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 The manufacturing of bioceramic dental crowns is an urgent matter for researchers in the dental sector. 

Hence, optimizing the bioceramic manufacturing process is a critical step that impacts quality, 

efficiency, and cost. Selecting the appropriate manufacturing process depends on several criteria that 

make it a multi-criteria-decision- making (MCDM) problem. The research aims to develop a machine 

learning model to optimize the manufacturing process which consists of two stages, the first stage is a 

decision tree supervised machine learning model in which the dataset collected from previous reviews 

and articles is composed of product specifications as inputs and suitable manufacturing process groups 

that are classified into formative casting, formative molding, traditional subtractive, nontraditional 

subtractive and additive as output is fed into the model, trained using regression analysis and validated 

using mean absolute deviation(MAD), then in the second stage, Processes of the best group are 

optimized using two methods, FUZZY-AHP which weighs the selection criteria with the target, and 

FUZZY-TOPSIS which ranks such criteria and gets most appropriate bioceramic dental crowns 

manufacturing process. The model can predict the best appropriate bioceramic dental crowns 

manufacturing process which is a Vat photopolymerization in case of feeding the model with 

bioceramic dental crowns features.  
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1. Introduction  

Manufacturing process selection (MPS) is an important 

parameter in the product development process and should be 

tackled in the early stages of the design process to reduce the 

cost that results from late redesigns [1]. The classification 

scheme for manufacturing processes divides them into six 

groups shown in Figure1 which are formative casting, 

formative molding, formative forming, traditional 

subtractive, nontraditional subtractive, and additive, each 

group includes a set of different processes[2]. The 

manufacturing of bioceramic dental crowns is an urgent 

matter for the dental sector [3]. However, each 

manufacturing group has its pros and cons, so optimizing the 

suitable manufacturing group and the best process for 

bioceramic dental crown manufacturing is a topical problem 

for dental manufacturers.  

In this regard, several scientific works in studying the 

manufacturing process selection are analyzed below in 

addition to some other works in developing automated 

manufacturing process selection in smart manufacturing.  

Lukic et al. [4] developed a methodology for the multi-

criteria decision-making of primary manufacturing processes 

that includes the selection of possible manufacturing 

processesandtheirmulti‐criteriaevaluationandranking. 

Pedro et al. [1] developed a methodology that is integrated 

into the Design Process and it contains and generates Design 

for Manufacturing and Assembly (DFMA) guides that are 

used in the process from its early stages.  

Wortmann et al.[7] developed a methodical approach for 

process selection in additive manufacturing to support 

designers in the manufacturing process selection of specific 

parts at an early stage of product development, this approach 

is a four-stage procedure in which potential part candidates 

are first identified and part classes are formed based on 

characteristics. Building on this, AM thinking is to be 

stimulated, for example, with the aid of design guidelines. A 

comparison between conventionally and additively 
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manufactured parts can be made using a simplified cost 

model.  

J.C. Albiñana et al. [12] developed a framework proposal for 

integrated materials and process selection in product design. 

Following an in-depth review of existing studies and the 

factors that influence decision-making. 

Mohamed et al. [6] developed a framework for welding 

process selection based on optimization techniques such as 

FUZZY-AHP and FUZZY-TOPSIS. 

H. Bikas et al. [13] developed an Additive Manufacturing 

(AM) -driven design framework that prevents manufacturing 

issues of certain geometries that can be effortlessly created 

by conventional manufacturing and additionally exploits the 

full design-freedom potentials AM has to offer with a linear 

design flow reducing design iterations and ultimately 

achieving first time right AM design process. 

Chonlada et al. [21] developed a dental prototype from 3d 

printing technology using a synthetic filament of polylactic 

acid (PLA) and zirconium dioxide (ZrO2) with glycerol and 

silane coupling agent as a binder. This study achieved a good 

prototype with accepted thermal and mechanical properties 

but it had a limitation such as the suitability of dental 

prosthesis for only short-term provisional restorations. 

Joon et al. [22] prepared zirconia samples via additive 

manufacturing (AM) and subtractive manufacturing (SM) 

and tested the following aspects: (1) the manufacturing 

accuracy of the zirconia samples and (2) the bond strength of 

porcelain to zirconia to evaluate the applicability of the 

zirconia fabricated by AM in dental clinics. They announced 

that a dental prosthesis based on AM technology has a 

considerably high potential for use in dental clinics, and 

additional research is required for its practical application in 

dentistry. 

Hezhen et al. [25] announced that stereolithography-

fabricated ceramic dental prostheses couldn’t satisfy the

clinical requirements until solving some issues namely 

productivity and delivery time, dimensional accuracy, 

surface quality, mechanical properties, and aesthetic 

behaviors. 

Xiangjia et al. [26] announced that vat photopolymerization 

is an enhanced AM method for ceramic fabrication and it 

also maintains a relatively fast printing speed, whereas other 

methods, such as selective laser sintering or binder jetting, 

may sacrifice building speed for large cross-sectional parts 

due to traversing of the tool bit and time-consuming material 

spreading over a large area. They also announced that the 

cross-section of a part printed by AM processes such as 

fused deposition modeling and selective laser melting shows 

anisotropic grain structures, which generate orientation 

dependence in physical properties. A printed part using the 

VAT photopolymerization-based ceramic manufacturing 

approach shows superior grain isotropy compared with most 

of the ceramic AM processes. This isotropic ceramic 

distribution improves the mechanical performance of the 3D-

printed part [9]. 

