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Abstract 

Background: Drug-drug interactions (DDIs) pose a significant risk to patient safety, leading to adverse effects 

and increased hospitalizations. With the rise of polypharmacy, especially among elderly patients and those 

with chronic conditions, understanding and predicting DDIs has become imperative for effective clinical 

management. Methods: This review synthesizes current literature on drug-drug interaction databases and their 

role in predicting DDIs. A systematic search of relevant databases focused on studies utilizing artificial 

intelligence (AI) and machine learning techniques for DDI prediction. Key databases, such as DrugBank, 

PubChem, and the Pharmacogenomics Knowledgebase (PharmGKB), were analyzed for their contributions 

to DDI research. Results: The findings indicate that AI-driven methodologies significantly enhance the 

identification and prediction of DDIs. Various machine learning techniques, including conventional and 

unconventional methods, have been employed to assess drug interactions effectively. The review highlights 

real-world examples of critical DDIs, demonstrating the clinical implications of these interactions. Databases 

provide essential tools for healthcare providers to manage medications and prevent adverse events. 

Conclusion: Integrating drug-drug interaction databases into clinical practice is crucial for improving patient 

safety and treatment efficacy. Future research should focus on enhancing the predictive capabilities of these 

models through continuous data integration and validation. By leveraging advanced computational techniques, 

healthcare systems can better anticipate and mitigate the risks associated with drug interactions. 

Keywords: Drug-drug interactions, artificial intelligence, machine learning, patient safety, 

pharmacovigilance. 
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1. Introduction 

Medicine is essential for human advancement 

and growth. Pharmaceutical goods are the primary 

agents used for the prevention, treatment, and 

diagnosis of illnesses. The advancement of modern 

medical pharmacology, drug treatment, and 

pharmaceutical research has led to the discovery of 

different medication combinations that successfully 

treat patients with varied or complicated illnesses [1]. 

However, the primary issue with using many 

medicines concurrently is that patients face a 

significantly increased risk of unfavorable effects. 

Various adverse medication responses may arise 

from drug-drug interactions (DDI). This may result 

in either beneficial or detrimental alterations in the 

drug's efficacy when combined with another 

treatment. This alteration may result in diminished 

therapeutic efficacy and increased toxicity, 

jeopardizing patient safety and elevating disease 

prevalence, particularly in certain populations with 

preexisting conditions. In a hospital environment, 

drug-drug interactions (DDI) may lead to various 

problems, extend the duration of hospitalizations, 

and perhaps result in mortality [2,3].  

Drug-drug interactions (DDIs) represent a 

substantial concern in the United States, resulting in 

more than 74,000 emergency division visits and 

195,000 admissions per year. The CDC indicates that 

10% of the US population uses five medications, 

while 36% of elderly Americans employ five 

simultaneously [4]. Fifteen percent of medication 

combinations among individuals aged 61 to 80 

provide a risk of adverse drug interactions. Adverse 

pharmaceutical interactions occur in around 5% of 

cases, resulting in over 2.5 million hospitalizations 

because of drug addiction or serious drug reactions 

[5].  

Among these cases, around 200,000 fatalities 

resulted from improper or erroneous medication use, 

representing 0.38% of overall hospitalizations as 

well as 7.9 percent of instances attributed to negative 

drug responses [6]. In a hospital case involving an 

83-year-old female patient with pre-existing renal 

dysfunction, intravenous imipenem/cilastatin 

sodium was administered at a dosage of 0.5g three 

times daily over four days. Subsequently, the patient 

experienced seizures and severe epilepsy. A clear 

correlation was established between the 

administration of imipenem/cilastatin sodium and 

the onset of seizures, which resolved after 

discontinuing the medication. This case indicates 

that the seizures were likely linked to the 

imipenem/cilastatin sodium treatment. It underscores 

the critical need for precise drug-drug interaction 

(DDI) predictions to identify potential adverse 

events and mitigate risks in healthcare environments 

[7]. 

