A
The Egyptian International Journal of
Engineering Sciences and Technology

The Egyptian International Journal of
Engineering Sciences and Technology

https://eijest.journals.ekb.eq/

ISSN: 1687-1006 p
ISSN: 2682-3640 ¢

Vol. 52 (2025) 105-118

DOI: 10.21608/eijest.2025.350769.1318

Evaluating Feature Selection Methods for Machine Learning
Models in Cybersecurity

Anas N. Moursi®", Mahmoud Atallah®, Nesreen I. Ziedan®

Cyber Security, Faculty of Computer Studies, Arab Open University, EI-Sorouk, Egypt,
® Computer and Systems Engineering Department, Faculty of Engineering, Zagazig University, Zagazig, Egypt

ARTICLE INFO ABSTRACT

Cyber-attack incidents are increasing daily, with the adoption of modern
communication technologies, cloud services, and the Internet of things. Providing
high accuracy real-time protection for networks against network vulnerabilities is
of paramount importance. In machine learning, one of the crucial items, which
influence models’ performance enhancement in detecting and preventing these
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February 2025 threats, is feature selection. This paper evaluates two feature selection
Y methodologies, which are: (1) feature selection using traditional statistical
Keywords: approaches, such as Ml_JtuaI I_nformation (MI) and correlation—pased; and (2)
_ automated feature selection using embedded methods, such as LightGBM. The
Cybersecurity evaluation is performed on six established cybersecurity datasets which are CIC-

Machine Learning
Feature Selection
LightGBM

DD0S2019, ISCX-1DS2012, UNSW-NB15, CIC-IDS2017, NSL-KDD, and CSE-
CIC-1DS2018.

The datasets are used to train and test various models. Each feature selection
methodology is applied to get the optimal combination of features. Subsequently, a
comparison analysis of multiple metrics, including time cost, is conducted across
the models. The findings show that there is a huge variation in model performance,
regardless of the dataset or the feature selection methodology. The time cost
reduced significantly for the models with LightGBM feature selection method.
Some models improved their metrics when using LightGBM. This makes
LightGBM a promising choice in cybersecurity applications.

1. Introduction part of these tools [1].

The cyber threats landscape is always changing.

The evolution of the information technology
sector facilitated communication over networks. The
attack surface has expanded significantly. The
security threats that are facing these systems and
devices are increasing massively. This has led to
more difficulties to achieve robust network security.
Different toolkits and services are being used as the
foundation of network security defense. The intrusion
detection and prevention systems (IDS/IPS) and the
network intrusion and detection systems (NIDS) are

* Corresponding author. Tel.: + 201224633115
E-mail address: anas.naguib@outlook.com

This adds more challenges to the defense
mechanisms, which require advanced and flexible
security measures. Machine learning (ML) has
become a vital tool for tackling these issues, allowing
for automated threat detection, the anomaly
recognition, and proactive defense strategies [2]. In
Intrusion Detection Systems, ML models can
examine large volume of network traffic, system
logs, and user behavior data to spot patterns that
suggest malicious activities [3]. The effectiveness of
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these ML models depends on the quality, relevance,
and selection of features used. Feature selection is
essential for boosting model performance by
reducing the dimensionality, preventing overfitting,
and enhancing interpretability. High-dimensional
datasets often include irrelevant or redundant
features, which can negatively impact model
accuracy and training efficiency. Feature selection
can help ML models focus on the most informative
features, thereby delivering more accurate predictions
by concentrating on relevant patterns [4].
Additionally, feature selection can improve the
interpretability of ML models in cybersecurity. By
highlighting the most influential features that are
driving model decisions, the security analysts will
understand the reasoning behind threat detection and
response activities, building trust and informing
better decision-making.

Development of ML models that can handle
massive amounts of traffic in modern networks
requires that the model should perform the malware
identification in real-time. This can be achieved by
increasing the processing resources, but it would not
be a practical solution as it would increase the
hardware required and the cost of the cybersecurity
systems. On the other hand, developing robust and
effective ML models for cybersecurity applications
faces challenges due to the complexities of real-world
cyber threat data. Selecting the most relevant features
from often high-dimensional datasets poses a critical
hurdle.

Cybersecurity datasets have many characteristics
that make feature selection difficult, which are:

¢ High Dimensionality: The datasets may contain
hundreds or even thousands of features that
represent a variety of network traffic patterns,
system logs, user behaviors, and other potential
indicators of compromise [5].

e Imbalanced Class Distribution: Most
cyberattacks happen in rare cases compared to
normal activities. This leads to bias in models
toward the majority class due to an imbalance in
the dataset, resulting in poor detection of actual
threats.

e Feature Redundancy and Noise: Datasets may
contain features that are redundant or irrelevant,
which can impact model performance negatively
and increase training time. Identifying and
removing such noise is crucial for effective
feature selection [6].