Marta et al. [27] announced that Additive manufacturing 

technologies reduce manufacturing time and costs, minimize 

human errors and prevent possible defects in the cast objects 

compared to conventional casting methods applied for dental 

alloys. 

Mohammad et al. [28] announced that Additive 

manufacturing has demonstrated promising experimental 

outcomes and corroborated the fabrication of all ceramic 

crowns. However, the technology has yet to witness a 

commercial breakthrough within this domain. 

Tatsuki et al.[29] announced that Alumina dental crown 

modes were fabricated successfully by using laser scanning 

stereolithography, photosensitive acrylic resin composites, 

and de-waxing heat treatment patterns that were optimized to 

prevent macro crack formations. The maximum flexural 

strength of the sintered fabricated models was about 670 

MPa as an acceptable level for dental crown use.  

Osama et al.[30]announced that vat-photo polymerization is 

an effective manufacturing process that is more suitable for 

manufacturing bioceramic materials, and they also 

demonstrated that manufacturing bioceramic materials by 

this process is divided into multiple stages that are 

preprocessing stage in which a bioceramic colloid is 

designed and prepared for 3d printing; processing stage in 

which process control parameters are optimized to get a good 

green part(before sintering); post-processing stage in which a 

green body is debinded and sintered to get a white part(after 

sintering)with good mechanical properties, better 

dimensional accuracy, excellent surface quality. 

The practical significance of the proposed model is the 

ability to solve a direct problem of dental crown 

manufacturing process selection, and the following 

objectives have been formulated to achieve this aim. Firstly, 

Data is prepared and fed into a machine learning model 

which its target is the best manufacturing processes group. 

Secondly, the processes of the best group are optimized 

using FUZZY-AHP [14] and FUZZY -TOPSIS and the final 

target is the best manufacturing process for a specific 

product. Therefore, feeding bioceramic dental crowns 

functional and performance features into the proposed model 

enables dental manufacturers to get the best bioceramic 

dental crowns manufacturing process. Overall, the proposed 

approach will help dental manufacturers to optimize the 

selection of dental crowns manufacturing process. 
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Figure 1. Manufacturing processes groups' classification. 

2. .Materials and Methods 

2.1. General Approach 

The proposed approach is schematically represented in 

 Figure 2. Its consequent stages include design calculation. 

  

Figure 2. The scheme of the proposed approach. 
 

 

2.2. Data collection 

The first step in our work is data collection from previous 

reviews and articles which is represented in Table 1, Table 

2(dataset of Table 1 after encoding) and Table 3, we collect data 

for 30 processes, suitable material for each process, and product 

features(functional and performance parameters) resulted from 

each process forming a feature matrix(matrix of independent 

variables) with size 30 and diversity 13,then recording best 

suitable manufacturing group for each process such as Formative 

casting, Formative molding, Formative forming, Traditional 

subtractive, Nontraditional subtractive, and Additive forming a 

label matrix (matrix of dependent variables) with size 30 and 

diversity6. 

2.3. Data Training and Prediction 

The second step in our work is data preparation, we supply a 

supervised machine learning model with product features and 

performance parameters of the proposed 30 processes(feature 

matrix)as inputs and best manufacturing process groups of the 

same 30 processes (label matrix) as outputs. 
2.4. Data training and prediction 

The direct problem is the evaluation of the best manufacturing 

process group suitable for specific product features and 

performance parameters based on the matrix equation (3) [5]: 

This is a normalized feature matrix of product features and 
performance parameters (1): 

,(1) 

 

We add a column for bias in which each value is one in (1). This 
is a normalized matrix of the manufacturing process groups (2) : 

 

                  (2) 

, 
 (3) 
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The weighted decision matrix[Ɵ] is evaluated using the

following equation: 

 , (4) 

The unknown- matrix of manufacturing processes groups can 

be evaluated from the following equation  

, (5) 

 

The estimation accuracy can be estimated by mean deviation 

error [14] which is indicated as follows (6): 

  , (6) 

The less the mean deviation error, the higher the estimation 

accuracy for the direct problem 

2.5. Data Optimization 

The best manufacturing process group resulting from the 

supervised machine learning model has different processes that 

are optimized by two methods which are (the FUZZY-AHP) 

method for calculating weights of criteria and (the FUZZY-

TOPSIS) method for process ranking. 

AHP (Analytic Hierarch Process) Method. [15], in this method, 

m criteria are set in square matrix A where A (7) is a pairwise 

comparison matrix of attributes (selection criteria) Ai (i=1to m) 

which are process performance parameters. 

 

  =   (7) 

 

Matrix A is constructed based on Saaty’s scale which is

indicated in Table 4 

 

Table 4. Saaty scale of relative importance [16]. 