DDI denotes the concurrent or successive 

administration of several pharmaceuticals resulting 

from drug interactions, whereby the efficacy of one 

or more substances is diminished or altered to 

variable extents. Research indicates that drug-drug 

interactions (DDI) may elicit various reactions in 

pharmaceuticals, pharmacokinetics (PK), as well as 

pharmacodynamics (PD) [2,3]. The manifestation of 

pharmacy drug-drug interactions (DDIs) arises from 

physical or chemical incompatibility. 

Pharmacokinetic drug-drug interactions arise when 

medications influence one another during digestion, 

metabolism, absorption, and excretion. Conversely, 

PD DDI occurs when one medication elicits a 

pharmacological reaction to another drug at an 

equivalent dose. The deleterious effects of DDI have 

enhanced the knowledge of drug responses, hence 

improving the security and effectiveness of 

medication treatment and promoting secure and 

efficient drug combination options [8-10]. 

Experimental evaluation of medicines in both 

human as well as laboratory environments may aid 

scientists and pharmaceutical companies in precisely 

detecting detrimental drug-drug interactions. This 

may also facilitate the advancement of modeling 
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methodologies to better identify possible drug-drug 

interactions (DDIs). Nonetheless, laboratory 

research methodologies may be very costly and, in 

many instances, unfeasible to implement. 

Consequently, there is a notable trend in using 

computational and machine-learning methodologies 

to predict and accelerate the detection of drug-drug 

interactions (DDIs). This mitigates related social, 

economic, and wellness expenses [8]. 

AI Health has partnered with AstraZeneca to use 

artificial intelligence in developing pharmaceuticals 

and medical services for diverse communities. The 

partnership allows paramedics to analyze patients 

using AI algorithms, streamlining their transfers to 

suitable hospitals and enabling the availability of 

more patient-centric drugs. This significant 

advancement in healthcare decision-making is 

expected to improve patient outcomes [11]. 

As research into pharmaceutical interactions 

progresses, there has been a growing number of 

publications, alongside continuously evolving 

websites and databases that provide drug and disease 

information [12, 13]. This landscape offers 

researchers the chance to gather drug data from 

multiple sources, facilitating the advancement of 

computational modeling techniques for predicting 

drug-drug interactions. Recently, various review 

articles have been published focusing on different 

facets of identifying pharmaceutical interactions, 

including the development of knowledge graphs and 

the significance of understanding these interactions 

[14-16]. Most of these evaluations center on methods 

for predicting direct medication interactions. 

2. Biomedical Databases 

Biomedical databases have become valuable 

resources for AI, generating considerable interest in 

their data-driven applications. By analyzing vast 

amounts of drug-related data, AI can uncover 

emerging trends and extract meaningful insights. The 

rapid progress in computer science and genome 

sequencing over recent decades has led to an 

abundance of knowledge concerning 

pharmaceuticals, encompassing information about 

drugs, diseases, genes, and proteins. This wealth of 

data greatly enhances drug-related research, as it 

necessitates integrating various pharmacological 

characteristics and documented drug-drug 

interactions (DDIs) to anticipate potential 

interactions [16]. 

Frequently used resources involve DrugBank, which 

mostly contains drug characteristics. PubChem and 

ChEMBL primarily provide information on 

chemicals, including their roles and advantages for 

living organisms [17-19]. Data on more than 12,000 

medicines and 200,000 interactions are available in 

the Kyoto Encyclopedia of Genomes and Genes 

(DDI), which is based on prescription medication 

packaging from Japan [20, 21]. The 

Pharmacogenomics Library (PharmGKB) offers 

gene-drug interaction information and is among the 

first pharmaceutical knowledge bases. The 

Therapeutic Target Database (TTD) offers data on 

drug-target interactions and pharmaceutical 

combinations. These datasets are derived from 

sources such as books, journal papers, the FDA drug 

database, drug manufacturer statements, and the US 

patent database [22].  

