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Abstract 

This study introduces DAtt-ResUNet++, an advanced deep learning model specifically designed 

to enhance breast tumor segmentation in ultrasound images. The model integrates a Dual-

Attention mechanism within the ResUNet++ framework, significantly improving its ability to 

focus on tumor regions while capturing relevant contextual information from surrounding tissue. 

By combining both spatial and channel-based attention, DAtt-ResUNet++ achieves higher 

segmentation precision. For evaluation, the model was rigorously tested on a public dataset of 780 

breast ultrasound images, utilizing a robust 10-fold cross-validation approach. It achieved 

impressive results with a Dice similarity coefficient of 90.40 ± 0.88%, Intersection over Union 

(IoU) of 84.62 ± 1.12%, Sensitivity of 89.82 ± 0.75%, Precision of 93.44 ± 0.56%, and Accuracy 

of 98.73 ± 0.12%. These results position DAtt-ResUNet++ as a competitive tool against state-of-

the-art methods, showcasing its potential to improve breast tumor segmentation in ultrasound 

imaging. Future research will explore further optimizations and validation on additional datasets. 
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1. Introduction 

Breast cancer is a major global health concern, affecting millions of women worldwide. In 2020, the 

most recent data reported 2.3 million new cases and 685,000 deaths worldwide caused by breast cancer 

[1]. Predictions for 2040 anticipate a notable uptick, projecting over 3 million new cases and 

approximately 1 million deaths annually [2]. Early detection of breast cancer is significantly aided by 

various imaging technologies. These include X-ray mammography, CT scans, magnetic resonance 

imaging (MRI), and breast ultrasound (BUS). Each modality offers a unique perspective on breast tissue, 

allowing healthcare professionals to identify potential abnormalities. Mammography, the standard 

diagnostic tool for doctors, has drawbacks due to its use of ionizing radiation, making it unsuitable for 

pregnant women[3]. On the other hand, BUS exams are cost-effective and radiation-free, making them 

a vital tool for cancer screening [4]. It offers essential insights into breast tissue characteristics and the 

presence of malignant tissues [4].  

Unlike some screening methods that can be expensive or involve radiation, BUS imaging emerges 

as a cost-accessible and radiation-free tool, expanding the options for breast cancer screening programs 

[4]. BUS can reveal details about the composition of breast tissue and identify the presence of 

cancerous growths [4]. 

Segmentation of breast tumors in images is a critical step for computer-assisted diagnosis (CAD) systems 

designed to aid in treatment decisions [5]. However, accurately separating tumors in BUS images remains 

challenging due to the wide variety of tumor shapes, poorly defined borders, weak contrast, and built-in 

image noise [6]. Progress in CAD systems has spurred investigations into their impact on detecting and 

segmenting breast cancer using BUS images [7],[8]. Despite these challenges, CAD systems have 

demonstrated promising advancements in lesion detection and segmentation. Breast cancer segmentation 

and classification methods can be broadly classified into two categories: conventional techniques and 

deep learning (DL)-based approaches. 

Conventional methods such as thresholding, region-growing, and feature-based approaches crafted 

by hand can be intricate and limitations in their feature representations can potentially lead to 

inaccurate lesion segmentation. Deep learning approaches have revolutionized breast lesion 

segmentation, achieving impressive accuracy in the detection of these abnormalities [9] , [10], [11], 

[12], [13], [14]. The field of breast cancer detection is actively exploring various deep learning 

techniques for segmenting lesions in BUS images. These techniques leverage convolutional layers to 

enable the automatic identification of important features within the images. 

This study unveils a deep learning architecture named Dual-Attention-ResUNet++ (DAtt-
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ResUNet++). It integrates attention mechanisms, inspired by the work of Oktay et al. [15], with the 

ResUNet++ framework introduced by Jha et al. [16]. This innovative design aims to achieve robust 

and precise segmentation of breast cancer in ultrasound (BUS) images. ResUNet++ merges elements 

from ResNet and UNet architectures. It utilizes residual blocks and borrows ResNet's skip connections 

to tackle issues like vanishing gradients that plague deep networks. U-Net's architecture leverages an 

encoder-decoder structure with crucial skip connections. These connections bridge the gap between 

low-level (local) and high-level (global) features, allowing the network to retain crucial spatial details. 

Dual-Attention-ResUNet++ incorporates focus mechanisms that enable it to concentrate on 

significant areas within the images being analyzed. These mechanisms highlight informative regions 

while minimizing the importance of less relevant ones. This allows the model to effectively utilize 

both local details and broader contextual information from the image. As a result, Dual Attention 

ResUNet++ achieves improved precision and resilience in identifying lesions. 

The key contributions of this paper are: 

 A novel deep learning model, DAtt-ResUNet++, has been developed for the accurate 

segmentation of breast cancer in ultrasound (BUS) images. 

 Spatial and channel-wise attention mechanisms are incorporated into DAtt-ResUNet++, 

enabling critical tumor regions in the image to be prioritized while less relevant areas are 

minimized. This dual attention allows for effective capture of both local details and 

broader contextual information.  

 State-of-the-art segmentation accuracy is achieved by DAtt-ResUNet++ on the BUSI 

dataset, a widely recognized, complex dataset for breast ultrasound images. Its non-

ionizing, radiation-free nature makes it well-suited for safe and accessible breast cancer 

screening applications. 

The Manuscript Structure: Section 2: Related Work: This section provides a comprehensive review 

of existing research on breast cancer segmentation and enhancement techniques. Section 3: DAtt-

ResUNet++ Architecture: This section delves into the intricate details of the proposed Dual-Attention-

ResUNet++ model's architecture. Section 4: Experimental Results and Discussion: This section 

presents the experimental findings, explores their significance, and discusses their implications. 

Section 5: Conclusion and Future Work: This concluding section summarizes the key takeaways of the 

research, highlights the potential impact of DAtt-ResUNet++, and outlines potential avenues for future 

research directions. 
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2. Related work 

A significant body of research has explored the segmentation of breast lesions in ultrasound imagery 

using a diverse range of algorithms. Breast cancer segmentation techniques can be categorized into two 

main approaches: traditional methods and those driven by machine learning. Traditional segmentation 

approaches typically rely on techniques like a region-growing, graph-based methods, and deformable 

models. In contrast, machine learning methods encompass a broader range, including both traditional 

hand-crafted feature engineering techniques and the more recent advancements in deep learning (DL). 