For example, ISCXFlowMeter software [7], more
than 80 features can be generated for characterizing
data traffic; for the network analyst this is

challenging to handle this huge amount of
information. In this regard, a very important feature
selection pre-processing step is highly valued. Lack
of a standardized approach to feature selection in
cybersecurity exacerbates these challenges further.
This paper compares two feature selection
methodologies with the objective of finding the most
effective methodology that would improve the
performance of ML models in cyber threats detection
and mitigation. The test of these methods on different
datasets is performed, including old and modern
datasets. Nine widely used machine learning models
in cybersecurity tasks have been trained and tested on

a wide variety of publicly available datasets.

Therefore, the performances of these models have

been compared using various methodologies to

highlight the influence of feature selection on
different model metrics. This paper’s contributions
are as follows:

e Comparative  Analysis: This provides a
comparison of how statistical feature selection
and LightGBM approaches draw valuable insights
from the cybersecurity datasets regarding the
various strengths and weaknesses associated with
using each method.

e Performance Enhancement: Finding the best
feature selection technique for any given dataset
and model could significantly  improve
performance in intrusion detection and other
security tasks.

e Practical Guidelines: The study provides
guidelines that are useful for researchers and
practitioners in the choice of appropriate feature
selection methods to optimize machine learning
models for cybersecurity applications.

The remainder of this paper is organized as
follows. Section 2 provides an overview of related
work. Section 3 explains the methodology of the
research, describing the process, the used datasets,
and the ML models. Section 4 explores the results of
each ML model on the various datasets. Section 5
concludes the paper.

2. Literature Review

ML and DL are technologies on which intrusion
detection systems depend to enable real-time
anomaly and attack detection on networks [3]. Al in
cybersecurity [8] is also expected to make advances
in the predictive threat hunting and automating the
process that analyzes potential threats before they can
become actual threats. This predictive capability will
be useful in dealing with advanced forms of cyber
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threats.

Additionally, Al will be able to personalize
security, user activity countermeasures, and system
configurations, ~ strengthening owverall  security.
However, there is a problem with increased usage of
Al in cybersecurity, such as the vulnerabilities that
the enemies use to launch attacks [8].

Moreover, when it comes to real applications,
attackers exploit vulnerabilities to carry out cyber-
attacks. Recent attacks have exploited the
vulnerabilities of 10T systems in smart cities [9].

Previous research has shown that feature selection
is a critical aspect of ML models. [10] presented a
computationally efficient filter-based method for
feature selection on correlation for data containing
high features count. Their study has shown that
removing redundant and irrelevant features can
significantly improve the learning efficiency and
model accuracy. According to the authors, one
critical challenge in feature selection involves high-
dimensional spaces, which they proclaim is crucial to
be resolved to improve machine learning
performance. The results here confirm the importance
of the step of data preprocessing; indeed, it is the
preliminary step in classification task optimization.

Multiple ways can be used to categorize the
Feature selection methods. The most common way is
to categorize it into filter, wrapper, embedded, and
hybrid methods [11].

A well-balanced perspective on feature selection
was offered by [5]. It addressed not only established
methodologies but also crucial emerging issues such
as class imbalance, dataset shift, and scalability. The
discussion of real-world case studies and the
identification of key open research questions make it
a source of great value for practitioners and
researchers alike in the field.
[4] An overview of feature selection methods from
traditional filters to recent hybrid approaches, is
presented in [4]. This paper systematically classifies
various methods and emphasizes their application
across different domains, such as text mining, image
processing, and bioinformatics.

Software probes are being used in modern NIDS.
These probes are responsible for analyzing network
traffic based on some characteristics, including
percentages of forward and reverse flows, arrival
time distribution, packet size distribution, and the
presence of a particular TCP/IP flags. This
information is usually instrumental in underpinning
anomalous traffic, usually the cause of distributed
denial of service (DDoS) attacks [12], [13], covert
VolIP sessions [14], threat diffusion [15], and Peer-2-
Peer traffic. The conventional signature-based NIDS

would allow these different flows to go unobserved
in many instances.

Machine learning model  developed  for
cybersecurity improves its performance based on the
selected features. [16], in the concluding remarks of
their survey on the various supervised feature
selection techniques employed in NIDS, pointed out
the feasibility of using feature selection in networks
for practical benefits. Using recent datasets and a
broad spectrum of feature selection algorithms for
experimental evaluation, they showcase the ability of
feature selection in reducing computational time,
often by a factor, while the effects on model
performance remain low. The authors have remarked
that their assessment framework serves to support
network/security management practitioners on the
importance of feature selection toward identifying the
most key characteristics for accurate, effective, and
interpretable models within NIDS. The paper also
identified promising future directions involving
unsupervised feature selection techniques, streamed
data, the analysis of adaptive techniques dealing with
the dynamic nature seen in modern network
environments to stand as a bedrock in facilitating
further innovation in related domains.

The survey conducted by [6] was a good addition
to the field of cyber-attack feature detection. It
studied the intrinsic details in addition to probing the
filter-based feature selection methods. It also
explored key technical components such as search
algorithms and relevance measures.