DailyMed, SIDER, TWOSIDES, DDInter, 

pharmaceuticals.com, and MecDDI are libraries that 

offer data on diverse drugs, side effects, and drug-

drug interactions [23]. DailyMed includes 

information on 96,955 different drugs, while SIDER 

compiles data on 1,430 drugs, 5,868 adverse 

reactions, and 139,756 drug adverse event 

combinations. TWOSIDES features 59,220 drug 

pairings and 868,221 significant connections linked 

to 1,301 adverse events [24, 25]. DDInter contains 

240,000 documents related to drug-drug interactions 

(DDIs), encompassing details about 1,833 drugs [26, 

27]. Pharmaceuticals.com provides educational 

information on more than 24,000 prescription 

medications, over-the-counter treatments, and 

natural products. Additionally, MecDDI offers a 

comprehensive analysis of drug-drug interaction 
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processes and supplies valuable data for researchers 

looking to predict new DDIs.  

3. Prediction of Undirected Drug-Drug 

Interactions 

Undirected drug reactions occur when two drugs are 

taken together or in sequence, resulting in one drug 

affecting the properties of the other, regardless of the 

order in which they are administered. This type of 

drug interaction focuses solely on the combination of 

medications used, without considering the specific 

effects of the drug-drug interaction (DDI). For 

example, it does not take into account whether the 

effect of a single drug is enhanced or diminished, 

whether the effects of multiple drugs are increased or 

decreased simultaneously, or whether the interaction 

results in a beneficial or antagonistic outcome. These 

nuances are overlooked in cases of undirected drug 

interactions. 

The method for predicting undirected drug 

interactions aims to identify unanticipated drug 

association labels by utilizing drug information with 

established classifications. The interaction labeling 

indicates the likelihood of drug interactions, with 

label 0 representing no interaction and label 1 

indicating an interaction. Estimating undirected 

drug-drug interactions can be categorized into 

traditional machine-learning techniques, alternative 

machine-learning methods, and deep-learning 

approaches [29]. 

4. Conventional Machine Learning Techniques 

Comparison evaluations focus on aligning processes 

induced by drugs, protein structures, molecular 

designs, and their functions. Vilar et al. [30] 

identified novel drug-drug interactions (DDIs) 

through an analysis of molecular structural 

analogies, utilizing the chemical structure features of 

drugs found in reported DDI data for predictive 

modeling. Gottlieb et al. [31] developed a 

computational framework for predicting drug 

interactions called INDI, which evaluates the 

similarity of chemical compositions and adverse 

reactions of drugs concurrently. This framework 

calculates seven categories of drug similarity and 

combines these attributes to create a feature that 

reflects the highest resemblance among drug pairs. 

Logistic regression is an analytical framework used 

in machine learning and data analysis to assess the 

probability of binary outcomes. It serves as a 

regression model when the dependent variable is 

binary (0 or 1) and aims to find the best-fit line that 

defines the relationship between the dependent 

variable and independent variables. Ferdousi et al. 

[32] utilized the Russell-Rao method, incorporating 

key biological factors like transporters, proteins, and 

targets, to assess the compatibility of drug pairs using 

12 binary vectors. This approach can predict over 

250,000 potential unknown DDIs. 

Documented drug-drug interactions (DDIs) are 

utilized as input for binary classification to predict 

additional potential interactions between medication 

combinations [33, 34]. Li et al. [35] introduced 

Probability Ensemble Approaches (PEA) that predict 

DDIs by leveraging molecular and pharmacological 

features through Bayesian network simulations and 

similarity methods. Kim et al. [36] enhanced the 

linear kernel concept by incorporating medical 

terminology and grammatical features, developing 

five distinct feature types to capture complex data. 

Cheng et al. [37] created a methodology for 

modeling systems on a heterogeneous graph that 

combines phenotypic, therapeutic, pharmacological, 

and genetic characteristics of drugs. Yan et al. [38] 

provided a model that integrates multiple 

pharmacological features, calculating the cosine 

similarity among these variables as input for their 

classifier, ultimately employing a Recursive Least 

Squares (RLS) predictor to assess the likelihood of 

DDIs. Hung et al. [39] focused on forecasting 

potential adverse drug-drug interactions related to 

osteoporosis and Paget's disease, demonstrating the 

effectiveness of machine-learning techniques in 

predicting harmful drug-drug interactions specific to 

certain conditions. 
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Conventional machine learning methods predict 

unstructured drug impacts by employing similarity 

assumptions and classification techniques. 

