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Abstract:

In this paper, we examine a specialized form of the bicomplex hypergeometric function, known as the k-bicomplex
confluent hypergeometric function (CHF). We introduce a detailed analysis of its properties, focusing on its formulation
with bicomplex parameters, convergence conditions, and derivative and integral representations. By exploring the k-
confluent case, we highlight unique theoretical insights and practical applications, particularly within the framework of
bicomplex k-Riemann-Liouville (R-L) Fractional calculus. Our findings expand the current understanding of bicomplex
functions in applied sciences and mathematical analysis, laying a foundation for further exploration in specialized
functions and fractional operators within the bicomplex domain.
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1 Introduction

The exploration of bicomplex numbers and
fractional calculus has led to substantial
advancements in applied sciences and mathematical
analysis. Bicomplex numbers, introduced by Segre in
1892 [1], extend the complex number field to a
four-dimensional framework, allowing for
complex-valued coefficients and multiple imaginary
units. This number system has broad applications in
areas such as special relativity, fluid dynamics, and
electromagnetic theory. In recent years, several
studies have established foundational aspects of
bicomplex function theory, including the idempotent
representation, which simplifies calculations
involving bicomplex numbers by enabling
term-by-term operations [2,3,4,5,6].

Special functions [7,8] form a core area within
bicomplex analysis, and extending classical functions
to bicomplex variables has proven to be highly
beneficial. For instance, the binomial theorem
formula, Gauss multiplication theorem, and Legendre
duplication provide essential frameworks for
expanding the gamma and beta functions to
bicomplex numbers, as discussed in [9]. Such
extensions have facilitated the development of a more
robust theory of bicomplex special functions,

allowing for new applications and deeper theoretical
insights. Additionally, generalized functions,
including the k-generalized beta and gamma functions
and the k-Pochhammer symbol, presented by
Wu-Sheng and Rafael in 2007 [10], were recently
extended to the bicomplex domain in our previous
work [11]. These generalizations have created a
versatile framework for the study of special functions,
enabling new recurrence relations and identities that
further enrich the field.

Research on hypergeometric functions has seen a
resurgence, as evidenced by the considerable number
of recent publications exploring their applications and
generalizations. Hypergeometric functions are vital in
mathematical analysis, given their wide-ranging
applications and complex relationships with other
special functions and fractional calculus. Many
researchers have developed extensions of
hypergeometric functions and introduced various
k-symbols and k-fractional derivatives, significantly
broadening the scope of these functions [12,13,14,
15].

Additionally, Coloma [16] has contributed to
fractional bicomplex calculus by defining the (R-L)
derivative along the bicomplex basis. This expansion
includes basic functions such as exponentials,
trigonometric functions, and analytic polynomials,
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reflects the growing interest in fractional calculus as a
nearly foundational area of mathematics, alongside
classical calculus. Historically viewed with
skepticism, fractional operators have gained
recognition in recent decades, as differential
equations incorporating fractional operators have
proven highly effective for modeling real-world
phenomena. Applications of fractional calculus span
numerous fields, encompassing biological and
ecological modeling, diffusion, control systems,
signal processing, and viscoelastic systems.

Building on these foundations, special functions
have emerged as a rich area of research within
bicomplex analysis, especially with regard to their
generalized forms. Generalized special functions are
invaluable because many familiar special functions
can be seen as specific cases. In particular, the
hypergeometric function has gained renewed interest
due to its wide applicability in mathematical analysis
and its intricate relationships with fractional calculus.
This paper builds upon our previous work [17], where
we extended the concept of hypergeometric functions
to bicomplex variables and developed integral and
differential representations for bicomplex
hypergeometric functions.

In this work, we delve into a special case of the
bicomplex hypergeometric function, termed the
k-bicomplex (CHF). This function inherits many
essential features of the hypergeometric function
while offering simplifications that broaden its
applicability. We analyze its convergence region,
derive series expansions, and present integral and
differential representations specifically adapted to the
k-confluent case within the bicomplex framework.
Additionally, we extend the theory by incorporating
the k-(R-L) fractional derivative and integral in the
bicomplex domain, proving several essential theorems
to establish a robust theoretical basis for this function.

The k-bicomplex (CHF) holds promise for
applications in fields where differential equations and
special functions involving bicomplex numbers are
relevant, such as quantum mechanics,
electromagnetism, and control theory. By extending
the framework of bicomplex analysis, our findings
contribute to the foundational understanding of
bicomplex numbers and fractional operators,
providing a solid platform for further exploration in
both pure and applied contexts.

2 Preliminaries
The vocabulary and important definitions utilized to
produce the primary findings are introduced in this
section.

2.1 Bicomplex numbers

A group of bicomplex numbers BC that result
from Segre’s work is defined as (see [1,5,6]):
BC= {λ = a1 + jb1, a1, b1 ∈ C }. (1)

where a1 = ε1 + iε2, b2 = ε3 + iε4 and i, j are
independent imaginary units defines as

i2 =−1 = j2, i j = ji = k, ik =− j, jk =−i.

Idempotent Representation
As indicated by e1 =

1+i j
2 and e2 =

1−i j
2 . The two

idempotent zero-divisors elements have the following
traits (see [4,5,6]):

e1 · e2 = 0, e2 · e1 = 0,

e2
1 = e1, e2

2 = e2,

e1 + e2 = 1, e1 − e2 = i j.

The bicomplex number can therefore be written as

λ = a1 + jb1 = λ1e1 +λ2e2, (2)

where λ1, λ2 ∈ C,as = a1 − ib1, λ2 = a1 + ib1.