Region-growing segmentation starts by identifying seed points, either manually or automatically. These 

seeds act as starting points for the algorithm, which then progressively expands outwards, incorporating 

neighboring pixels that meet predefined criteria until the entire target region is segmented. For instance, 

Shan et al. [17] utilized this approach for breast cancer segmentation, incorporating criteria that 

considered both smooth contours and similar image intensity within the region. In contrast, deformable 

models employ a starting template that progressively adapts to conform to the object's boundaries. This 

adaptation process considers forces acting within the model itself (internal energy) and forces arising 

from the image data (external energy). One approach utilizes deformable models with boundary points 

and balloon forces, as introduced by Madabhushi et al. [18], to define the external energy influencing the 

model's adaptation. Leveraging prior advancements in the field, Chang et al. [19] proposed a two-stage 

approach specifically designed for breast lesion segmentation in ultrasound images. Their method first 

utilizes a stick filter to mitigate speckle noise, a common challenge in ultrasound data. Following this, a 

three-dimensional discrete-active contour method is utilized to achieve precise segmentation of the 

lesion. Early graph-based models relied on optimizing energy within frameworks like Markov random 

fields or graph cuts. Chiang et al. [20] explored a different approach, employing a pre-trained 

Probabilistic Boosting Tree (PBT) model to assist with breast lesion segmentation. Their method 

integrates the output of the PBT model within the energy function used by a graph cut algorithm., while 

Xian et al. [21] integrated frequency and spatial domain information into the energy function. However, 

these models often struggle with capturing intricate semantic details and faint boundaries in low-contrast 

ultrasound images, which can lead to inaccuracies. 

Traditional machine-learning approaches depend on features manually designed by researchers to train 

classifiers for segmentation. For instance, studies by Liu et al. [22] and Jiang et al. [23] extracted specific 

features from local image regions and then trained classifiers like Support Vector Machines (SVMs) or 

Adaboost to perform breast lesion segmentation. The recent surge in machine learning has been fueled 

by deep learning (DL) techniques, particularly convolutional neural networks (CNNs). CNNs possess a 

remarkable ability to automatically extract high-level, meaningful features from large datasets of labeled 
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data. Deep learning approaches have achieved remarkable accuracy in segmenting breast tumors from 

BUS images. Zhuang et al. [24]  introduced the Residual-Dilated-Attention-Gate-U-Net (RDAU-Net) 

architecture, specifically tailored for breast tumor segmentation in BUS images.  

Leveraging prior advancements, Hu et al. [25] proposed a segmentation method for breast cancer in (US) 

ultrasound images. Their approach innovatively combined a dilated fully convolutional network (FCN) 

with a phase-based active contour model.  Byra et al. [26] employed a DL approach using entropy 

parametric maps for segmentation, while Zhu et al. [27] explored a method that leverages second-order 

statistics derived from various image subregions for segmenting breast lesions in ultrasound imagery. 

Shareef et al. [28] introduced the Enhanced Small Tumor Segmentation Network (ESTAN), a 

convolutional neural network (CNN) specifically designed to address the challenge of identifying small 

tumors in breast ultrasound (BUS) images. Yang et al. [29] introduced the Cross-task Guided Network 

(CTG-Net), which combines lesion segmentation and tumor classification in breast lesion analysis. Wu 

et al. [30] presented a novel approach to breast lesion segmentation in ultrasound images. Their method, 

named Boundary-Aware Multi-Resolution Network (BAMR-Net), leverages the Feature Pyramid 

Network (FPN) framework while incorporating new techniques for boundary guidance. This boundary 

guidance improves the network's ability to identify lesion borders, especially in unclear regions. Zhang 

et al. [31] developed BONet, a boundary Oriented network aimed at improving breast tumor 

segmentation, using a two-step process with a boundary-oriented module (BOM) and Atrous Spatial 

Pyramid Pooling (ASPP) for feature extraction. Chen et al. [32] introduced a deep learning method called 

AAU-net for segmenting breast lesions in ultrasound images. AAU-net is a variation of U-net that 

incorporates a novel module named the Hybrid-Adaptive-Attention Module (HAAM). This HAAM 

module combines two functionalities: channel-based attention and spatial attention. Hekal et al. [12] the 

Dual Decoder Attention ResUNet (DDA-AttResUNet), which features a more complex dual decoder 

attention structure designed to produce both segmentation images and enhanced ultrasound images. 

Table 1 presents a summary of related work of breast cancer segmentation including method and their 

data. Despite past efforts using traditional techniques and early machine-learning approaches, segmenting 

breast lesions remains an evolving field. While Convolutional Neural Networks (CNNs) have 

demonstrated significant potential for breast tumor segmentation, certain limitations, such as 

generalizability or precision, warrant further exploration for optimal performance. Here's a breakdown 

of limitations in existing methods: 

 Region-growing algorithms often struggle with the variability and noise present in breast 

ultrasound images, which can lead to inaccuracies in segmentation results. 
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 Graph-based approaches face challenges in extracting complex semantic features that are 

essential for accurately segmenting tumors in low-contrast ultrasound images. 

 Deformable models provide flexibility but are sensitive to initialization, potentially resulting in 

suboptimal outcomes depending on the starting conditions. 

 Handcrafted feature models rely on manually designed features, which may be insufficient for 

capturing the nuances necessary for high-fidelity segmentation. 

 Deep learning methods, while capable of extracting rich information, still require further 

improvements to enhance segmentation accuracy. 

TABLE 1 

SUMMARY OF BREAST CANCER SEGMENTATION RESEARCH 

Author(s) Methodology Dataset Used 

Shan et al. [17]   Identified seed points for segmentation based 

on smooth contours and similar image 

intensity. 

120 Breast Ultrasound (BUS) 

images  

Madabhushi et al.  

[18] 

Adapted starting template conforming to 

object boundaries using internal and external 

forces. 

42 BUS images from 42 

patients. 

Chang et al. [19]  Utilized a stick filter for speckle noise 

reduction followed by a 3D discrete-active 

contour for lesion segmentation. 

3-D ultrasound images. 

Chiang et al.[20]  Integrated PBT output within energy 

function for breast lesion segmentation. 

60 patients with malignant or 

benign breast lesions in BUS 

images. 

Xian et al. [21]  Incorporated frequency and spatial domain 

information into the energy function for 

segmentation. 

184 BUS images (93 benign and 

91 malignant). 

Liu et al. [22] Extracted specific features from local image 

regions for classification. 

112 BUS images (60 malignant 

and 52 benign). 

Jiang et al. [23] Trained classifiers using features extracted 

from ultrasound images. 

112 BUS images (80 diseased 

and 32 normal). 