3. Methodology

Network flow software, such as Cisco's NetFlow,
introduces massive and high-dimensional
characteristics. Most datasets in the cybersecurity
field are imbalanced. To overcome this challenge,
oversampling and under-sampling are used in
intrusion detection using machine learning [17]. The
process block diagram is described in Fig. [1].

100K records
N Feature
17| extraction

Dataset | Data Cleansing _ Preprocessing Resampling

ey pawaresdasy
sawey) pamrgey
e ool

Clasification

Performance Test K ] (Model Training

Fig. 1 Block Diagram of the Process
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The proposed method includes modules for data
cleansing, preprocessing, resampling, feature
extraction, classification, and performance testing. In
the data cleansing module, each dataset is cleaned to
avoid unnecessary features, null values, and
duplicates. The data preprocessing module includes
normalization, scaling, and encoding of text features.
Section 3.1 describes both cleansing and
preprocessing modules.

The feature extraction module contains two
parallel methods for feature selection. Each
methodology is used for feature selection on the
resampled data, before applying the training module.
The feature selection methodologies are described in
section 3.2.

In the classification module, different models,
including gradient boosting, XGBoost, and
LightGBM, are evaluated.

In the performance test module, the full datasets
are used for evaluation on each model. The
classification module and performance test module
are described in section 3.3.

3.1. Datasets, cleansing and preprocessing.

Multiple datasets have been introduced to the
research area over the past years. These datasets vary
in their features, classes, and size. This paper
evaluates the impact of feature selection on multiple
datasets. These datasets are summarized as follows:

NSL-KDD: The NSL-KDD dataset is a filtered
version of the original KDD Cup 1999 dataset for
network IDS evaluation. It contains labeled traffic
data of the network categorized either as "normal" or
as one of several types of network attacks. This
dataset is a multivariate one, containing features that
describe the traffic, such as protocol type, service,
and connection status, as well as other derived
features like the failed login attempts count and the
duration of connections. 51.88% of the records are
regular traffic, while non benign traffic makes up
48.12% [18].

UNSW-NB15: It is considered one of the modern
network traffic datasets created for the purpose of
IDS evaluation. The University of New South Wales
generated this dataset, which contains approximately
2.5 million records. Both normal and malicious
traffic are characterized by 49 features. Nine attack
categories are included. These categories represent a
broad range of cyberattacks. In this regard, intrusion
detection systems and machine learning models can
use this helpful resource to be developed and tested

[19].

ISCX-IDS2012: ISCX-IDS2012 is a publicly
available dataset widely used in developing and
evaluating IDS. The Information Security Centre of
Excellence (ISCX) developed it by capturing data
from an operating real-world network environment
that involved benign and malicious activities. The
dataset consists of attack scenarios, such as DoS,
DDoS, port scans, and other network intrusions,
combined with normal traffic. This is an essential
source of packet and flow level features, in detail that
can be used to learn ML models and IDS algorithms
can. The ISCX-1DS2012 dataset serves as a realistic
benchmark for testing the efficiency of network
security systems in detecting and preventing cyber-
attacks [20].

CIC-IDS2017: The Canadian Institute for
Cybersecurity (CIC) generated this dataset, which is
a comprehensive collection of network traffic. Real
network flow was included with benign and
malicious activities contained. It covers many attack
types. The dataset is considered high-dimensional,
featuring over 70 flow-based and packet-based
attributes [21].

CIC-DD0S2019: This dataset is aimed to facilitate
research on DDoS attacks. It consists of labeled
records for both benign and malicious traffic. The
dataset was constructed by capturing multiple attack
scenarios with varying intensities from real-world
network environments. Features consist of packet
size, packet duration, flow rate, and protocol type
among many others. Its wide range of usage is in
testing and training ML models for protection
techniques against DDoS. It has been constructed by
CIC for research and development in cybersecurity
[22].

CSE-CIC-1DS2018: It is a dataset containing
network traffic used for the IDS evaluation. It
includes normal and attack scenarios, such as DDoS,
brute force, and SQL injection, among others, with
detailed features. It contains over 80 features per
flow, including packet count, flow duration, protocol
type, and more [21].

In the cleansing module, each dataset is cleaned of
features considered to be metadata features [23].
Duplicate and null data are also removed from the
used datasets. Text features are converted to
numerical values using categorical encoding for
features with a small number of categories and one-
hot encoding for features with a large number of
categories [24].

To accelerate model training, methods such as
data normalization are necessary. In this paper, the
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maximum and minimum normalization scaling
equation [25] is adopted to normalize the data in the
range of [0,1]. The  maximum-minimum
normalization equation is as follows:

X—Xmin

MaxMinScaleer " [26], 1)

where Xmnax and Xp,in represent values of both
maximum and minimum data in each column in
which the feature X is located, respectively.