Intensity of 

importance 
Definition 

1 Equal importance 

3 Moderate importance of one over another 

5 Strong importance 

7 Very strong importance 

9 Extreme importance 

2,4,6,8 
Intermediate values between the two adjacent 

judgments 

 

We then get a vector Asj (8) which is the summation of each 

column of matrix A 

(8) 

After that, we get a normalized pairwise comparison 

matrix R (9), (10) 

                                       (9) 

(10) 

Then, we get weights by summation of columns of each 

row i as follows (11): 

 

                       (11) 

We check the validation of calculated weights by the 

concept of consistency ratio, we first calculate vector V 

(12), then we get vector d (13), after that we calculate 

λmax (14), and then we calculate C. I (Consistency

Index) (15), we get R.I (Relative Index) =1.41 with m=9 

from Table 5, then we calculate C.R (consistency ratio) 

(15). 

                               

            (12) 

                          (13) 

                          (14) 

              (15) 

                     (16) 

 

 

Table 5. Mean random relative index [16]. 

m 1 2 3 4 5 6 7 8 9 

R.I 0 0 0.52 0.89 1.12 1.89 1.36 1.41 1.46 

 

The weights calculated from AHP are used in the FUZZY-

TOPSIS method to get the most suitable materials, the common 

algorithm of TOPSIS for ranking and selection includes the 

following seven steps (Hwang and Yoon 1981): 

Step 1: Create a decision or evaluation matrix D. 
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The matrix consists of n samples (a1,…, an) and m criteria

(y1,…,ym),with itselementyij ,where i=(1 ,………….,n)

andj=(1,…………….,m): 

, (17) 

Step 2: Construct the normalized decision matrix R.  

 

(18) 

, (19) 

  

Figure 3. Graphical representation of mean average deviation error of 

manufacturing process groups which is an indication of accuracy of 

direct problem model. 

 

3. Results 

3.1. Results of the Supervised Machine Learning Model 

According to the linear regression formula (4), the matrix of 

weighted factors has been evaluated: 

 

(20) 

The unknown normalized matrix of physical and mechanical 

properties can be validated from equation (6) of mean average 

deviation in Figure2, We also indicate the absolute error through 

a number of experiments as shown in figure3: 

 

 

Figure 4. Graphical representation of absolute errors of manufacturing 

process groups through experiments. 

Table 6. Indicates the features and performance parameters of 
zirconia dental crowns [8]: 

 

material Ceramic 

strength Very high 

hardness Very high 

Shape complexity Very high 

Size Small 

Weight Low 

Surface roughness Very low 

Dimensional accuracy Very high 

Buy to fly ratio Very low 

Lead Time Very low 

Production Volume Low 

When we fed the machine learning model with previous dental 

crown features that are indicated in Table 6 in Python and solved 

the problem, we got the following result as shown in Figure 4: 
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       Figure 5. Graphical representation of best manufacturing process 

group for dental crowns 

3.2. Results of the Data Optimization 

              We encode data in Table 7 as shown in Table 8 by 

giving each criterion an indication number of its importance or 

value for each process, and importance scales of criteria are 

indicated in Table 9, and Table10 Equations. 

We calculate weights for each criterion and make a graphical 

representation of weighted criteria as shown in Figure 5: 

 

   Figure 6. Graphical representation of Weight of criteria 

4.  Discussion 

Our decision tree supervised machine learning model starts 

with input and output dataset collection shown in table1, 

table2 and table 3, then encoding input dataset shown in 

table 1 to form it into numerical data, then we use a 

regression analysis as method to solve the problem with the 

help of the normal equation (4) and python programming 

language. Hence, the model is able to predict the most 

appropriate manufacturing process group, and the following 

statements can be formulated after a detailed analysis of the 

matrix [Ɵ](27)—values of  

indicate that ceramic material significantly impacts an 

increase in the probability of choosing Formative Forming 

and Additive groups, and values 

of   

indicate that an increase in strength and hardness of material 

impacts a decrease in the probability of choosing subtractive 

groups, and that proves the reliability of model because 

increasing hardness of material impacts a decrease in tool 

life and an increase in machining time and cost. Value 

of  indicates that a decrease in the buy-to-

fly ratio impacts an increase in the probability of choosing 

the Additive group and that proves the reliability of the 

model because additive manufacturing reduces material loss 

efficiently. The Machine learning model is validated by 

mean average deviation which indicates that maximum error 

in the model does not exceed 0.25 which is indicated in 

Figure 2, and absolute errors of manufacturing processes 

groups through experiments that approach zero and that are 

indicated in Figure 3. When supplying a Machine learning 

model with dental crown features and performance 

parameters, we get the best manufacturing group which is 

an additive group and that is indicated in Figure 4. ASTM 

classified the Additive group into seven processes[2]and the 

selection of the best of them depends on different criteria 

which are indicated in Table 7 and Table 8, we optimize 

them by two methods; FUZZY-AHP which weighs the 

criteriaofeachprocessbasedonSaaty’sscaleas indicated

in Table 11, Table 12, Table13, Table14, and final weights 

are indicated in Table 17,  and Figure 5 with consistency 

ratio 0.036 which is much less than 0.1 and that proves the 

reliability of weights. Then, Criteria weights are used in the 

FUZZY-TOPSIS method as indicated in Table 15, Table16 

which ranks processes based on weights of criteria and that 

is indicated in Table 18 in which the best process is 

Vatphotopolymerization with relative closeness C
*
 = 0.92 

which is reliable and convenient with [18] selection for 

dental crowns manufacturing. 