Zhuang et al. [24]  Tailored architecture for breast tumor 

segmentation in BUS images. 

1062 BUS images 

Hu et al. [25] 

 

Combined dilated FCN with a phase-based 

active contour model for segmentation. 

570 BUS images from 89 

patients and 128 BUS images 

(66 malignant and 62 benign). 

Byra et al. [26]  Employed parametric maps for segmentation 

in ultrasound images. 

269 BUS masses (123 malignant 

masses and 146 benign masses). 

Zhu et al. [27]  Leveraged statistics from image subregions 

for segmenting breast lesions. 

BUSI dataset (780 images 

categorized as normal, benign, 

malignant) and 632 BUS 

images. 
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Shareef et al. [28]  CNN designed for identifying small tumors 

in BUS images. 

BUSIS dataset (562 images 

from multiple institutions), 

BUSI dataset (780 images 

categorized as normal, benign, 

malignant), UDIAT dataset (163 

images). 

Yang et al. [29]  Combined lesion segmentation with tumor 

classification in breast lesion analysis. 

THH dataset (2718 images 

categorized as normal and lesion 

US images), UDIAT dataset, 

BUSI dataset. 

Wu et al. [30]  Utilized Feature Pyramid Network (FPN) 

framework with boundary guidance for 

improved segmentation. 

BUSI dataset (780 images 

categorized as normal, benign, 

malignant), BUSZPH dataset 

(632 images from Shenzhen 

People's Hospital). 

Zhang et al. [31]  Developed a two-step process for tumor 

segmentation using a boundary-oriented 

module and Atrous Spatial Pyramid Pooling 

(ASPP). 

BUSI dataset (780 images 

categorized as normal, benign, 

malignant), UDIAT dataset. 

Chen et al. [32]   Introduced Hybrid-Adaptive-Attention 

Module (HAAM) for improved segmentation 

accuracy. 

BUSI dataset, UDIAT dataset. 

Hekal et al. [12] Introduced the Dual Decoder Attention 

ResUNet (DDA-AttResUNet) 

BUSI dataset (780 images 

categorized as normal, benign, 

malignant) 

 

To address these challenges, the advanced deep learning model DAtt-ResUNet++ integrates attention 

mechanisms with the ResUNet++ architecture, significantly enhancing segmentation performance. The 

following subsection discusses related work to this model. 

The DAtt-ResUNet++ model is built on two foundational components: residual learning and the 

integration of attention mechanisms. The interplay between these elements fosters a more robust and 

effective model for tasks involving medical image segmentation. The concept of residual learning, 

introduced by He et al. [33], tackles the challenge of diminishing performance with deeper networks 

during training. This approach, as highlighted by Zhang et al. [34]  in their work on road profile 

reconstruction, allows for the creation of highly effective models even with many layers. Residual 

learning tackles the challenge of training very deep neural networks by introducing a new concept: skip 

connections. These connections allow the network to directly pass information from earlier layers to later 

layers, helping the model learn more complex features. This approach directly tackles a common hurdle 

in training deep neural networks: the vanishing-gradient problem [33]. Residual learning allows for the 

training of much deeper neural networks by enabling a more efficient gradient flow during 
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backpropagation. This facilitates the network's ability to learn complex representations from the data. 

This smoother gradient flow is crucial for training deeper networks effectively. As a result, this approach 

enables the training of much deeper networks. This, in turn, facilitates stronger learning of image features 

and translates to improved accuracy in tasks like image segmentation. The introduction of residual 

learning stands as a major breakthrough, enabling the development of significantly deeper and more 

powerful neural networks. This concept has become a cornerstone of modern network architectures. 

ResUNet leverages residual units in a specific way. These units are placed before the activation function 

within the network [35]. 

Attention mechanisms are critical in augmenting CNN architectures by dynamically assigning 

importance weights to features. Self-attention, a powerful attention mechanism variant, can be seamlessly 

integrated as a modular component within existing CNN architectures. This strategic inclusion offers a 

computationally efficient approach, minimizing additional parameters required for the network to 

generate attention weights [36]. This modular extension introduces new building blocks for neural 

networks. These blocks can dynamically assign significance scores (importance weights) to features 

within an image (spatial dimensions) or across different feature channels [36]. 

Spatial attention mechanisms prioritize the significance of specific locations within an image, whereas 

channel attention assigns weights to different feature channels within a feature map [37]. Channel 

attention acts like a filter, highlighting important feature aspects within the data. It achieves this by 

assigning weights (importance scores) to each feature channel, forming a compact 1D vector  [38]. There 

are two main approaches to integrating spatial and channel attention modules: parallel and sequential. In 

the parallel approach, both types of attention are applied simultaneously, with their outputs merged. For 

instance, Fu et al. [39] proposed the Dual Attention Network which utilizes this strategy. In contrast, the 

sequential approach applies spatial and channel attention one after the other. The Convolutional Block 

Attention Module (CBAM) by Woo et al. [40] exemplifies this sequential approach. 

By integrating a novel dual attention mechanism, DAtt-ResUNet++ significantly improves upon the 

capabilities of the ResUNet++ architecture. By prioritizing informative regions, spatial attention 

empowers the model to effectively extract crucial semantic features. This enhanced feature extraction 

capability is particularly beneficial for accurately delineating faint tumor boundaries, especially in 

challenging ultrasound images marked by low contrast, artifacts, and inconsistencies. DAtt-ResUNet++ 

leverages a dual attention mechanism to create an attention map. This map acts as a spotlight, illuminating 

crucial regions within the encoded image features. The decoder capitalizes on this attention map, refining 

the semantic understanding of the encoded features. This enhanced semantic representation ultimately 
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translates to improved segmentation accuracy. 

This study delves deeper by comparing DAtt-ResUNet++ to relevant methodologies. Additionally, we 

employ an ablation study to conclusively demonstrate that incorporating the dual attention mechanism 

into the ResUNet++ model leads to superior segmentation performance. 

 

3. Material and method 

3.1. Dataset 

The BUSI dataset offers a rich resource for researchers developing breast lesion segmentation 

algorithms. Its complexity presents a valuable challenge to further advance segmentation techniques 

in this domain. The dataset consists of 780 ultrasound images acquired from Baheya Hospital in Cairo, 

Egypt [41]. The BUSI dataset consists of ultrasound images in PNG format, with an average size of 

500x500 pixels. The dataset is categorized into three classes: normal (containing 133 images), benign 

(containing 437 images), and malignant (containing 210 images). The dataset includes a corresponding 

binary ground truth mask for each image. These masks provide pixel-level annotations, precisely 

delineating tumor regions. The BUSI dataset offers a rich spectrum of ultrasound images featuring a 

variety of nodule sizes and shapes, making it a valuable resource for researchers in this field.  An 

example of the dataset is depicted in Fig. 1. 
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Fig. 1. Breast ultrasound (BUSI) images exhibit significant variability, encompassing normal, benign, 

and malignant tissues. Each BUSI image has a paired binary mask for accurate tumor segmentation. 

