31 95.79 70.09 

CSE-CIC-IDS2018 Statistical 3.283 67.40 97.35 67.40 77.98  

 LightGBM 0.959 57.60 97.02 57.60 70.40 70.80 

CIC-IDS2017 Statistical 1.586 70.02 87.51 70.02 73.75  
 

LightGBM 0.370 69.42 87.40 69.42 73.23 76.66 

ISCX-IDS2012 Statistical 0.190 96.67 98.91 96.67 97.57  

 
LightGBM 0.099 92.02 98.76 92.02 94.90 47.62 

NSL-KDD Statistical 0.092 85.29 85.71 85.29 85.23  

 

LightGBM 0.036 85.04 85.06 85.04 85.04 60.79 

UNSW-NB15 Statistical 0.746 84.71 95.75 84.71 89.18  

LightGBM 0.295 96.57 95.38 96.57 95.63 60.52 

 

 

The results of the Gaussian Naive Bayes in Table 

5 show that the model achieves better metrics and 

time cost on the datasets of CIC-DDOS2019, CIC-

IDS2017, ISCX-IDS2012, and NSL-KDD when 

using the LightGBM methodology. The model scored 

a significant improvement in time cost of 81.53% for 

the CIC-IDS2017 dataset. For the CSE-CIC-IDS2018 

and UNSW-NB15 datasets, time cost is improved 

when the LightGBM methodology is used.

Table 5 Gaussian Naive Bayes Performance Metrics 

Dataset Feature Selection 
Method 

Prediction 
Time (s) 

Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1 Score 
(%) 

Time Cost 
Improvement (%) 

CIC-DDOS2019 Statistical 11.109 96.57 99.24 96.57 97.64  

LightGBM 2.920 99.67 99.75 99.67 99.69 73.72 

CSE-CIC-IDS2018 Statistical 5.799 93.50 98.01 93.50 95.12  

LightGBM 1.400 69.66 97.38 69.66 79.61 75.86 

CIC-IDS2017 Statistical 2.562 90.68 93.35 90.68 91.33  

LightGBM 0.473 93.66 94.56 93.66 93.91 81.53 

ISCX-IDS2012 Statistical 0.169 54.85 98.58 54.85 69.66  

LightGBM 0.123 96.28 98.99 96.28 97.36 27.27 

NSL-KDD Statistical 0.063 84.72 85.13 84.72 84.69  

LightGBM 0.040 87.84 87.93 87.84 87.83 36.82 

UNSW-NB15 Statistical 1.182 94.76 96.29 94.76 95.41   

LightGBM 0.517 94.35 96.84 94.35 95.32 56.28 

In Table 6, the Random Forest model results show 

some improvement in time cost. It reaches 15.71% 

for the UNSW-NB15 dataset. Despite the small time 

cost improvement, an improvement in the model 

metrics is noticed for CIC-DDOS2019 and NSL-

KDD datasets when the LightGBM methodology is 
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used. The same results are achieved for the model 

metrics on the CSE-CIC-IDS2018 with time cost 

improvement of 4.16% in favor of the LightGBM 

methodology.

Table 6 Random Forest Performance Metrics 

Dataset Feature Selection 

Method 

Prediction 

Time (s) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Time Cost 

Improvement (%) 

CIC-DDOS2019 Statistical 25.568 99.37 99.62 99.37 99.45  

LightGBM 25.532 99.87 99.88 99.87 99.87 0.14 

CSE-CIC-IDS2018 Statistical 18.211 99.99 99.99 99.99 99.99  

LightGBM 17.372 99.99 99.99 99.99 99.99 4.61 

CIC-IDS2017 Statistical 7.288 99.75 99.75 99.75 99.75  

LightGBM 6.530 99.39 99.40 99.39 99.40 10.39 

ISCX-IDS2012 Statistical 2.383 99.46 99.59 99.46 99.50  

LightGBM 2.172 99.27 99.53 99.27 99.35 8.85 

NSL-KDD Statistical 0.490 95.80 95.96 95.80 95.80  

LightGBM 0.488 95.97 96.08 95.97 95.97 0.42 

UNSW-NB15 Statistical 6.473 98.49 98.95 98.49 98.62  

LightGBM 5.456 98.47 98.93 98.47 98.60 15.71 

 

 

The Decision Tree Classifier results in Table 7 

show that improvements in the model metrics are 

achieved on the UNSW-NB15, CIC-DDOS2019, and 

CSE-CIC-IDS2018 when the LightGBM 

methodology is applied. Time cost improved for all 

datasets, with a 58.35% improvement is achieved on 

CIC-IDS2017 when the LightGBM methodology is 

used.