 
Conclusions  

The purpose of this study was to optimize manufacturing process 

selection for dental crowns manufacturing by developing a 

comprehensive supervised machine learning model that was a 

function of two stages. The first stage was to optimize 

manufacturing process groups and the second stage was to 
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optimize the best process of best group processes. After analysis, 

the following conclusions were drawn from the study. 

1. The supervised machine learning model confirmed that 

additive manufacturing was the best group for dental 

crown manufacturing. 

2.  Processes of the best group resulting from the machine 

learning model were optimized using The FUZZY-AHP 

method and The FUZZY-TOPSIS method. 

3. The FUZZY-AHP method was employed to weigh the 

selection criteria and rank them over the degree of 

importance.  

 

4. The FUZZY-TOPSIS method was employed to rank the 

processes of the best manufacturing group based on 

weights of selection criteria for getting the best dental 

crowns manufacturing process. 

5. Our model enhances facility in laboratories, reducing 

human errors, and offering customized options that better 

meet patient requirements. 

6. Vat photopolymerization was considered to be the best 

dental crown manufacturing process. However, achieving 

that clinically requires overcoming four issues namely 

productivity and delivery time, dimensional accuracy, 

surface quality, and aesthetic behaviors. 

 Overall, the authors consider that the developed approach is 

helpful for dental manufacturers to optimize dental crown 

manufacturing process selection. 

 

Challenges and future work 

The Major challenge of our model is the difficulty of collecting a 

sufficient high quality data to make the model more applicable 

and we do our best to cover this point by collecting them from 

previous reviews and articles to meet standard product 

specifications and customer satisfaction, and we advise 

manufacturers that will use our model with collecting data 

sufficient for any product from product standard specifications 

and customer surveys. Future work concerns the deeper analysis 

of the manufacturing and characterization of dental crowns using 

the Vat photopolymerization process as Vat 

photopolymerization is an additive manufacturing process that 

produces high-performance ceramic parts. Critical steps in the 

process are the preparation of a homogeneous and stable ceramic 

slurry with a high solid load and low viscosity ( since an 

increase in solid loading might compromise the suspension 

rheology, resulting in non-uniform layer recoating[23],[24]) and 

the process parameters optimization to get the optimal aesthetic, 

mechanical and  thermal properties of dental crowns to match  
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Abbreviation and symbols 
AHP Analytic Hierarch Process 

 
Transpose of  normalized feature matrix of product 

features and its performance parameters 

 
Normalized feature matrix of product features and its 

performance parameters 

 Distance between alternatives (samples) and the NIS 

 Mean Absolute Deviation of J indicators 

 
Normalized label matrix of manufacturing process 

groups 

 
values of product features and performance 

parameters 

 Weight of Jth indicators 

i Counter of n samples(i=1:n) 

j Counter of m indicators(1:m) 

 Elements of  normalized decision matrix 

m Number of indicators(physical properties) 

n Number of samples 

NIS Negative Ideal Solution 

C.I Consistency Index 

C.R Consistency Ratio 

[A]mxm Pairwise comparison square matrix 
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[Z] Normalized pairwise comparison matrix 

 
Vector resulted from divide element by element 

between weight consistency vector and weight vector 

VPP Vat-photopolymerization 

 Elements of normalized pairwise comparison matrix 

 
Weight consistency vector resulted from multiplication 

of pairwise comparison matrix by weights’ vector 

R.I Relative Index 

λmax 
the greatest eigenvalue of the judgment 

matrix 

 Vector of summation of rows in each column j 

 The vector of  negative  ideal solution 

R The  normalized decision matrix 

D The evaluation matrix 

PIS Positive Ideal Solution 

TOPSIS 
Technique for Order Preference by similarity to ideal 

solution 

 
The unknown 

matrix  

 Weighted factors of machine learning model 

 Distance between alternatives (samples) and the PIS 

 values of manufacturing process groups 

 Matrix of weighted factors 

 An alternative of ith sample 

 The relative closeness of ith samples 

V weighted normalized decision matrix 

 

 

Appendix A 

 

Table 1. The product features and performance parameters suitable for each process [10],[11],[17],[18],[19],[20]. 

Process 

name 

Metallic 

material 

Ceramic 

material 

 

Polymer 

material 

 

 

strength 

 

 

hardness 

 

 

Shape 

complexity 

 

 

Size 

 

 

Weight 

 

Surface 

roughness 

dimension

al 

accuracy 

Buy 

To fly 

ratio 

Lead 

Time 

production 

volume 

sand casting Yes No No medium medium medium large big Very low Very low low Days high 

shell molding Yes No No medium medium medium medium medium Very low Very low low Days high 

gravity die casting Yes No No medium medium medium medium medium Very low Very low low Days high 

pressure die casting Yes No No medium medium medium large big Very low Very low low Days high 

centrifugal casting No No No medium medium medium large big Very low Very low low Days high 

injection molding No No Yes medium medium medium medium medium Very low Very low low weeks Medium 

reaction injection molding No No Yes medium medium medium medium medium Low low low weeks Medium 

compression molding No No Yes medium medium medium medium medium Low low low weeks Medium 

transfer molding No No Yes medium medium medium medium medium Low low low weeks Medium 

blow molding Yes No Yes medium medium medium medium medium Low low low weeks Medium 

forging Yes No No medium medium medium medium medium medium medium Medium weeks Medium 

rolling Yes No No medium medium medium medium medium medium medium Medium weeks Medium 

drawing Yes No No medium medium medium medium medium medium medium Medium weeks Medium 

powder metallurgy Yes No No medium medium medium medium medium medium medium medium weeks Medium 