Unconventional machine learning methodologies 

use a wider array of approaches and models to 

generate forecasts using conventional procedures 

and methodologies.  

5. Prediction of drug-target associations 

Drug-target interfaces (DTIs) are the specific 

interactions between an active drug ingredient and a 

protein or enzyme within human tissue cells, leading 

to therapeutic effects. Advancements in drug target 

association technology have significantly 

accelerated the study of drug interactions, allowing 

researchers to more accurately predict the 

interactions between drug molecules and specific 

target proteins or enzymes in human cells. This 

method enhances the efficiency of discovering 

potential therapeutic targets, speeding up the drug 

discovery process and facilitating the development 

of safer and more effective pharmaceuticals [40]. 

Machine learning techniques have become a 

preferred tool for data analysis to predict treatment 

targets due to their effectiveness and cost-efficiency. 

However, predicting drug-target relationships using 

machine learning is subjective and cannot precisely 

explain the specific mode of action of a drug receptor 

[41]. Zhang et al. [42] proposed a system for 

predicting drug-target interactions by combining the 

chemical structural properties of the drug with the 

amino acid composition and spatial information of 

the protein. Chen et al. [43] introduced DNN-DTIs, 

a technology for predicting drug-target interactions, 

which achieved an impressive 98.78 percent 

reliability on Kuang's dataset. 

Artificial intelligence techniques have 

significantly improved the efficiency of identifying 

drug-target interactions. Current research focuses on 

developing a comprehensive and systematic 

approach for accurately identifying DTIs across 

diverse datasets. These technologies have the 

potential to greatly accelerate the drug discovery 

process and lead to the development of more 

effective and safer pharmaceuticals [44]. 

6. The forecasting of drug-to-drug interaction 

occurrences 

Many machine learning algorithms have been 

developed to predict drug-drug interactions (DDIs); 

however, most of these algorithms are intended to 

ascertain if two drugs would interact. DDI prediction 

approaches generally include two scenarios: one 

involves predicting the existence of an interaction 

between two medications, while the other entails 

predicting the nature of the interaction, event, or 

impact that occurs between the drugs. The latter is a 

binary classification problem, while the former is a 

multi-classification task. 

DDI response patterns may generally be 

classified into three categories: synergy, antagonism, 

and no reaction. The optimal outcome is the 

occurrence of a synergistic response; in other words, 

these procedures are often used to ascertain if the 

combined impacts of medications A and B surpass 

the effects of each drug administered separately. The 

most detrimental result of combination therapy is an 

antagonistic reaction, resulting in diminished 

therapeutic effect; when drugs A and B are 

administered concurrently, their collective 

effectiveness is inferior to the sum of their separate 

efficacies [45].  

Moreover, antagonistic responses may induce 

additional adverse effects, perhaps proving lethal to 

the patient. When administered concurrently, Drugs 

A and B exhibit no effects beyond those seen with 

each drug individually, indicating a lack of 

interaction between the two treatments. Antagonistic 

medication-drug interactions constituted 30% of all 

known adverse drug events [46-49]. Clinical trials 

may identify the nature of medication interactions; 

however, in vitro approaches are generally time-

consuming, labor-intensive, and often lack 

repeatability [50-53]. Consequently, it is essential to 

use computational approaches to identify the kind of 

drug-drug interactions (DDI) in pharmacological 
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research, which may aid in developing secure and 

more effective prescriptions for medication 

combinations and may facilitate the understanding of 

the underlying causes of adverse drug responses [54]. 

7. Prediction of asymmetric medication 

interactions 

Drug-drug interactions (DDIs) encompass 

various types, including asymmetric drug 

relationships. Experimental tests have demonstrated 

discrepancies in DDIs. Wicha et al. [55] found that 

most pharmacological arrangements involving 

antifungal and non-antifungal agents resulted in 

unidirectional interactions. Terbinafine could 

facilitate unidirectional opposition through its effect 

on ergosterol, while Amphotericin B significantly 

increased its INT value, although its EC50 remained 

relatively stable. Noguchi et al. [56] introduced 

mining association rules as an innovative method for 

predicting asymmetric drug-drug interactions 

(DDIs), using the connection rule B→A∩C. The 

asymmetric relationship is characterized by the 

impact of the perpetrator's drug on the unidirectional 

activity of the target drug. 