Table 7 Decision Tree Classifier Performance Metrics 

Dataset Feature Selection 

Method 

Prediction 

Time (s) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Time Cost 

Improvement (%) 

CIC-DDOS2019 Statistical 1.602 99.95 99.95 99.95 99.95  

LightGBM 0.688 99.96 99.96 99.96 99.96 57.04 

CSE-CIC-IDS2018 Statistical 1.168 99.83 99.84 99.83 99.83  

LightGBM 0.511 99.88 99.88 99.88 99.88 56.27 

CIC-IDS2017 Statistical 0.432 99.90 99.90 99.90 99.90  

LightGBM 0.180 99.81 99.82 99.81 99.82 58.35 

ISCX-IDS2012 Statistical 0.071 99.41 99.60 99.41 99.47  

LightGBM 0.069 99.39 99.59 99.39 99.45 3.21 

NSL-KDD Statistical 0.020 99.25 99.25 99.25 99.25  

LightGBM 0.016 99.15 99.15 99.15 99.15 22.95 

UNSW-NB15 Statistical 0.436 98.69 99.03 98.69 98.78  

LightGBM 0.300 98.70 99.04 98.70 98.80 31.29 

 

In Table 8, Gradient Boosting model is improved 

in metrics and time cost on the CSE-CIC-IDS2018 

when the LightGBM methodology is used. A very 

slight or no difference in metrics is noticed for the 

remaining datasets. The time cost improvement for 

the model by 57.18% is achieved on the CIC-
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IDS2017 in favor of the LightGBM methodology. 

 

 

Table 8 Gradient Boosting Performance Metrics 

Dataset Feature Selection 

Method 

Prediction 

Time (s) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Time Cost 

Improvement (%) 

CIC-DDOS2019 Statistical 18.231 99.92 99.93 99.92 99.92  

LightGBM 8.414 99.91 99.92 99.91 99.91 53.85 

CSE-CIC-IDS2018 Statistical 11.570 99.90 99.9 99.90 99.90  

LightGBM 5.548 99.91 99.92 99.91 99.91 52.05 

CIC-IDS2017 Statistical 4.310 99.89 99.89 99.89 99.89  

LightGBM 1.845 99.89 99.89 99.89 99.89 57.18 

ISCX-IDS2012 Statistical 0.623 98.78 99.38 98.78 98.98  

LightGBM 0.562 98.68 99.35 98.68 98.91 9.88 

NSL-KDD Statistical 0.197 97.16 97.17 97.16 97.16  

LightGBM 0.165 96.97 96.97 96.97 96.97 16.21 

UNSW-NB15 Statistical 2.683 98.51 98.96 98.51 98.64  

LightGBM 1.863 98.45 98.93 98.45 98.59 30.56 

XGBoost model results in Table 9 show 66.14% 

improvement in the time cost on the CIC-DDOS2019 

dataset with the LightGBM methodology is applied. 

The model metrics have a very narrow changes for 

the metrics on other datasets, while time cost 

improvements is noticeable when the LightGBM 

methodology is used.

Table 9 XGBoost Performance Metrics 

Dataset Feature Selection 

Method 

Prediction 

Time (s) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Time Cost 

Improvement (%) 

CIC-DDOS2019 Statistical 12.061 99.96 99.96 99.96 99.96  

LightGBM 4.051 99.96 99.96 99.96 99.96 66.41 

CSE-CIC-IDS2018 Statistical 8.179 99.96 99.96 99.96 99.96  

LightGBM 3.306 99.96 99.96 99.96 99.96 59.58 

CIC-IDS2017 Statistical 4.230 99.98 99.98 99.98 99.98  

LightGBM 2.400 99.91 99.91 99.91 99.91 43.26 

ISCX-IDS2012 Statistical 2.115 99.25 99.53 99.25 99.34  

LightGBM 2.005 99.24 99.53 99.24 99.33 5.22 

NSL-KDD Statistical 1.899 99.23 99.23 99.23 99.23  

LightGBM 1.757 99.07 99.07 99.07 99.07 7.47 

UNSW-NB15 Statistical 2.839 98.58 99.00 98.58 98.70  

LightGBM 2.418 98.58 98.99 98.58 98.69 14.81 

 