CNC milling Yes No No low low low medium medium Very high Very high Very high weeks low 

CNC turning Yes No No low low low medium medium Very high Very high Very high weeks low 

Electrical discharge 

machining 
Yes No No low low low small low Very high Very high high weeks low 

Electrochemical machining Yes No No low low low small low Very high Very high high weeks low 

Electron beam machining Yes No No low low low small low Very high Very high high weeks low 

Laser Beam machining Yes No No low low low small low Very high Very high high weeks low 

chemical machining Yes No No low low low small low Very high Very high high weeks low 

Ultrasonic machining Yes No No low low low small low Very high Very high high weeks low 

Abrasive jet machining No No No low low low small low Very high Very high high weeks low 

Vat photopolymerization No Yes No high high high small low High high Very low hours low 

material jetting No Yes No high high high small low High high Very low hours low 

binder jetting No Yes No high high high small low High high Very low hours low 

material extrusion No Yes No high high high small low High high Very low hours low 

directed energy deposition No Yes No high high high small low High high Very low hours low 

powder bed fusion No Yes No high high high small low High high Very low hours low 

sheet lamination No Yes No high high high small low High high Very low hours low 
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  Table 2. The product features and performance parameters are suitable for each process after encoding in which we turn 

data in Table 1 into numerical values as indicated in Table 2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Process 

name 

Metallic 

material 

Ceramic 

material 

 

Polymer 

material 

 

 

strength 

 

 

hardness 

 

 

Shape 

complexity 

 

 

Size 

 

Weight 

 

Surface 

roughness 

dimensional 

accuracy 

Buy 

To fly 

ratio 

Lead 

Time 

production 

volume 

 x1 x 2 x3 x 4 x 5 x 6 X7 X8 X9 X10 X11 X12 X13 

sand casting 1 0 0 0.33 0.67 0.67 1.00 1.00 0.20 0.20 0.40 0.67 1.00 

shell molding 1 0 0 0.33 0.67 0.67 1.00 1.00 0.20 0.20 0.40 0.67 1.00 

gravity die casting 1 0 0 0.33 0.67 0.67 1.00 1.00 0.20 0.20 0.40 0.67 1.00 

pressure die casting 1 0 0 0.33 0.67 0.67 1.00 1.00 0.20 0.20 0.40 0.67 1.00 

centrifugal casting 0 0 0 0.33 0.67 0.67 1.00 1.00 0.20 0.20 0.40 0.67 1.00 

injection molding 0 0 1 0.33 0.67 0.67 0.67 0.67 0.40 0.40 0.40 0.67 0.67 

reaction injection molding 0 0 1 0.33 0.67 0.67 0.67 0.67 0.40 0.40 0.40 0.67 0.67 

compression molding 0 0 1 0.33 0.67 0.67 0.67 0.67 0.40 0.40 0.40 0.67 0.67 

transfer molding 0 0 1 0.33 0.67 0.67 0.67 0.67 0.40 0.40 0.40 0.67 0.67 

blow molding 1 0 1 0.33 0.67 0.67 0.67 0.67 0.40 0.40 0.40 0.67 0.67 

forging 1 0 0 0.67 0.67 0.67 0.67 0.67 0.60 0.60 0.60 0.67 0.67 

rolling 1 0 0 0.67 0.67 0.67 0.67 0.67 0.60 0.60 0.60 0.67 0.67 

drawing 1 0 0 0.67 0.67 0.67 0.67 0.67 0.60 0.60 0.60 0.67 0.67 

powder metallurgy 1 0 0 0.67 0.67 0.67 0.67 0.67 0.60 0.60 0.60 0.67 0.67 

CNC milling 1 0 0 0.33 0.33 0.33 0.33 0.33 1.00 1.00 1.00 1.00 0.33 

CNC turning 1 0 0 0.33 0.33 0.33 0.33 0.33 1.00 1.00 1.00 1.00 0.33 

Electrical-discharge 

-machining 

1 0 0 0.33 0.33 0.33 0.33 0.33 1.00 1.00 0.80 1.00 0.33 

Electrochemical machining 1 0 0 0.33 0.33 0.33 0.33 0.33 1.00 1.00 0.80 1.00 0.33 

Electron beam machining 1 0 0 0.67 0.33 0.33 0.33 0.33 1.00 1.00 0.80 1.00 0.33 

Laser Beam machining 1 0 0 0.67 0.33 0.33 0.33 0.33 1.00 1.00 0.80 1.00 0.33 

chemical machining 1 0 0 0.67 0.33 0.33 0.33 0.33 1.00 1.00 0.80 1.00 0.33 

Ultrasonic machining 1 0 0 0.33 0.33 0.33 0.33 0.33 1.00 1.00 0.80 1.00 0.33 

Abrasive jet machining 0 1 0 0.33 0.33 0.33 0.33 0.33 1.00 1.00 0.80 1.00 0.33 

Vat photopolymerization 0 1 0 1.00 1.00 1.00 0.33 0.33 0.80 0.80 0.20 0.33 0.33 

material jetting 0 1 0 1.00 1.00 1.00 0.33 0.33 0.80 0.80 0.20 0.33 0.33 

binder jetting 0 1 0 1.00 1.00 1.00 0.33 0.33 0.80 0.80 0.20 0.33 0.33 

material extrusion 0 1 0 1.00 1.00 1.00 0.33 0.33 0.80 0.80 0.20 0.33 0.33 

directed energy deposition 0 1 0 1.00 1.00 1.00 0.33 0.33 0.80 0.80 0.20 0.33 0.33 