3.2. Preprocessing  

The Preprocessing prepares the training data for model training. This process involves three key 

steps: 

 Normalization: Pixel intensities are scaled to a common range, often 0 to 1. This promotes 

smoother training and improves model generalizability across different datasets. 

 Resizing: Images are resized to a uniform dimension of 128x128 pixels to conform to the 

model's input requirements, while resizing can lead to the loss of fine details, steps were taken 

to balance this with the model's ability to capture essential features. Mitigating potential 

information loss can be addressed through interpolation techniques and preserving the original 

aspect ratio during resizing. 

 Data Augmentation: To diversify the training dataset and improve the model's performance 

and generalization capability, systematic data augmentation is employed. Techniques include 

flipping vertically and horizontally, as well as random rotations up to 90°. This strategy expands 

the training set by generating ten additional images for each original image. 
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3.3. Methodology 

 The intricate details of DAtt-ResUNet++, the novel encoder-decoder architecture, are unveiled in 

this section. 

3.3.1. Overview of the Architecture 

Central to this approach is the Dual-Attention-ResUNet++ architecture (DAtt-ResUNet++) (Fig.2).  

Designed for breast tumor segmentation using ultrasound images (US), DAtt-ResUNet++ ingests a 

grayscale BUS image along with its segmentation mask as input. Following the input stage, the 

grayscale BUS image is fed into a ResUNet++ encoder network. 

 

 

Fig. 2. Architecture of DAtt-ResUNet++ 

 

3.3.2. ResUNet++ 

As data is a grayscale image, the first layer is read The ResUNet++ architecture is an extension of 

the Deep Residual U-Net (ResUNet) [34], combining the benefits of deep residual learning [33].  and 

the U-Net model [42]. To achieve superior segmentation performance, the encoder leverages a 

synergistic combination of residual blocks, squeeze-and-excitation blocks (SE), Atrous Spatial 

Pyramid Pooling block (ASPP), and attention blocks. Residual blocks facilitate the training of deeper 

networks, SE blocks enhance feature importance, ASPP captures multi-scale information, and attention 

blocks selectively focus on crucial image regions. This combined strategy empowers DAtt-ResUNet++ 
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to extract richer and more informative features from the input images. 

 

3.3.3. Residual Units 

Building upon the concept of residual learning established by He et al. [33] to address challenges 

with deep networks, ResUNet++ utilizes skip connections and residual blocks [43]. By incorporating 

residual connections, a cornerstone of residual learning [33], DAtt-ResUNet++ facilitates the training 

of significantly deeper neural networks. This enables the training of deeper networks, ultimately 

leading to enhanced feature representation and improved segmentation accuracy. 

In the ResUNet++ architecture, complete residual units are implemented before activation functions 

[43]. Each encoder block consists of two consecutive 3x3 convolutional blocks followed by an identity 

mapping. Each convolutional block within the encoder consists of three key elements: batch 

normalization (BN), a ReLU activation layer, and a convolutional layer (Conv2D). The identity 

mapping, a core concept of residual learning, ensures the original input information is preserved as it 

flows through the block. Additionally, a strided convolution operation is employed to reduce the 

feature map size by half. This combination of techniques allows for deeper networks while maintaining 

informative features and facilitating efficient processing. The encoder block's output then passes 

through a squeeze-and-excitation block. The decoder path also incorporates residual units, and 

attention blocks are employed to enhance feature maps before up-sampling and concatenation with 

corresponding encoder path features. Finally, the decoder block output undergoes ASPP and a 1x1 

convolution with sigmoid activation to generate the segmentation map. A detailed illustration of these 

components can be found in Fig.2. 

3.3.4. Squeeze and Excitation Units 

The squeeze-and-excitation network [38] enhances the network's feature representation by re-

calibrating the feature responses through detailed modeling of channel inter-dependencies. This 

process involves two main steps: 

 Squeeze (Global Information Embedding): Global average pooling is applied to each 

channel to generate channel-wise statistics. 

 Excitation (Active Calibration): This step fully captures channel-wise dependencies 

network [38]. 

DAtt-ResUNet++ integrates SE blocks within its residual blocks. This inclusion strengthens feature 

recalibration, enhancing generalization across datasets. 
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3.3.5. Atrous Spatial Pyramid Pooling (ASPP) 

ResUNet++ leverages Atrous Spatial Pyramid Pooling (ASPP) as a core component. This technique 

builds upon the concept of spatial pyramid pooling [44], which efficiently gathers features at various 

scales. ASPP captures multi-scale contextual information using parallel atrous convolutions with 

different dilation rates. DAtt-ResUNet++ leverages this capability by employing parallel atrous 

convolutions with varying dilation rates within the feature map. These dilation rates govern the field 

of view for each convolution, enabling the extraction of contextual information at different scales [45], 

[46]. Atrous convolutions [45] offer precise control over the field of view, allowing the model to 

capture multi-scale information effectively. As illustrated in Fig.2, ASPP acts as a bridge between the 

encoder and decoder in the architecture. The effectiveness of ASPP in capturing multi-scale 

information has been consistently demonstrated across a range of segmentation tasks. By integrating 

ASPP, our model is able to effectively gather essential features from multiple scales, significantly 

enhancing the accuracy and robustness of the semantic segmentation process. 

 

3.3.6. Attention Mechanisms 

Attention mechanisms, which initially gained traction in Natural Language Processing (NLP) [47], 

have also proven valuable in semantic segmentation tasks [48]. These mechanisms prioritize 

significant portions of the input data, enhancing feature quality and reducing computational demands. 

In ResUNet++, attention blocks are incorporated into the decoder to emphasize crucial areas in the 

feature maps, thereby improving segmentation precision. 

Within the realm of deep learning for image processing, convolutional layers play a central role in 

extracting meaningful features, yet they might miss contextual details in the input feature maps. 

Pooling layers expand the influence of each output pixel by incorporating a wider area of input pixels. 