In polypharmacy, asymmetric interactions 

influence the sequence of drug administration. An 

assessment of the optimal temporal sequence for 

intravenous administration of vincristine and 

cyclophosphamide showed no synergistic benefit 

when given concurrently, but an incremental effect 

was observed with prolonged administration. 

Developing innovative deep-learning techniques for 

predicting asymmetric DDIs is essential [57]. 

DGAT-DDI is the first approach for forecasting 

asymmetric DDI, employing a graph attention 

network (GAT) on a targeted drug interactions map 

to encode the drug's attributes [29]. The method 

considers factors of aggressiveness and 

susceptibility, evaluating the influence of the number 

of pharmaceutical interactions on their interaction 

tendencies. The DGAT-DDI prediction module 

identifies asymmetric interactions between drugs 

using two proximity measurements and role-

specificity components [58]. 

8. Improving Care for Complex Patients: 

Enhancing the management of difficult patients, 

especially the elderly and those with chronic 

illnesses, presents a multidimensional issue in 

healthcare. Older persons, often managing several 

health conditions, typically engage in polypharmacy, 

the concurrent use of many drugs [59]. 

Polypharmacy markedly elevates the likelihood of 

medication interactions, potentially resulting in 

severe effects and problems [60]. Patients with 

chronic diseases, including diabetes and heart 

disease, may need many drugs for successful health 

management [61,62]. These individuals have 

comparable risks of medication interactions, 

requiring meticulous treatment and oversight by 

healthcare professionals. 

A primary strategy to mitigate these concerns is 

the use of drug databases and electronic health 

records (EHRs). These technologies assist healthcare 

practitioners in monitoring all drugs a patient is 

taking, therefore decreasing the chance of dangerous 

drug interactions. EHRs provide a detailed account 

of a patient's medication history, allowing doctors to 

make educated judgments about the prescription of 

new drugs or modifications to current ones. The 

incorporation of decision support systems into 

electronic health records might improve this process 

by notifying doctors of possible medication 

interactions and contraindications in real time [63]. 

9. Building Trust in the Healthcare System: 

The significance of establishing trust within the 

healthcare system is paramount. Minimizing medical 

mistakes is an essential component of this initiative. 

The use of EHRs with pharmaceutical databases has 

shown an enhancement in healthcare quality by 

reducing mistakes associated with drug prescription 

and administration. These technologies guarantee 

that healthcare personnel possess precise and current 

information, therefore improving patient safety and 

results [64]. 
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Transparency in healthcare is an essential element in 

fostering trust. Medication databases and electronic 

health records provide dependable information that 

is available to both healthcare providers and patients. 

This accessibility fosters an open and transparent 

healthcare environment, enabling patients to engage 

more actively in their treatment choices. Research 

indicates that patients with access to their health data 

and comprehension of their prescription regimens 

are more inclined to comply with their treatment 

programs. Furthermore, this openness cultivates a 

collaborative connection between patients and 

healthcare professionals, enhancing trust and 

elevating overall treatment quality [65]. 

Practical examples demonstrate the significance 

of these technologies. A significant instance is the 

interaction between warfarin, a frequently given 

anticoagulant, and some antibiotics. Certain 

antibiotics may enhance the efficacy of warfarin, 

resulting in a heightened risk of hemorrhage [66]. 

Utilizing pharmaceutical databases enables 

healthcare practitioners to detect interactions before 

providing antibiotics to patients on warfarin, thereby 

averting adverse effects. 

Likewise, statins, often used to reduce cholesterol 

levels, may interact with other pharmaceuticals, 

increasing the chance of muscular injury [67]. Statins 

are processed by hepatic enzymes, and some 

medications may obstruct these enzymes, resulting in 

elevated statin concentrations in the bloodstream. 

Utilizing medication databases, doctors may 

ascertain individuals at risk and implement suitable 

interventions, such as modifying the statin dosage or 

selecting an alternate medicine [68]. 