powder bed fusion 0 1 0 1.00 1.00 1.00 0.33 0.33 0.80 0.80 0.20 0.33 0.33 

sheet lamination 0 1 0 1.00 1.00 1.00 0.33 0.33 0.80 0.80 0.20 0.33 0.33 
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Table 3. The accepted (Value=1) and rejected (Value=0) groups of proposed processes [10], [11], [17], [18], [19], [20].      
           

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

   Table 4. Saaty scale of relative importance [16]. 

Intensity of importance Definition 

1 Equal importance 

3 Moderate importance of one over another 

5 Strong importance 

7 Very strong importance 

9 Extreme importance 

2,4,6,8 Intermediate values between the two adjacent judgments 

Table 5. Mean random relative index [16]. 

m 1 2 3 4 5 6 7 8 9 

R.I 0 0 0.52 0.89 1.12 1.89 1.36 1.41 1.46 

 

 
 
 
 

Material 

Class 

Formative 

Casting 

Formative 

Molding 

Formative 

Forming 

Traditional 

Subtractive 

Nontraditional 

Subtractive 
Additive 

 y1 y 2 y3 y 4 y 5 y 6 

sand casting 1 0 0 0 0 0 

shell molding 1 0 0 0 0 0 

gravity die casting 1 0 0 0 0 0 

pressure die casting 1 0 0 0 0 0 

centrifugal casting 1 0 0 0 0 0 

injection molding 0 1 0 0 0 0 

reaction injection molding 0 1 0 0 0 0 

compression molding 0 1 0 0 0 0 

transfer molding 0 1 0 0 0 0 

blow molding 0 1 0 0 0 0 

Forging 0 0 1 0 0 0 

Rolling 0 0 1 0 0 0 

Drawing 0 0 1 0 0 0 

powder metallurgy 0 0 1 0 0 0 

CNC milling 0 0 0 1 0 0 

CNC turning 0 0 0 1 0 0 

Electrical discharge machining 0 0 0 0 1 0 

Electrochemical machining 0 0 0 0 1 0 

Electron beam machining 0 0 0 0 1 0 

Laser Beam machining 0 0 0 0 1 0 

chemical machining 0 0 0 0 1 0 

Ultrasonic machining 0 0 0 0 1 0 

Abrasive jet machining 0 0 0 0 1 0 

Vat photopolymerization 0 0 0 0 0 1 

material jetting 0 0 0 0 0 1 

binder jetting 0 0 0 0 0 1 

material extrusion 0 0 0 0 0 1 

directed energy deposition 0 0 0 0 0 1 

powder bed fusion 0 0 0 0 0 1 

sheet lamination 0 0 0 0 0 1 



Adel Osama et al. / Journal of International Society for Science and Engineering Vol. 6, No. 4, 85-99 (2024) 

 

---------------------------------------------------------------------------------------------------------------------------------------------------------------- 
www.jisse.journals.ekb.eg                                                                 www.isse.org.eg                                              96 

 
Table 6. Indicates the features and performance parameters of zirconia dental crowns [8]: 

material Ceramic 

strength Very high 

hardness Very high 

Shape complexity Very high 

Size Small 

Weight Low 

Surface roughness Very low 

Dimensional accuracy Very high 

Buy to fly ratio Very low 

Lead Time Very low 

Production Volume Low 

Table7 indicates the processes of Additive group with performance criteria [17]. 

 

  

 

 

 

 

 

 

Process 

name 

Ceramic 

material compatibility 

energy    

consumption 

dimensional 

accuracy 

Minimum 

layer 

thickness 

(micron) 

BUILD 

VOLUME 

INDEX 

BUILD 

RATE 

INDEX 

 

Minimum 

wall 

thickness 

(mm) 

 

BUILD 

RATE- 

layer 

thickness 

INDEX 

Thermal 

stresses 

Vat 

photopolymerization 

Indirect Commercially 

 available 

Very Very  

low 

Very  Very    

high 

1 1.1 30.0 0.5 1.7 
Very Very 

low 

material jetting 

Indirect Commercially 

 available 

Very  low high 3 0.2 0.2 1 2.5 High 

binder jetting 
Indirect Commercially 

unavailable 
medium low 50 4.1 34.4 0.3 0.5 medium 

material extrusion 

Indirect Commercially 

 available 

low medium 50 0.2 8.7 2 2.2 Very high 

directed energy 

deposition 

Direct Commercially 

unavailable 

Very Very 

 high 

Very  low 100 0.0 0.0 1 0.0 low 

powder bed fusion 

Direct Commercially  

available 

Very high Very  high 20 0.9 13.6 0.4 3.6 
Very Very 

high 

sheet lamination 
Direct Commercially 

unavailable 
high Very Very low 100 0.0 0.0 3 0.0 Very  low 
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Table8 indicates the encoding of performance criteria of the Additive group [17].  