However, convolutional layers by themselves might not be sufficient to fully capture contextual 

information within an image. Attention mechanisms address this by summarizing input data and 

guiding the primary information flow within the network, acknowledging the varying importance of 

pixels or channels. Introducing attention mechanisms, like channel and spatial-wise attention, 

improves the model's understanding of segmented regions. This is achieved by integrating information 

from various sources within the feature maps [40]. This approach leverages deep learning and attention 

mechanisms to achieve remarkable results in breast tumor segmentation, surpassing previous methods 

in terms of accuracy and overall performance.  To further enhance breast tumor segmentation 

performance, two novel attention modules inspired by the work of Zhao et al. [36] have been integrated 

into the model.  The DAtt-ResUNet++ architecture incorporates both spatial and channel attention 
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mechanisms, allowing the model to selectively focus on critical spatial regions and essential feature 

channels. This capability is particularly beneficial in ultrasound imaging, where a significant class 

imbalance is present—specifically, the number of tumor pixels is vastly smaller than that of 

background pixels. The channel attention mechanism prioritizes key feature channels, while the spatial 

attention mechanism directs focus to relevant spatial regions. This dual approach enhances the model's 

ability to manage the challenges associated with tumor pixel representation, leading to improved 

segmentation accuracy. By embedding these attention mechanisms within the decoder, DAtt-

ResUNet++ is better equipped to target critical areas, resulting in superior segmentation outcomes. 

 

3.3.7. Dual Attention Modules in ResUNet++ 

DAtt-ResUNet++ introduces two novel attention modules specifically designed to enhance feature 

representation and capture intricate contextual relationships within the data contributing to improved 

segmentation accuracy. These modules act as a spotlight, selectively focusing on informative regions 

within the feature maps. By emphasizing these crucial areas, the attention mechanisms empower the 

network to extract richer and more informative features, ultimately leading to improved segmentation 

accuracy. DAtt-ResUNet++ incorporates a channel-wise attention module specifically designed to 

prioritize informative channels within the decoder's input features. The attention module refines the 

initial features by assigning weights (significance scores) to each channel. This is achieved through a 

process where the initial features are multiplied with corresponding values from the attention module's 

output, on a channel-by-channel basis. This strategic filtering process effectively highlights the most 

relevant channels within the data, directing the decoder's focus toward crucial features for accurate 

segmentation.  

Following the channel-wise attention module, DAtt-ResUNet++ incorporates a spatial-wise attention 

module. This module delves deeper, assigning weights not only to channels but also to individual pixels 

within the feature maps. This strategic weighting process empowers the network to pinpoint crucial 

spatial regions within the data, directing its focus towards areas most pertinent to accurate 

segmentation. The final feature map is generated by combining the channel-wise refined features with 

the output of the spatial attention module. This is achieved through element-wise multiplication. 

The encoder's output undergoes a specific processing pipeline before being integrated with the 

attention modules. First, a 2D convolutional layer (3x3) followed by a ReLU activation function is 

applied. This is then followed by Global Average Pooling (GAP) 2D, which effectively summarizes 

the spatial information within the feature maps. The resulting output is then merged with the combined 

output from both the spatial-wise and channel-wise attention modules. This merged output serves as a 
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rich representation that incorporates both high-level features extracted by the encoder and the crucial 

information identified by the attention mechanisms. Finally, the combined feature map undergoes 

further refinement through a final 2D (Conv2D) convolutional layer with a 3x3 kernel size. This layer 

incorporates ReLU activation and Batch Normalization (BN) to enhance the learned representation 

before it's passed on to the later decoder block. 

Embedded within the decoder portion of the architecture, the attention unit process serves as the key 

mechanism for directing focus towards crucial areas of the feature maps. As illustrated in the block 

Fig.2, this process enables the model to selectively attend to these important areas, ultimately leading 

to improved segmentation performance. 

The primary distinction between the architecture presented in this work and that of Hekal et al. [12] 

lies in the design of the decoder and encoder blocks, despite both methods utilizing the same Attention 

UNet structure. In Hekal et al.'s work, a dual decoder attention structure is implemented, where the 

Attention UNet is applied within the dual decoders to generate both segmentation masks and enhanced 

ultrasound images. The encoder in their model consists solely of residual blocks without additional 

mechanisms. 

In contrast, the proposed model modifies the architecture by integrating residual blocks with Squeeze 

and Excitation (SE) units in the encoder, thereby enhancing feature extraction. Additionally, in the 

decoder, instead of employing a dual attention structure, the proposed method utilizes a combination 

of residual blocks and Atrous Spatial Pyramid Pooling (ASPP) blocks, which are also added in the 

bottleneck. This design captures a wider range of spatial information while enhancing feature maps, 

improving both segmentation accuracy and image quality, without increasing the complexity in the 

decoder, thus maintaining lower computational cost. 

 

3.3.8. Performance metrics 

Following the training phase on the designated dataset, the models are evaluated on unseen breast 

ultrasound images from the test dataset. This evaluation process involves predicting tumor 

segmentation masks and assessing their accuracy using various performance metrics. These metrics 

rely on correctly identified pixels categorized as true positive (𝑻𝑷), incorrectly identified pixels as false 

positive (𝑭𝑷), correctly identified negative pixels (background) as true negative (𝑻𝑵), and incorrectly 

identified negative pixels as false negative (𝑭𝑵). 

 Accuracy (Acc) reflects the proportion of correctly classified pixels in the predicted 

segmentation, compared to the ground truth. It's calculated as the proportion of pixels that are 

correctly classified (both tumor and background) divided by the total number of pixels in the 
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entire mask. This metric provides a general idea of how well the model performed in 

segmenting the tumor region. 

Acc = 
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵 
      (1) 

 

 The Dice coefficient (Dice) is a metric used to assess the similarity between the predicted 

segmentation mask and the ground truth mask. It achieves this by calculating twice the area 

of overlap between the two masks divided by their total combined area. This provides a 

measure of how well the model's predictions agree with the actual tumor regions. 

Dice = 
2𝑻𝑷

2𝑻𝑷 + 𝑭𝑷 + 𝑭𝑵 
     (2) 

 

 Jaccard index, also known as the Intersection over Union (IoU), quantifies the degree of 

overlap between the predicted segmentation mask and the ground truth. It calculates the 

proportion of pixels belonging to both the predicted tumor area and the actual tumor area, 

divided by the total number of pixels encompassing either the predicted tumor or the actual 

tumor. This metric provides a comprehensive measure of segmentation accuracy. 