Consequently, enhancing the management of 

difficult patients, especially senior citizens and those 

with chronic ailments, needs a holistic strategy that 

incorporates prescription databases and electronic 

health records (EHRs). These instruments not only 

mitigate the likelihood of medication interactions 

and medical blunders but also augment transparency 

and foster confidence in the healthcare system. By 

providing precise and current information, they 

allow healthcare practitioners to make educated 

choices and facilitate more patient involvement in 

their treatment. Practical instances, such as the 

interactions between warfarin and antibiotics or 

statins and other pharmaceuticals, highlight the 

essential function of these technologies in 

safeguarding patient safety and enhancing health 

results [69]. The ongoing evolution of healthcare 

necessitates the integration of modern information 

systems to effectively handle the intricate demands 

of patients and provide high-quality treatment. 

10. Obstacles and Future Direction 

The occurrence of adverse drug-drug interactions 

(DDIs) poses a significant threat to patient safety and 

the efficacy of medication delivery. In recent years, 

machine learning has gained prominence in 

bioinformatics, proving effective in predicting DDIs 

and mitigating the risks associated with such 

interactions. Consequently, there is a pressing need 

to develop more advanced machine-learning 

techniques for predictive modeling. This research 

systematically classifies AI methodologies for DDI 

prediction based on various types of drug 

interactions and addresses the challenges associated 

with future DDI prediction tasks. 

One of the persistent challenges is enhancing the 

interpretability of existing models. It is essential to 

understand the roles of different factors in predicting 

effectiveness and the fundamental principles of 

model design to improve interpretability. Biomedical 

elements, including medication interactions and 

properties, involve complex linkages and hidden 

structural information, necessitating the integration 

of diverse data to build reliable models. As a result, 

the successful amalgamation of information from 

multiple sources and the development of strategies 

for its effective use in training models has become a 

critical research focus. The quality of data is essential 

for ascertaining the correctness and reliability of 

analytical results. Obtaining accurate information 

from diverse sources and developing strategies for its 
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effective incorporation into learning models provide 

significant issues requiring future investigation. 

Numerous research studies lack evidence-based 

backing for anticipated results, and reliance simply 

on model assessment criteria is inadequate. 

Thorough clinical validation is required to verify the 

accuracy of forecasts. Current research evaluates 

models from several perspectives; nevertheless, a 

common standard for model assessment is absent 

owing to the varying focal points of the models. 

Consequently, it is essential to assess and contrast 

various models from different viewpoints. 

Researchers are pursuing a comprehensive, 

conclusive highest-quality dataset for evaluating and 

assessing objectives. 

The investigation of drug interaction events is 

increasingly prominent and merits additional 

research; however, no models have been established 

to predict in vivo drug interactions in humans, 

remaining confined to in vitro experiments. 

Advancing the ability to hypothesize potential in 

vivo drug interactions post-administration in specific 

populations would significantly alleviate the burden 

on clinical practitioners and expedite the drug 

development process, representing a pivotal avenue 

for the advancement of drug repurposing initiatives. 

Moreover, asymmetric drug interaction 

investigations show significant potential, with just 

one existing prediction framework, DGATDDI. We 

assert that pioneering research may be undertaken in 

the future based on DGATDDI. 

Currently, it is essential to tackle the issue of the 

imbalance in drug interaction samples. Initially, the 

quantity of drug-drug interactions (DDIs) identified 

from the medical database is markedly lower than the 

amount of drug combinations devoid of DDIs. 

Regrettably, an adequate resolution to address this 

data inconsistency has yet to be identified. Secondly, 

several objectively existing medication interactions 

remain undetected and aren't recorded in established 

databases. Consequently, in the validation of model 

effects or the assessment of metrics, possible false-

negative data (drug combinations without 

interactions) may include unknown drug-drug 

interactions (DDIs). Exploring methods to detect 

these probable false-negative samples is advisable. 