Process 

name 

Ceramic 

Material 

compatibility 

energy 

consumption 

dimensional 

accuracy 

 

Minimum 

layer 

thickness 

(micron) 

 

 

BUILD 

VOLUME 

INDEX 

 

BUILD 

RATE 

INDEX 

 

Minimum wall 

thickness 

(mm) 

 

BUILD RATE- 

layer thickness 

INDEX 

Thermal 

stresses 

Vat 

photopolymerization 

7.5 14.29 100.00 1 1.1 30.0 0.5 1.7               14.29 

material jetting 
7.5 28.57 57.14 3 0.2 0.2 1 2.5              71.43 

binder jetting 2.5 
57.14 42.86 50 4.1 34.4 0.3 0.5             57.14 

material extrusion 
7.5 42.86 71.43 50 0.2 8.7 2 2.2            85.71 

directed energy 

deposition 

5 100.00 28.57 100 0.0 0.0 1 0.0            42.86 

powder bed fusion 
10 85.71 85.71 20 0.9 13.6 0.4 3.6          100.00 

sheet lamination 
5 71.43 14.29 100 0.0 0.0 3 0.0             28.57 

 

 

Table 9. Scale 1 of encoding which is based on qualitative assumptions [17] 

Intensity of 

importance 
Definition 

100.00 Very very high 

85.71 Very high 

71.43 high 

57.14 medium 

42.86 low 

28.57 Very low 

14.29 Very very low 

 

Table 10. Scale 2 of encoding which is based on qualitative assumptions [17]. 

Intensity of importance Definition 

10 Direct Commercially available 

7.5 Indirect Commercially available 

5 Direct Commercially unavailable 

2.5 indirect Commercially unavailable 
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Table 11. Pairwise comparison matrix [16], [17]. 

RELATIVE 

IMPORTANCE 

ceramic 

material 
compatibility 

energy 

consumption 

dimensional 

accuracy 

minimum layer 

thickness(micron) 

Build-

volume 
index 

BUILD 

rate-
index 

Minimum 

wall 
thickness(mm) 

BUILD 

RATE-

layer 
thickness 

INDEX 

Thermal 

stresses 

ceramic material 
compatibility 

1.000 5.000 3.000 4.000 5.000 5.000 6.000 7.000 5.000 

energy 

consumption 
0.200 1.000 0.200 0.250 0.500 0.500 0.333 0.333 0.5 

dimensional 
accuracy 

0.333 5.000 1.000 3.000 5.000 5.000 3.000 4.000 6.000 

minimum layer 

thickness(micron) 
0.250 4.000 0.333 1.000 5.000 5.000 3.000 3.000 4.000 

BUILD 
VOLUME 

INDEX 

0.200 2.000 0.200 0.200 1.000 3.000 3.000 4.000 4.000 

BUILD RATE 

INDEX 
0.200 2.000 0.200 0.200 0.333 1.000 3.000 0.333 3 

Minimum wall 

thickness(mm) 
0.167 3.000 0.333 0.333 0.333 0.333 1.000 3.000 3 

BUILD RATE-

layer thickness 
INDEX 

0.143 3.000 0.250 0.333 0.250 3.000 0.333 1.000 2 

Thermal stresses 0.200 2.000 0.167 0.250 0.250 0.333 0.333 0.500 1 

sum 2.493 25.000 5.517 9.317 17.417 22.833 19.667 22.667 27.500 

 

Table 12. Calculated weight criteria [16], [17]. 

RELATIVE 

IMPORTANCE 

ceramic material 

compatibility 

energy 

consumption 

dimensional 

accuracy 

minimum layer 

thickness(micron) 

Build-volume 

index 

BUILD 

rate-index 

Minimum wall 

thickness(mm) 

Build-rate-layer 

Thickness-index 

Thermal 

stresses 

Weight 

(w) 

ceramic material 

compatibility 
0.401 0.200 0.544 0.429 0.287 0.219 0.305 0.309 0.182 0.299 

energy consumption 0.080 0.040 0.036 0.027 0.029 0.022 0.017 0.015 0.018 0.030 
dimensional accuracy 0.134 0.200 0.181 0.322 0.287 0.219 0.153 0.176 0.218 0.186 

minimum layer 

thickness(micron) 
0.100 0.160 0.060 0.107 0.287 0.219 0.153 0.132 0.145 0.135 

Build-volume index 0.080 0.080 0.036 0.021 0.057 0.131 0.153 0.176 0.145 0.082 
BUILD rate-index 0.080 0.080 0.036 0.021 0.019 0.044 0.153 0.015 0.109 0.050 

Minimum wall 

thickness(mm) 
0.067 0.120 0.060 0.036 0.019 0.015 0.051 0.132 0.109 0.056 

BUILD RATE-layer 

thickness INDEX 
0.057 0.120 0.045 0.036 0.014 0.131 0.017 0.044 0.073 0.052 

Thermal stresses 0.080 0.080 0.030 0.027 0.014 0.015 0.017 0.022 0.036 0.032 

 

Table 13. Calculation of judgment matrix [16],[17]. 