IOU = 
𝑻𝑷

𝑻𝑷 + 𝑭𝑷 + 𝑭𝑵
     (3) 

 

 Sensitivity (Sen), also known as Recall or True Positive Rate, evaluates the model's capability 

to correctly identify actual tumor pixels. It calculates the proportion of true positive instances 

(correctly identified tumor pixels) divided by the total number of actual tumor pixels in the 

image. This metric essentially tells us how well the model avoids missing true tumor regions. 

Sen = 
𝑻𝑷

𝑻𝑷 + 𝑭𝑵 
     (4) 

 

 

 Precision (Pre) quantifies the model's ability to avoid false positives. It calculates the 

proportion of pixels identified as tumor pixels by the model that actually correspond to tumors 

in the ground truth mask. This metric helps us understand how accurate the model is in 

identifying tumor regions and avoiding mistakenly classifying background pixels as tumors. 

Pre = 
𝑻𝑷

𝑻𝑷 + 𝑭𝑵 
     (5) 
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Leveraging these evaluation metrics enables a comprehensive assessment of the quality and 

effectiveness of the proposed model's tumor segmentation predictions. This assessment provides 

valuable insights into the model's strengths and weaknesses in identifying tumor regions within breast 

ultrasound images.  

 

4. Results 

4.1.  Experimental Setting 

This study leverages a publicly available medical ultrasound image dataset (BUSI) for breast cancer 

analysis. To ensure compatibility with the segmentation models, a preprocessing step is implemented 

to address image size variations. All images undergo standardization through normalization and 

resizing to a uniform dimension of 128x128 pixels. 

To ensure a reliable and impartial assessment of the model's generalization capabilities, we utilize a 

10-fold cross-validation approach. The dataset is randomly divided into 10 folds. Within each fold, 

90% (648 images) is allocated for training and validation purposes, while the remaining 10% (72 

images) serves as the unseen test set. The training and validation set is further split, with 90% dedicated 

to training (incorporating data augmentation) and 10% reserved for validation. The validation set is 

crucial for hyperparameter tuning and model selection. The performance metrics reported in our study 

represent the average values obtained from the test sets across all 10 folds of the cross-validation 

process. 

To facilitate efficient training, we utilize a high-performance graphics processing unit (NVIDIA 

Tesla P100 GPU). The model's learning process is guided by the Adam optimization algorithm, starting 

with an initial learning rate of 0.0001. Training is conducted over 150 epochs, with the learning rate 

halved when the model's performance levels off. This adjustment is implemented to refine the model's 

performance.  Additionally, to prevent overfitting, we incorporate early stopping. To prevent 

overfitting and enhance generalizability, DAtt-ResUNet++ employs a technique that strategically halts 

the training process when the validation error stops improving. This approach safeguards against the 

model memorizing training data, ultimately leading to better performance on unseen images. 

 

4.2. Qualitative Results 

In Fig.3, a comparative visualization is provided to illustrate the segmentation results achieved by 

different models. The original breast image is depicted in the input ultrasound image. The corresponding 

ground truth segmentation mask, meticulously delineated by medical experts, precisely identifies the 
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tumor regions within the image. The predicted segmentation masks are generated by various 

segmentation approaches, including our proposed DAtt-ResUNet++ model. This visualization allows 

for a qualitative assessment of each model's capability to precisely identify tumor regions within the 

ultrasound images. 

In Fig. 3, a visual comparison of predicted segmentation masks with ground truth masks allows for a 

clear evaluation of the DAtt-ResUNet++ model's performance. This comparison reveals the model's 

proficiency in generating accurate and well-defined tumor segmentations. However, challenges are 

observed in accurately segmenting small tumors in both benign and malignant cases, as illustrated in 

raw 2 and 3 of the Fig.3. Despite this limitation, the proposed Dual-Attention-ResUNet++ architecture 

demonstrates its value in the domain of breast ultrasound image segmentation, enabling precise tumor 

identification and delineation. The model's success stems from its utilization of advanced deep learning 

techniques, strategically incorporated attention mechanisms, and effective fusion operations. This 

combination of elements significantly enhances segmentation performance and yields superior results. 

To provide a comprehensive analysis of the impact of attention mechanisms on the segmentation 

process, visualizations of the attention maps generated by the proposed DAtt-ResUNet++ model are 

presented. These visualizations offer a clearer understanding of how attention mechanisms contribute 

to feature enhancement and improved segmentation accuracy. Fig. 4 displays a series of images for 

comparison. The first column contains the original Breast Ultrasound (BUSI) images. The second 

column presents the corresponding ground truth segmentation masks, serving as a benchmark. The third 

column shows the attention maps generated by DAtt-ResUNet++, illustrating the regions of the 

ultrasound images where the model concentrates to improve feature extraction. The fourth column 

depicts the predicted segmentation masks produced by DAtt-ResUNet++. These attention maps provide 

valuable insights into the model’s ability to capture critical spatial features, which in turn leads to more 

precise segmentation. The visualizations demonstrate the role of attention mechanisms in enhancing the 

performance of DAtt-ResUNet++ for ultrasound image segmentation tasks. 
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Fig. 3 To offer a visual assessment of the segmentation performance across different models, qualitative 

results are presented. The original ultrasound images are showcased in the first column. Corresponding 

ground truth masks, which precisely identify tumor regions, are displayed in the second column. The 

segmentation masks predicted by various architectures—ResUNet, ResUNet++, Att-ResUNet, and our 

proposed DAtt-ResUNet++ are shown in the following columns. To provide a quantitative measure of 

accuracy alongside the visual representation, the Dice score is included below each predicted mask. The 

Dice score serves as a metric to quantify the similarity between the predicted segmentation and the 

ground truth mask. 
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Fig. 4 Visualizing Attention Maps to Illustrate Segmentation Process Improvement 

 

TABLE 2 

PERFORMANCE COMPARISON OF DATT-RESUNET++ AND ABLATION VARIANTS ON BUSI DATASET 

(MEAN ± STD) (10-FOLD CROSS-VALIDATION) 

Method Dice [%] Acc [%] IOU [%] Pre [%] Sen [%] 

UNet 80.64 ± 1.88 96.22 ±1.72 73.23 ±2.32 91.04 ±2.42 72.88 ± 1.11 

Vgg16-UNet 80.01 ± 2.31 96.81±1.22 77.12 ± 1.32 83.84 ± 1.2 85.14 ± 2.1 

MobileNetV2-UNet 65.12 ± 1.88 92.21 ± 1.22 70.22 ± 1.47 79.22 ± 1.61 80.33 ± 1.22 

ResUnet 83.80 ± 1.22 97.54 ± 0.16 74.36 ± 1.68 85.99 ± 0.96 84.15 ± 1.66 

ResUNet++ 85.00 ± 0.97 97.57 ± 0.14 75.29 ± 1.33 86.23 ± 1.02 84.25 ± 0.88 

AttResUnet 89.10 ± 1.03 98.31 ± 0.14 81.87 ± 1.49 92.39 ± 0.69 86.42 ± 1.27 

DAtt-ResUNet++ 90.40 ± 0.88 98.73 ± 0.12 84.62 ±1.12 93.44 ± 0.56 89.82 ± 0.75 

 

TABLE 3 

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS ON BUSI DATASET 

Authors 
Method Split Dataset Dice 

 [%] 

Acc 

 [%] 

IOU  

[%] 

Pre  

[%] 

Sen  

[%] 

Zhu et al. 