The target label of each dataset is converted into
two classes {0 => Normal, 1 => Anomaly} to prepare
for binary classification.

3.2. Feature selection methodologies

Two distinct feature extraction methods are
applied in parallel to each dataset. The first method is
statistically based, using a correlation matrix heatmap
to identify highly correlated features within the
dataset. A threshold has been applied: if the two
features exhibit a correlation higher than 90%, they
are considered highly correlated. The number of
highly correlated features are reduced by dropping
one feature from each highly correlated pair. The
correlation between the remaining features and the
target label has been measured to ensure that the
selected features have a meaningful relationship with
the target label. Next, the MI score between the target
label and features has been calculated to obtain and
used for further filtering. Features with Ml score less
than 0.001 have been dropped. The following
equation conducts the Ml score [27].

106GY) = Teex Zyer p(x,9) log (222) (2)

where:

e Xand Y are random variables.

e X represents the variable X specific value.

e y represents the variable Y specific value.

e p(x,y)isXand Y's joint probability mass
function. It is the likelihood that X will take the
value X, and Y will take the value y.

e p (x) is the marginal probability mass function of
X. Itis the likelihood that X will take the value X,
independent of Y's value.

e p (y) is the marginal probability mass function of
Y. Itis the likelihood that Y will take the value X,
independent of X's value.

¢ log is the logarithm (typically base-2 for
information in bits, or natural log for nats). You'll
often see log base 2 used when thinking about
bits, and natural log when dealing with entropy
calculations. The difference is just a constant scale

factor, so it doesn't really affect what the Ml is

telling you.

[28] stated that a special case of feature extraction
methods is feature selection.

The second method involves using LightGBM to
calculate the feature importance for each dataset and
then filtering the features with an important score
higher than 80. This threshold is determined through
trial and error from multiple values including 50, 70,
80, and 100.

3.3. ML Models

In recent years, research on ML-based IDS models
have demonstrated reasonable detection rates. have
Algorithms including KNN, SVM, Random Forests,
Neural Networks, Naive Bayes, XGBoost and
LightGBM had been used in previous studies.
According to [29] .

Nine different ML models are used in this paper in
training and testing two methodologies for feature
selection. The models are used with their standard
parameters to isolate and evaluate the effect of the
feature selection methods under consideration.

Support Vector Machine (SVM): The SVM is a
model of ML that can perform classification and
regression. It tries to find the best possible
hyperplanes that separate classes of data. SVMs work
well for high-dimensional data and support multi-
type kernel functions. However, there are some
disadvantages of SVMs: require accurate tuning,
especially in those cases where the number of input
dimensions exceeds the number of samples, large-
sized datasets, multi-classification problems, and
imbalanced datasets result in poor performance of
SVMs [30].

Logistic Regression: This is an ML model
generally used in binary classification; however, it
can also be used in multiclass tasks using the one-vs-
rest approach. Using a linear model and the sigmoid
function, it produces outputs ranging from 0 to 1,
where values closer to 1 indicate a higher likelihood
of belonging to a specific class [31].

Decision Tree (DT): This is a supervised ML
techniques used for solving classification and
regression problems. It has a tree-like structure,
making it easy to interpret and visualize using
various ML tools [32].

Gaussian Naive Bayes: This is a probabilistic ML
classifier based on Bayes' theorem, which assumes
that some features follow a Gaussian distribution. It
is simple, efficient, and particularly effective for
large datasets with independent features [33].

Bernoulli Naive Bayes: It is a probabilistic model
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that can be used for both binary and multi-class
classification problems. It assumes that features are
binary (i.e., either 0 or 1) and uses Bayes' theorem to
predict class probabilities. This classifier works well
for tasks where the features indicate the presence or
absence of a given attribute [34].

Gradient Boosting Classifier: It is a ML model
that sequentially constructs a series of decision trees.
By focusing on incorrectly classified data points,
each tree fixes the mistakes of the one before it. It
works well for both classification and regression
tasks by optimizing a loss function using gradient
descent. Gradient Boosting boasts outstanding
accuracy and is widely used in cybersecurity
applications [35], but it is prone to overfitting if its
parameters are not appropriately set.

Random Forest Classifier: Several decision trees
are combined in this ensemble learning model, which
increases classification accuracy. It trains multiple
trees using random subsets of the data and features to
create a ‘forest’, and then combines their predictions,
typically through majority voting. This method
reduces overfitting, improve generalization, and
robust to noise, making it effective for large and
complex datasets [36].

XGBoost Classifier: This model is an ML
algorithm and is considered efficient and scalable for
supervised learning tasks. It performs well in
classification and regression problems. It constructs a
group of decision trees in a sequential way, with each
tree attempting to perform correction on the errors of
the previously built trees. It implements several
advanced techniques, such as regularization, feature
importance, and parallel processing, which enhance
accuracy and speed up its training, improving
generalization compared to traditional boosting
techniques. It is capable of handling large datasets,
feature interactions, and missing values [37].