 

RELATIVE 

IMPORTANCE 

Ceramic 

material 

compatibility 

energy 

consumption 

dimensional 

accuracy 

minimum layer 

thickness(micron) 

Build-

volume 

index 

BUILD 

rate-index 

Minimum wall 

thickness(mm) 

Build-rate-

layer- 

Thickness 

index 

Thermal 

stresses 

Sum   

of 

row 

Sum of 

each 

row/weight 

ceramic material 

compatibility 0.299 0.148 0.557 0.542 0.409 0.249 0.333 0.362 0.158 2.899 9.68 

energy 

consumption 0.060 0.030 0.037 0.034 0.041 0.025 0.019 0.017 0.016 0.262 8.88 

dimensional 

accuracy 0.100 0.148 0.186 0.406 0.409 0.249 0.167 0.207 0.190 1.871 10.07 

minimum layer 

thickness(micron) 0.075 0.118 0.062 0.135 0.409 0.249 0.167 0.155 0.127 1.370 10.11 

BUILD 

VOLUME 

INDEX 0.060 0.059 0.037 0.027 0.082 0.149 0.167 0.207 0.127 0.788 9.64 

BUILD RATE 

INDEX 0.060 0.059 0.037 0.027 0.027 0.050 0.167 0.017 0.095 0.444 8.92 

Minimum wall 

thickness(mm) 0.050 0.089 0.062 0.045 0.027 0.017 0.056 0.155 0.095 0.500 9.00 

BUILD RATE-

layer thickness 

INDEX 

0.043 0.089 0.046 0.045 0.020 0.149 0.019 0.052 0.063 0.463 8.96 

Thermal stresses 0.060 0.059 0.031 0.034 0.020 0.017 0.019 0.026 0.032 0.265 8.37 
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Table14. Calculation of consistency ratio [16]. 

n 9 

λmax 9.41 

C.I 0.05 

R.I 1.41 

C.R 0.036 

 

Table15.  Dataset of normalized decision matrix R of dataset in Table8 

Process Name 

ceramic 

material 

compatibility 

Energy 

consumption 

dimensional 

accuracy 

minimum 

layer 

thickness 

(micron) 

BUILD 

VOLUME 

INDEX 

BUILD 

RATE 

INDEX 

Minimum wall 

thickness(mm) 

BUILD 

RATE-layer 

thickness 

INDEX 

Thermal 

stresses 

Vat photopolymerization 0.416 0.085 0.592 0.006 0.244 0.619 0.127 0.322 2.762 
Material jetting 0.416 0.169 0.338 0.019 0.054 0.004 0.254 0.483 13.811 

Material extrusion 0.139 0.338 0.254 0.314 0.946 0.711 0.076 0.102 11.048 
Binder jetting 0.416 0.254 0.423 0.314 0.051 0.180 0.508 0.422 16.573 

Directed energy 

deposition 
0.277 0.592 0.169 0.627 0.000 0.000 0.254 0.000 8.286 

Powder bed fusion 0.555 0.507 0.507 0.125 0.202 0.281 0.102 0.689 19.335 
Sheet lamination 0.277 0.423 0.085 0.627 0.000 0.000 0.762 0.000 5.524 

 

Table16.  Dataset of weighted normalized decision matrix V 

Process Name 

ceramic 

material 

compatibility 

Energy 

consumption 

dimensional 

accuracy 

minimum 

layer 

thickness 

(micron) 

BUILD 

VOLUME 

INDEX 

BUILD 

RATE 

INDEX 

Minimum wall 

thickness(mm) 

BUILD 

RATE-

layer 

thickness 

INDEX 

Thermal 

stresses 

Vat photopolymerization 0.125 0.002 0.110 0.001 0.020 0.031 0.007 0.017 0.143 

Material jetting 0.125 0.005 0.063 0.003 0.004 0.000 0.014 0.025 0.714 

Material extrusion 0.042 0.010 0.047 0.042 0.077 0.035 0.004 0.005 0.571 

Binder jetting 0.125 0.007 0.079 0.042 0.004 0.009 0.028 0.022 0.857 

Directed energy deposition 0.083 0.017 0.031 0.085 0.000 0.000 0.014 0.000 0.428 

Powder bed fusion 0.166 0.015 0.094 0.017 0.017 0.014 0.006 0.036 0.999 

Sheet lamination 0.083 0.012 0.016 0.085 0.000 0.000 0.042 0.000 0.286 

 

 

 Table 17 .weights calculated by the FUZZY-AHP method 

Process 

criteria 

ceramic material 

compatibility 

Energy 

 consumption 

dimensional 

accuracy 

Minimum-layer 

thickness(micron) 

BUILD 

VOLUME 

INDEX 

BUILD 

RATE 

INDEX 

Minimum 

wall thickness 

(mm) 

BUILD-RATE-

layer thickness 

INDEX 

Thermal 

stress 

Wj 0.299 0.030 0.186 0.135 0.082 0.050 0.056 0.052 0.032 

 

       Table 18.Calculatation of relative closeness  

Process Name S+ S- C* Rank 

Vat photopolymerization 0.074 0.872 0.92 1 

Material jetting 0.580 0.315 0.35 5 

Material extrusion 0.453 0.442 0.49 4 

Binder jetting 0.722 0.184 0.20 6 

Directed energy deposition 0.332 0.574 0.63 3 

Powder bed fusion 0.859 0.171 0.17 7 

Sheet lamination 0.231 0.715 0.76 2 

 