[27]  

Second-Order 

Subregion Pooling 

network 

Five-folder 

cross-

validation 

84.70 NA 76.39 87.62 85.51 

Wu et al. [30]  A boundary-guided 

multiscale network 

661 img train 

119 img test 

83.97 NA 75.97 89.31 83.45 

Chen et al. 

[32]  

An adaptive attention Four-fold 

cross-

validation 

77.21 NA 67.97 78.66 80.63 
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Shareef et al. 

[28]  

Enhanced Small 

Tumor-Aware 

Network 

Five-folder 

cross-

validation 

80.00 NA 72.00 NA 85.00 

Zhang et al. 

[31]  

A boundary-oriented 

network 

Four-fold 

cross-

validation 

80.27 NA NA 85.24 80.42 

Chavan et al. 

[49]  

A UNET architecture 

with involution layers 

517 img train 

130 img test 

80.09 96.09 71.46 83.15 82.77 

Yang et al. 

[29]  

Cross-task guided 

network 

80% training 

20% test 

82.00 NA 74.00 NA 84.00 

Lyu et al. [50]  Pyramid Attention 

Network 

85% training 

15% test  

80.71 97.13 68.53 83.50 79.30 

Zhang et al. 

[51]  

Classification and 

Segmentation 

branches network. 

Five-folder 

cross-

validation 

86.34 NA 83.12 88.32 89.51 

Zhang et al. 

[52]  

SaTransformer, a 

semantic-aware 

model. 

Ten-fold cross-

validation 

89.80 NA 79.10 NA 85.90 

Umer et al. 

[53] 

A Dual-Decoded 

attention mechanism. 

70% training 

30% test 

88.68 NA 80.12 95.42 87.79 

Proposed 

DAtt-

ResUnet++ 

Dual Attention 

ResUnet++ 

Ten-fold cross-

validation 
90.40 98.73 84.62 93.44 89.82 

 

 

4.3. Quantitative Results 

The performance comparison of various UNet-based architectures, including DAtt-ResUNet++, UNet 

(standard architecture), VGG16-UNet (leveraging VGG16 as a backbone), MobileNetV2-UNet (with 

MobileNetV2 backbone for lightweight modeling), ResUNet (with no attention), ResUNet++, 

AttResUNet (incorporating attention with ResNet), and DAtt-ResUNet++, is presented in Table 2. To 

isolate the influence of each component within the DAtt-ResUNet++ architecture, ablation studies were 

performed. This involved evaluating simplified variations of the model, such as ResNet (with no 

attention), ResNet++, Att-ResUNet (incorporating attention with ResNet), and the final DAtt-

ResUNet++ (Daul attention with ResNet++).  As shown in Table 2, this analysis provided valuable 

insights into the contributions of each element to the overall segmentation performance.  The evaluation 

metrics employed in this analysis encompassed the Dice Coefficient, overall Accuracy, Intersection 

over Union (IoU), Sensitivity, and Precision, offering a comprehensive assessment of model 

performance.  

The proposed DAtt-ResUNet++ model is evaluated alongside several contemporary segmentation 

approaches, all assessed on the BUSI dataset. This comparative analysis, presented in Table 3, offers 

crucial information about the effectiveness of various methods for breast tumor segmentation in 
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ultrasound (US) images. The analysis incorporates noteworthy methods from recent publications, 

including those by Zhu et al. [27], Wu et al. [30], Shareef et al. [28], Zhang et al. [31], Chavan et al. [49], 

Yang et al. [29], Zhang et al. [51], Zhang et al. [52], Lyu et al. [50], and Umer et al. [53]. By comparing 

DAtt-ResUNet++ to these established methods, we gain a comprehensive understanding of its 

effectiveness in tumor segmentation tasks. 

The DAtt-ResUNet++ model emerges as a frontrunner, achieving exceptional scores across several 

crucial performance metrics. DAtt-ResUNet++ achieves an impressive Dice coefficient of 90.40%, 

indicating a strong concordance between its predicted tumor segmentations and the ground truth masks. 

In addition, DAtt-ResUNet++ exhibits a Sensitivity (Sen) of 89.82%, indicating its proficiency in 

precisely identifying true tumor pixels. Furthermore, the model achieves a remarkable accuracy of 

98.73%, highlighting its overall efficacy in correctly classifying both tumor and background pixels 

within the images. These remarkable results emphasize the potential of DAtt-ResUNet++ for breast 

tumor segmentation tasks. 

While DAtt-ResUNet++ demonstrates exceptional performance in several metrics, a closer look reveals 

a trade-off between certain evaluation criteria. The model achieves an Intersection over Union (IoU) of 

84.62%, indicating the proportion of correctly segmented tumor pixels relative to the combined area of 

predicted and ground truth tumor regions. Additionally, its precision of 93.44% reflects the accuracy of 

its positive predictions, meaning a low rate of false positives (non-tumor pixels identified as tumors). It's 

worth noting that the method by Umer et al. [53] achieves a slightly higher precision of 95.42%, 

suggesting a potential advantage in this specific aspect. 

The remarkable performance of DAtt-ResUNet++ stems from its innovative architecture, which 

strategically integrates the Dual-Attention mechanism with the well-established ResUNet++ 

segmentation model. This fusion proves to be highly effective in the domain of breast tumor 

segmentation within medical ultrasound images. DAtt-ResUNet++ leverages advanced deep learning 

techniques alongside a unique combination of dual decoder attention and attention mechanisms. This 

combination empowers the model to achieve exceptional accuracy and robustness in segmentation 

outcomes. 