LightGBM: LightGBM is a gradient boosting
framework that uses tree-based learning algorithms.
It is a fast, distributed, high performance gradient
boosting (GBT, GBDT, GBRT, GBM or MART)
framework based on decision tree algorithms, used
for ranking, classification and many other machine
learning tasks [38].

Each ML model is trained with each dataset using
two distinct features selection methods. The mode
used with standard parameters to ensure that the
observed results are primarily driven by the feature
selection process itself, without interference from
model-specific parameter tuning. Additionally, the
models’ performance measured using different
familiar metrics and the prediction time cost.

4. Experiments and Results

ML models’ performance of different binary
classification, on multiple datasets after pre-
processing, and data resampling, is presented in this
section. To address class imbalance, each dataset has
been resampled to include 100,000 records for each
class (benign and anomaly). Then, 80% and 20% of
the 200,000 records are split into training and testing,
respectively. The performance of each model has
been evaluated on the entire dataset. As an exception,
for large dataset, CSE-CIC-IDS2018, only the
leading five million records have been used. The
experiments were conducted on a Dell host with
64GB DDR4 memory, an Intel i7-7920HQ 3.1 GHz
processor, and Python 3.9 as the programming
language. The scikit-learn, XGBoost, and LightGBM
libraries have been used to build the models.

4.1. Evaluation Metrics

Four metrics — precision, accuracy, F1 score, and
recall — are used to assess model performance
during training and testing. Prediction time was
included as a fifth metric in the models' performance
evaluation to measure how long each model takes to
make a prediction on a given dataset. The F1 score,
recall, accuracy, and precision are calculated using
the following formulas [39]:

TP+TN

Accuracy = —————— 3)

TP+FP+TN+FN
.. TP

Precision = —— (@)

TP+FP
TP
Recall = —— (5)
TP+FN

Precisi Recall
F1Score = 2 X recisionxReca (6)

Precision + Recall

Where: TP = True Positives, TN = True Negatives,
FP = False Positives, and FN = False Negatives.

4.2. Results and Analysis

CIC-DD0S2019, CSE-CIC-IDS2018, CIC-
IDS2017, NSL-KDD, ISCX-1DS2012 and UNSW-
NB15 are used for binary classification experiments.
The features in these datasets are selected through
preprocessing. Table 1 and Fig. 2 compare the
selected number of features for each dataset.
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Table 1 Comparison of features count

Number of selected features

Dataset Statistical LightGBM
CIC-DDO0OS2019 57 12
CSE-CIC-IDS2018 61 13
CIC-IDS2017 68 12
UNSW-NB15 30 12
NSL-KDD 30 15
ISCX-1DS2012 16 6

80

70

o

o

CIC-DD0OS2019 CSE-CIC-IDS2018

M Statistical

60
50
40
30
2
Al HN HN
0

CIC-1DS2017

UNSW-NB15 NSL-KDD ISCX-IDS2012

m LightGBM

Fig. 2 Number of selected features for each dataset

The number of features selected using LightGBM
is significantly lower than the count of statistically
selected features. This observed variation highlights
that the various feature selection methods can adapt
to different characteristics in datasets. Further, this
variation indicates that selection should be guided by
the peculiar features of the data, including, but not
limited to, its dimensionality, feature redundancy,
and sample size.

Table 2 shows that the Logistic Regression model
achieves similar metrics on dataset of CIC-
DDO0sS2019. However, the prediction time improves
significantly, with a reduction of 68.53% when using
features selected by LightGBM. On other dataset, the
CSE-CIC-1DS2018, the model time cost improves by
69.98%, and higher improvement in metrics is
achieved. On the CIC-IDS2017, the model achieves a
significant time cost improvement of 80.29% with
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the LightGBM methodology. On other datasets, a
slight reduction in model metrics is observed, but

there is a noticeable improvement in time cost when
LightGBM is used.

Table 2 Logistic Regression Performance Metrics

Dataset Feature Selection Prediction  Accuracy Precision  Recall F1 Score  Time Cost

Method Time (s) (%) (%) (%) (%) Improvement (%)
CIC-DDO0S2019 Statistical 1.098 99.84 99.86 99.84 99.85

LightGBM 0.346 99.84 99.86 99.84 99.85 68.53
CSE-CIC-IDS2018 Statistical 0.573 92.48 97.90 92.48 94.46

LightGBM 0.172 95.23 98.19 95.23 96.25 69.98
CIC-IDS2017 Statistical 0.305 98.18 98.24 98.18 98.20

LightGBM 0.060 95.66 95.97 95.66 95.76 80.29
ISCX-1DS2012 Statistical 0.025 96.88 98.96 96.88 97.70

LightGBM 0.017 95.79 98.87 95.79 97.05 34.38
NSL-KDD Statistical 0.015 91.69 91.80 91.69 91.68

LightGBM 0.008 91.39 91.54 91.39 91.37 48.26
UNSW-NB15 Statistical 0.104 97.85 98.54 97.85 98.07