11. Conclusion 

This study thoroughly examines AI-driven 

methodologies to forecast drug relationships, 

classified into three primary categories: estimate of 

unstructured drug relationships, incidence of 

interactions between drugs, and prediction of 

asymmetric drug relationships. Drug-drug 

interaction databases are essential for safeguarding 

patient safety, improving therapeutic efficacy, and 

facilitating clinical decision-making. Additionally, 

they help reduce healthcare costs, promote scientific 

research, and harness technological advancements in 

the healthcare sector. 

In future model creation for DDI issue-solving, one 

may ascertain which problem categories are most 

effectively addressed using the three aforementioned 

methodologies. Additionally, the biological 

databases and datasets frequently utilized in drug 

interaction forecasting are presented. We delineate 

the attributes and impacts of classical models across 

three distinct study domains concerning medication 

interactions, while also addressing the obstacles and 

future possibilities in the identification of drug 

interactions. Ultimately, we anticipate that upon 

reviewing this study, researchers in the domains of 

AI as well as DDI estimation will choose a more 

suitable methodology that corresponds with their 

research competencies. For instance, they may 

concentrate on asymmetric drug relationships inside 

targeted graphs, drug interaction occurrences in 

multi-type forecasts, or unstructured drug 

connections in binary categorization. The initial 

efforts detailed in these three areas may inspire 

researchers for future enhancements and research 

trajectories. 
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 فحص معمق لقواعد بيانات التفاعلات الدوائية: تعزيز سلامة المرضى من خلال النماذج التنبؤية المتقدمة وتقنيات الذكاء الاصطناعي 

 :الخلفية

خطرًا كبيرًا على سلامة المرضى، مما يؤدي إلى آثار جانبية وزيادة في حالات دخول المستشفى. مع تزايد  (DDIs) تشكل التفاعلات الدوائية

ا استخدام الأدوية المتعددة، خاصة بين كبار السن والمرضى الذين يعانون من أمراض مزمنة، أصبح فهم التفاعلات الدوائية والتنبؤ بها أمرً 

 .ضرورياً للإدارة السريرية الفعالة 

 :المنهجية 

تم إجراء بحث منهجي في قواعد  .DDIs تقوم هذه المراجعة بتجميع الأدبيات الحالية حول قواعد بيانات التفاعلات الدوائية ودورها في التنبؤ ب ـ

والتعلم الآلي للتنبؤ بالتفاعلات الدوائية. تم تحليل   (AI) البيانات ذات الصلة، مع التركيز على الدراسات التي تستخدم تقنيات الذكاء الاصطناعي

 .لدراسة مساهماتها في أبحاث التفاعلات الدوائية PharmGKBو  PubChemو  DrugBankقواعد بيانات رئيسية مثل 

 :النتائج 

يد من  تشير النتائج إلى أن الأساليب المدعومة بالذكاء الاصطناعي تعزز بشكل كبير من تحديد التفاعلات الدوائية والتنبؤ بها. تم توظيف العد

لات الدوائية الحرجة،  تقنيات التعلم الآلي، التقليدية وغير التقليدية، لتقييم التفاعلات الدوائية بفعالية. تسلط المراجعة الضوء على أمثلة حقيقية للتفاع

 .لضارةمما يوضح الآثار السريرية لهذه التفاعلات. توفر قواعد البيانات أدوات أساسية لمقدمي الرعاية الصحية لإدارة الأدوية ومنع الأحداث ا

 :الاستنتاج

تركز  أن  ينبغي  العلاج.  المرضى وفعالية  لتحسين سلامة  أمرًا ضرورياً  السريرية  الممارسات  في  الدوائية  التفاعلات  بيانات  قواعد   يعد دمج 

النماذج من خلال التكامل المستمر للبيانات والتحقق من صحتها. من خلال الاستفادة من الأبحاث المستقبلية على تعزيز القدرات التنبؤية لهذه  

 .ضلالتقنيات الحسابية المتقدمة، يمكن لأنظمة الرعاية الصحية التنبؤ بالمخاطر المرتبطة بالتفاعلات الدوائية والتخفيف من حدتها بشكل أف

 :الكلمات المفتاحية

 .التفاعلات الدوائية، الذكاء الاصطناعي، التعلم الآلي، سلامة المرضى، اليقظة الدوائية