One noteworthy feature is the incorporation of a dual decoding fusion attention mechanism, which 

plays a significant role in considerably enhancing segmentation precision. This specific element, along 

with the overall design choices within DAtt-ResUNet++, sets it apart from other approaches and 

contributes to its superior segmentation results. 
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TABLE 4 

Analysis of time performance time of the proposed system 

 UNet Vgg16-

UNet 

MobileNetV

2-UNet 

ResUnet ResUnet+

+ 

AttResUnet DAtt-

ResUNet++ 

Training 

(hr/data) 

5 5.2 5.1 6.15 6.8 8.1  9.2 

Testing 

(ms/img) 

11.2 ±3.2 12.1 ±4.4 12.5 ±2.5 13.3 ± 

1.6 

12.6 ± 3.2 16.3 ±2.2 17.4 ± 4.9 

 

 

5. Discussion 

Breast tumor segmentation in breast ultrasound (BUS) images presents a significant challenge. The 

inherent complexity and ambiguity of BUS data make accurate identification and delineation of tumors 

difficult.  This has led to the exploration of computer-aided diagnosis (CAD) systems to augment and 

potentially improve upon subjective manual diagnosis based on BUS images. 

This study proposes DAtt-ResUNet++, a novel deep-learning architecture for segmenting breast 

tumors in ultrasound images. Evaluated on the BUSI dataset, DAtt-ResUNet++ achieves impressive 

results, including a Dice score of 90.40± 0.88%, indicating a high level of agreement between predicted 

and ground truth segmentations.  Furthermore, the model demonstrates strong performance across 

other metrics, such as Intersection over Union (IoU) at 84.62±1.12%, sensitivity at 89.82± 0.75%, 

precision at 93.44 ± 0.56 and overall accuracy at 98.73± 0.12%.  Evaluation against existing deep 

learning techniques highlights the competitiveness of DAtt-ResUNet++. These findings suggest that 

DAtt-ResUNet++ has the potential to be a valuable tool for reliable breast tumor segmentation in 

clinical settings, potentially aiding in earlier diagnosis and improved patient outcomes. 

 

Several recent studies have explored deep learning techniques for breast tumor segmentation in 

challenging BUS images. These investigations include works by Zhang et al. [52] on SA Transformer 

and Fully Convolutional approaches, Lyu et al. [50] on AMS, Umer et al. [53]on breast cancer 

segmentation, Shareef et al. [28] on ESTAN, Zhang et al. [51] on Boundary detection, and Yang et al. 

[29] on CTG. Notably, Zhang et al. [52] achieved a previously reported highest Dice score of 89.80%.  

The proposed DAtt-ResUNet++ surpasses this performance by achieving a Dice score of 90.40%. These 

findings demonstrate the promise of DAtt-ResUNet++ for improved breast tumor segmentation in BUS 

images. 
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A limitation of DAtt-ResUNet++ is that, while it demonstrates state-of-the-art performance across 

various metrics, its precision at 93.44% falls short compared to the 95.42% achieved by  [53]. 

Additionally, the proposed method is somewhat weaker in segmenting small tumors in both benign and 

malignant cases (Fig. 3). This indicates a potential area for improvement, suggesting that further 

optimization of DAtt-ResUNet++ could enhance its precision while maintaining its high segmentation 

accuracy, as reflected by the Dice score. To provide a more detailed comparison of performance, 

computational cost, and inference time with existing state-of-the-art models for breast tumor 

segmentation, it is important to note that all results presented in this paper were obtained using a standard 

laptop equipped with an Intel Core i5-6200U @ 2.30 GHz processor and 8 GB of RAM. Additionally, a 

high-performance GPU, accessed through Colab Pro, was required for proposed model training to 

improve processing speed, because of the complexity of the DAtt-ResUNet++ model. This highlights the 

model's computational demands while showcasing its effectiveness in achieving higher accuracy. 

Furthermore, despite the increased accuracy, the developed model does not require any additional 

hardware upgrades in medical machines, ensuring its practicality for clinical implementation without the 

need for costly infrastructure changes. As illustrated in Table 4, the training time was calculated in hours 

for all 10-fold cross-validation, while the testing time was measured in milliseconds per image. DAtt-

ResUNet++ required the longest time for both training and testing each image when compared to other 

models, attributed to its increased number of parameters. This increase in time presents a limitation, 

despite the model's superior Dice score and accuracy, as demonstrated in Table 2. The potential 

integration of DAtt-ResUNet++ into real-world clinical workflows will be explored by focusing on 

optimizing computational efficiency, improving model interpretability, and ensuring ease of use, all 

while maintaining accuracy for seamless clinical deployment, and this consideration will guide future 

work. 

Overall, the incorporation of the dual attention mechanism in DAtt-ResUNet++ demonstrates its 

effectiveness in breast tumor segmentation. DAtt-ResUNet++ achieves superior Dice scores compared 

to existing models, as evidenced by both quantitative and qualitative results (refer to Fig.2 for visual 

examples).  This study highlights the potential of DAtt-ResUNet++ as a valuable tool for computer-

aided diagnosis systems in breast cancer detection using ultrasound images. 

6. Conclusions 

This study introduces DAtt-ResUNet++, a novel deep-learning architecture for segmenting breast 

tumors in ultrasound (BUS) images. DAtt-ResUNet++ integrates a dual attention mechanism with the 

ResUNet++ model, achieving a remarkable Dice score of 90.40% on the BUSI dataset. BUS images 
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offer a non-invasive, safe, cost-effective, and radiation-free alternative for cancer screening. The core 

strength of DAtt-ResUNet++ lies in its dual attention mechanism, which refines feature maps by 

emphasizing critical regions. This targeted focus leads to superior segmentation performance, 

particularly evident in the Dice coefficient. 

To ensure the generalizability of DAtt-ResUNet++, future endeavors will involve testing on 

additional BUS datasets and exploring further refinements to the model.  Continued advancements in 

breast tumor segmentation using BUS images hold significant promise for improving the precision of 

oncological diagnostics and therapeutic planning methodologies. In future work, methods such as 

Gradient-weighted Class Activation Mapping (Grad-CAM) Gharaibeh et al. [54] and additional 

attention map visualizations will be employed to further enhance the interpretability, ensuring that 

relevant regions are effectively targeted by the attention mechanism during segmentation, which is 

crucial for clinical adoption. ROC analysis will also be incorporated to enhance the evaluation 

framework of the approach. Furthermore, experimentation will be extended to include larger and more 

diverse datasets, incorporating multi-institutional sources to better validate the model's generalizability 

and performance across varied patient populations. Additionally, parallel computing will be employed 

to accelerate the training process and efficiently manage the increased computational demands of larger 

datasets. 
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