LightGBM 0.066 97.80 98.43 97.80 98.01 36.48
The results in Table 3 show that with the recorded for UNSW-NB15, at 49%. For the other

LightGBM methodology, the

Support

Vector

datasets, a slight reduction is observed in the model

Machine model improves in both metrics and time

metrics, but there is still a noticeable improvement in

cost for the CSE-CIC-IDS2018 and UNSW-NB15. time cost when  LightGBM is  used.
The largest improvement in time cost for the model is
Table 3 Support Vector Machine Performance Metrics
Dataset Feature Selection Prediction Accuracy  Precision Recall  F1 Score Time Cost
Method Time (s) (%) (%) (%) (%) Improvement (%)
CIC-DDO0S2019 Statistical 430.58 99.85 99.87 99.85 99.86
LightGBM 286.08 99.82 99.85 99.82  99.83 34
CSE-CIC-IDS2018  Statistical 3359.73 95.29 98.21 9529  96.30
LightGBM 1890.82 95.53 98.25 9553  96.46 44
CIC-IDS2017 Statistical 501.88 99.29 99.30 99.29  99.30
LightGBM 476.80 98.74 98.74 98.74  98.74 5
ISCX-1DS2012 Statistical 144.85 98.55 99.31 9855 98.81
LightGBM 112.68 97.55 99.16 9755 98.15 22
NSL-KDD Statistical 81.80 95.78 95.90 95.78  95.78
LightGBM 54.84 95.44 95.58 95.44  95.44 33
UNSW-NB15 Statistical 1747.48 96.72 98.30 96.72  97.22
LightGBM 885.25 97.97 98.68 97.97 98.18 49

The results in Table 4 show that the Bernoulli
Naive Bayes model improves in both metrics and
time cost for the UNSW-NB15. The model's time
cost improves by 76.66% for the CIC-IDS2017 when
using the LightGBM methodology for feature

selection. Time cost improvement is observed on the
other datasets, though there is a slight reduction in
the model metrics when using the LightGBM
methodology.
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Table 4 Bernoulli Naive Bayes Performance Metrics

Dataset Feature Selection  Prediction ~ Accuracy Precision Recall F1 Score  Time Cost

Method Time (5) (%) (%) (%) (%) Improvement (%)
CIC-DDO0sS2019 Statistical 6.505 93.35 99.12 93.35 95.81

LightGBM 1.946 93.31 99.16 93.31 95.79 70.09
CSE-CIC-IDS2018  Statistical 3.283 67.40 97.35 67.40 77.98

LightGBM 0.959 57.60 97.02 57.60 70.40 70.80
CIC-1DS2017 Statistical 1.586 70.02 87.51 70.02 73.75

LightGBM 0.370 69.42 87.40 69.42 73.23 76.66
ISCX-1DS2012 Statistical 0.190 96.67 98.91 96.67 97.57

LightGBM 0.099 92.02 98.76 92.02 94.90 47.62
NSL-KDD Statistical 0.092 85.29 85.71 85.29 85.23

LightGBM 0.036 85.04 85.06 85.04 85.04 60.79
UNSW-NB15 Statistical 0.746 84.71 95.75 84.71 89.18

LightGBM 0.295 96.57 95.38 96.57 95.63 60.52

The results of the Gaussian Naive Bayes in Table
5 show that the model achieves better metrics and
time cost on the datasets of CIC-DD0S2019, CIC-

a significant improvement in time cost of 81.53% for
the CIC-IDS2017 dataset. For the CSE-CIC-1DS2018

and UNSW-NB15 datasets, time cost is improved

used.

IDS2017, ISCX-IDS2012, and NSL-KDD when when the LightGBM methodology is
using the LightGBM methodology. The model scored
Table 5 Gaussian Naive Bayes Performance Metrics
Dataset Feature Selection  Prediction ~ Accuracy  Precision  Recall F1 Score  Time Cost
Method Time (s) (%) (%) (%) (%) Improvement (%)
CIC-DD0S2019 Statistical 11.109 96.57 99.24 96.57 97.64
LightGBM 2.920 99.67 99.75 99.67 99.69 73.72
CSE-CIC-1DS2018  Statistical 5.799 93.50 98.01 93.50 95.12
LightGBM 1.400 69.66 97.38 69.66 79.61 75.86
CIC-IDS2017 Statistical 2.562 90.68 93.35 90.68 91.33
LightGBM 0.473 93.66 94.56 93.66 93.91 81.53
ISCX-IDS2012 Statistical 0.169 54.85 98.58 54.85 69.66
LightGBM 0.123 96.28 98.99 96.28 97.36 27.27
NSL-KDD Statistical 0.063 84.72 85.13 84.72 84.69
LightGBM 0.040 87.84 87.93 87.84 87.83 36.82
UNSW-NB15 Statistical 1.182 94.76 96.29 94.76 95.41
LightGBM 0.517 94.35 96.84 94.35 95.32 56.28

In Table 6, the Random Forest model results show
some improvement in time cost. It reaches 15.71%
for the UNSW-NB15 dataset. Despite the small time

cost improvement, an improvement in the model

metrics is noticed for CIC-DD0S2019 and NSL-
KDD datasets when the LightGBM methodology is
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used. The same results are achieved for the model
metrics on the CSE-CIC-IDS2018 with time cost

Table 6 Random Forest Performance Metrics

improvement of 4.16% in favor of the LightGBM
methodology.