 

For LightGBM classification results in Table 10, 

the metrics and time cost improve when the 

LightGBM methodology is used for all the datasets 

except NSL-KDD there is a slight reduction in the 

model metrics. On the other hand, NSL-KDD 

achieves the highest time cost improvement by 

41.18% when the LightGBM methodology is used. 
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Table 10 LightGBM Performance Metrics 

Dataset Feature Selection 

Method 

Prediction 

Time (s) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Time Cost 

Improvement (%) 

CIC-DDOS2019 Statistical 10.071 99.96 99.97 99.96 99.96  
 

LightGBM 8.203 99.96 99.96 99.96 99.96 18.55 

CSE-CIC-IDS2018 Statistical 8.839 99.97 99.97 99.97 99.97  
 

LightGBM 5.948 99.98 99.98 99.98 99.98 32.71 

CIC-IDS2017 Statistical 3.285 99.98 99.98 99.98 99.98  
 

LightGBM 2.675 99.91 99.91 99.91 99.91 18.56 

ISCX-IDS2012 Statistical 1.052 99.20 99.51 99.20 99.30  
 

LightGBM 0.934 99.26 99.53 99.26 99.34 11.26 

NSL-KDD Statistical 0.340 98.96 98.96 98.96 98.96  
 

LightGBM 0.200 98.80 98.80 98.80 98.80 41.18 

UNSW-NB15 Statistical 2.455 98.55 98.98 98.55 98.67  
 

LightGBM 2.077 98.56 98.99 98.56 98.68 15.38 

5. Summary and Conclusion  

This paper investigates feature selection 

methodologies for machine learning models in 

cybersecurity, and compares statistical techniques 

with LightGBM on several intrusion detection 

datasets. 

In most cases, there is a big improvement in time 

cost for all models, except some cases where there is 

a slight improvement when using LightGBM selected 

features over statistically selected ones. The time cost 

improves by 80.29% for Logistic Regression, 76.66% 

for the Bernoulli Naive Bayes classifier, 81.53% for 

Gaussian Naive Bayes, 58.35% for the Decision Tree 

Classifier, and 57.15% for Gradient Boosting when 

using LightGBM-selected features on the CIC-

IDS2017 dataset. The Support Vector Machine 

achieves a 49.34% reduction in time cost, and 

Random Forest Classifier achieves a 15.71% 

reduction in time cost on UNSW-NB15 dataset. The 

XGBoost achieves a 66.41% reduction in time cost 

on the CIC-DDOS2019 dataset. The LightGBM 

classifier achieves a 41.18% improvement in time 

cost on the NSL-KDD dataset. 

The results indicate that LightGBM consistently 

selects significantly fewer features, as shown in 

Table 1, which reduces data dimensionality without 

substantial loss in predictive performance. These 

features, as selected by LightGBM, perform 

comparably and, in some metrics, even slightly better 

than those selected using statistical methods. This 

balance between reduced computational cost and 

consistent model performance underlines the 

efficiency of LightGBM as a feature selection 

method in cybersecurity applications. 

While this paper focuses on binary classification, 

extending such methods to multiclass classification 

could enable addressing more challenging tasks 

related to cybersecurity, including the recognition of 

attack types. Other methodologies, such as 

unsupervised and semi-supervised feature selection 

techniques and deep learning-based are out of the 

scope of this paper. . 

Most challenges in cybersecurity relate to 

discrimination among several types of attacks, rather 

than simple binary classifications like benign versus 

malicious traffic. The performance assessment of 

LightGBM-selected features in a multiclass setting 

could provide a comprehensive understanding of 

their effectiveness. Expanding into multi-class 

classification could help in addressing real-world 

cybersecurity needs and advance feature selection 

studies. 
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