Dataset Feature Selection  Prediction Accuracy  Precision  Recall F1 Score  Time Cost

Method Time (s) (%) (%) (%) (%) Improvement (%)
CIC-DDO0S2019 Statistical 25.568 99.37 99.62 99.37 99.45

LightGBM 25.532 99.87 99.88 99.87 99.87 0.14
CSE-CIC-IDS2018 Statistical 18.211 99.99 99.99 99.99 99.99

LightGBM 17.372 99.99 99.99 99.99 99.99 461
CIC-IDS2017 Statistical 7.288 99.75 99.75 99.75 99.75

LightGBM 6.530 99.39 99.40 99.39 99.40 10.39
ISCX-1DS2012 Statistical 2.383 99.46 99.59 99.46 99.50

LightGBM 2172 99.27 99.53 99.27 99.35 8.85
NSL-KDD Statistical 0.490 95.80 95.96 95.80 95.80

LightGBM 0.488 95.97 96.08 95.97 95.97 0.42
UNSW-NB15 Statistical 6.473 98.49 98.95 98.49 98.62

LightGBM 5.456 98.47 98.93 98.47 98.60 15.71

The Decision Tree Classifier results in Table 7
show that improvements in the model metrics are
achieved on the UNSW-NB15, CIC-DD0S2019, and
CSE-CIC-IDS2018 when the LightGBM

Table 7 Decision Tree Classifier Performance Metrics

methodology is applied. Time cost improved for all
datasets, with a 58.35% improvement is achieved on
CIC-IDS2017 when the LightGBM methodology is
used.

Dataset Feature Selection  Prediction ~ Accuracy  Precision  Recall F1 Score  Time Cost

Method Time (s) (%) (%) (%) (%) Improvement (%)
CIC-DD0S2019 Statistical 1.602 99.95 99.95 99.95 99.95

LightGBM 0.688 99.96 99.96 99.96 99.96 57.04
CSE-CIC-1DS2018  Statistical 1.168 99.83 99.84 99.83 99.83

LightGBM 0.511 99.88 99.88 99.88 99.88 56.27
CIC-1DS2017 Statistical 0.432 99.90 99.90 99.90 99.90

LightGBM 0.180 99.81 99.82 99.81 99.82 58.35
ISCX-IDS2012 Statistical 0.071 99.41 99.60 99.41 99.47

LightGBM 0.069 99.39 99.59 99.39 99.45 321
NSL-KDD Statistical 0.020 99.25 99.25 99.25 99.25

LightGBM 0.016 99.15 99.15 99.15 99.15 22.95
UNSW-NB15 Statistical 0.436 98.69 99.03 98.69 98.78

LightGBM 0.300 98.70 99.04 98.70 98.80 31.29

In Table 8, Gradient Boosting model is improved
in metrics and time cost on the CSE-CIC-IDS2018
when the LightGBM methodology is used. A very

slight or no difference in metrics is noticed for the
remaining datasets. The time cost improvement for
the model by 57.18% is achieved on the CIC-
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IDS2017 in favor of the LightGBM methodology.

Table 8 Gradient Boosting Performance Metrics

Dataset Feature Selection  Prediction Accuracy Precision  Recall F1 Score Time Cost
Method Time (5) (%) (%) (%) (%) Improvement (%)
CIC-DD0S2019 Statistical 18.231 99.92 99.93 99.92 99.92
LightGBM 8.414 99.91 99.92 99.91 99.91 53.85
CSE-CIC-IDS2018  Statistical 11.570 99.90 99.9 99.90 99.90
LightGBM 5.548 99.91 99.92 99.91 99.91 52.05
CIC-1DS2017 Statistical 4310 99.89 99.89 99.89 99.89
LightGBM 1.845 99.89 99.89 99.89 99.89 57.18
ISCX-1DS2012 Statistical 0.623 98.78 99.38 98.78 98.98
LightGBM 0.562 98.68 99.35 98.68 98.91 9.88
NSL-KDD Statistical 0.197 97.16 97.17 97.16 97.16
LightGBM 0.165 96.97 96.97 96.97 96.97 16.21
UNSW-NB15 Statistical 2.683 98.51 98.96 98.51 98.64
LightGBM 1.863 98.45 98.93 98.45 98.59 30.56
XGBoost model results in Table 9 show 66.14% the metrics on other datasets, while time cost
improvement in the time cost on the CIC-DD0S2019 improvements is noticeable when the LightGBM
dataset with the LightGBM methodology is applied. methodology is used.

The model metrics have a very narrow changes for

Table 9 XGBoost Performance Metrics

Dataset Feature Selection  Prediction ~ Accuracy  Precision Recall F1 Score  Time Cost
Method Time (s) (%) (%) (%) (%) Improvement (%)
CIC-DD0S2019 Statistical 12.061 99.96 99.96 99.96 99.96
LightGBM 4.051 99.96 99.96 99.96 99.96 66.41
CSE-CIC-IDS2018  Statistical 8.179 99.96 99.96 99.96 99.96
LightGBM 3.306 99.96 99.96 99.96 99.96 59.58
CIC-IDS2017 Statistical 4,230 99.98 99.98 99.98 99.98
LightGBM 2.400 99.91 99.91 99.91 99.91 43.26
ISCX-1DS2012 Statistical 2.115 99.25 99.53 99.25 99.34
LightGBM 2.005 99.24 99.53 99.24 99.33 5.22
NSL-KDD Statistical 1.899 99.23 99.23 99.23 99.23
LightGBM 1.757 99.07 99.07 99.07 99.07 7.47
UNSW-NB15 Statistical 2.839 98.58 99.00 98.58 98.70
LightGBM 2.418 98.58 98.99 98.58 98.69 14.81
For LightGBM classification results in Table 10, model metrics. On the other hand, NSL-KDD
the metrics and time cost improve when the achieves the highest time cost improvement by
LightGBM methodology is used for all the datasets 41.18% when the LightGBM methodology is used.

except NSL-KDD there is a slight reduction in the
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Table 10 LightGBM Performance Metrics

Dataset Feature Selection  Prediction  Accuracy Precision Recall F1 Score  Time Cost
Method Time (5) (%) (%) (%) (%) Improvement (%)
CIC-DD0S2019 Statistical 10.071 99.96 99.97 99.96 99.96
LightGBM 8.203 99.96 99.96 99.96 99.96 18.55
CSE-CIC-IDS2018  Statistical 8.839 99.97 99.97 99.97 99.97
LightGBM 5.948 99.98 99.98 99.98 99.98 32.71
CIC-1DS2017 Statistical 3.285 99.98 99.98 99.98 99.98
LightGBM 2.675 99.91 99.91 99.91 99.91 18.56
ISCX-1DS2012 Statistical 1.052 99.20 99.51 99.20 99.30
LightGBM 0.934 99.26 99.53 99.26 99.34 11.26
NSL-KDD Statistical 0.340 98.96 98.96 98.96 98.96
LightGBM 0.200 98.80 98.80 98.80 98.80 41.18
UNSW-NB15 Statistical 2.455 98.55 98.98 98.55 98.67
LightGBM 2,077 98.56 98.99 98.56 98.68 15.38
than those selected using statistical methods. This
5. Summary and Conclusion balance between reduced computational cost and
consistent model performance underlines the
This paper investigates feature selection efficiency of LightGBM as a feature selection

methodologies for machine learning models in
cybersecurity, and compares statistical techniques
with LightGBM on several intrusion detection
datasets.

In most cases, there is a big improvement in time
cost for all models, except some cases where there is
a slight improvement when using LightGBM selected
features over statistically selected ones. The time cost
improves by 80.29% for Logistic Regression, 76.66%
for the Bernoulli Naive Bayes classifier, 81.53% for
Gaussian Naive Bayes, 58.35% for the Decision Tree
Classifier, and 57.15% for Gradient Boosting when
using LightGBM-selected features on the CIC-
IDS2017 dataset. The Support Vector Machine
achieves a 49.34% reduction in time cost, and
Random Forest Classifier achieves a 15.71%
reduction in time cost on UNSW-NB15 dataset. The
XGBoost achieves a 66.41% reduction in time cost
on the CIC-DDO0OS2019 dataset. The LightGBM
classifier achieves a 41.18% improvement in time
cost on the NSL-KDD dataset.

The results indicate that LightGBM consistently
selects significantly fewer features, as shown in
Table 1, which reduces data dimensionality without
substantial loss in predictive performance. These
features, as selected by LightGBM, perform
comparably and, in some metrics, even slightly better

method in cybersecurity applications.

While this paper focuses on binary classification,

extending such methods to multiclass classification
could enable addressing more challenging tasks
related to cybersecurity, including the recognition of
attack types. Other methodologies, such as
unsupervised and semi-supervised feature selection
techniques and deep learning-based are out of the
scope of this paper.
Most challenges in cybersecurity relate to
discrimination among several types of attacks, rather
than simple binary classifications like benign versus
malicious traffic. The performance assessment of
LightGBM-selected features in a multiclass setting
could provide a comprehensive understanding of
their effectiveness. Expanding into multi-class
classification could help in addressing real-world
cybersecurity needs and advance feature selection
studies.
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