By converting bicomplex numbers into complex
numbers, idempotent representations (2) make
computations easier. The identities e1 · e2 = 0 and
e2 · e1 = 0 allow us to write certain significant
idempotent qualities as follows: If λ = λ1e1 + λ2e2
and δ = δ1e1 +δ2e2, then (see [5,6])

1. λ ⊗δ = λ1δ1 e1 +λ2δ2 e2,
2. λ +δ = (λ1 +δ1)e1 +(λ2 +δ2)e2,
3. λ n = λ n

1 e1 +λ n
2 e2,

4. eλ = eλ1e1 + eλ2e2,
5. 1

λ
= 1

λ1e1+λ2e2
= 1

λ1
e1 +

1
λ2

e2.

2.2 Special functions

The gamma and beta functions were previously
introduced, respectively, as follows (see [19,20]):

Γ (u) =
∫

∞

0
e−p pu−1 d p. (3)

This holds true for u > 0.

βββ (u,v) =
∫ 1

0
pu−1(1− p)v−1 d p. (4)

It holds true for both u > 0 and v > 0.
The k-gamma and k-beta functions were defined

by Eddy, Rafael, and Wu-Sheng a few years later (see
[10], [21]), beginning with the k-Pochhammer symbol
as:

(δ1)c,k = δ1(δ1 + k)(δ1 +2k) · · ·(δ1 +(c−1)k), (5)

where (δ1)0 = 1, k > 0, c ⩾ 1, and δ1 ∈ C−{0}.

The k-gamma function is defined as [10]

Γk(δ1) =
∫

∞

0
e−

pk
k pδ1−1 d p, (6)

where k > 0, δ1 ∈ C, and Re(δ1)> 0.
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The k-beta function is defined as [10]

βββ k(δ1,δ2) =
1
k

∫ 1

0
p

δ1
k −1(1− p)

δ2
k −1 d p, (7)

βββ k(δ1,δ2) =
Γk(δ1)Γk(δ2)

Γk(δ1 +δ2)
, k > 0, (8)

where δ1,δ2 ∈ C with Re(δ1)> 0 and Re(δ2)> 0.

Rainville in [19] introduced the first definition of
confluent hypergeometric function as:

F(δ1;δ2;λ1) =
∞

∑
c=0

(δ1)c

(δ2)c
⊗

λ c
1

c!
, (9)

where δ1, δ2 and λ1 ∈ C.

Gamma and beta functions in bicomplex numbers
were defined by Mathur and Goyal in 2006.

The bicomplex gamma function’s integral form is
explained by (see [9]).

Γ2(λ ) =
∫
D

e−ψ ⊗ψ
λ−1 ⊗dψ, (10)

where λ = λ1e1 + λ2e2, ψ = ψ1e1 +ψ2e2, ψ1,ψ2 ∈
R+, and D be a domain in BC, D= (d1,d2), with d1 ≡
d1(ψ1) and d2 ≡ d2(ψ2).

For a bicomplex number λ , the Pochhammer
symbol is represented by (see [9]):(
λ
)

c = λ ⊗ ( λ +1)⊗ ( λ +2)⊗ ( λ +3)⊗ . . .

⊗ ( λ + c−1),c ≥ 0.
(11)

According to [9], The following is the definition of the
bicomplex beta function:

βββ 2(λ ,δ ) =
∫
D

ψ
λ−1 ⊗ (1−ψ)δ−1 ⊗dψ, (12)

βββ 2(λ ,δ ) =
Γ2(λ )⊗Γ2(δ )

Γ2(λ +δ )
, (13)

where λ ,δ ,ψ ∈ BC, ψ = ψ1e1 +ψ2e2, ψ1,ψ2 ∈ R+,
and D= (d1,d2) with d1 ≡ d1(ψ1) and d2 ≡ d2(ψ2).

Numerous advancements and applications in
special functions have occurred recently. In 2024,
Bakhet et la. extended the bicomplex gamma and beta
functions (see, [11]) as following:

Γ2,k(λ ) =
∫
D

e−
ψk
k ⊗ψ

λ−1 ⊗dψ, (14)

where λ = λ1e1 +λ2e2, Re(λ1) > 0 and Re(λ2) > 0,
ψ = ψ1e1 +ψ2e2, ψ1,ψ2 ∈ R+, and D= (d1,d2) with
d1 ≡ d1(ψ1) and d2 ≡ d2(ψ2).

They then provided the following definition of the
bicomplex number represented by the k-Pochhammer
symbol (see [11]):(
λ
)

c,k = λ ⊗ ( λ + k)⊗ ( λ +2k)⊗ ( λ +3k)⊗ . . .

⊗ ( λ +(c−1)k)
= (λ1)c,k e1 +(λ2)c,k e2.

(15)

The following is the definition of the k-bicomplex beta
function:

βββ 2,k(λ ,δ ) =
1
k

∫
D

ψ
λ

k −1 ⊗ (1−ψ)
δ

k −1 ⊗dψ, (16)

where k ∈R+, λ ,δ ∈BC, λ = λ1e1+λ2e2, δ = δ1e1+
δ2e2 with Re(λ1) > |Im(λ2)| and Re(δ1) > |Im(δ2)|,
ψ = ψ1e1 +ψ2e2, and ψ1,ψ2 ∈ [0,1].

In 2022, Rekha and Ajit defined the bicomplex
hypergeometric function (see [18]):

F(ζ ,δ ;η ;λ ) =
∞

∑
c=0

(ζ )c(δ )c

(η)c
⊗ λ c

c!
, (17)

where ζ ,δ and λ ∈ BC.

Recently, authors [22] defined bicomplex (CHF) as
following

F(ζ ;δ ;λ ) =
∞

∑
c=0

(ζ )c

(δ )c
⊗ λ c

c!
, (18)

where ζ ,δ and λ ∈ BC; δ = δ1e1+δ2e2, which δ1,δ2
are neither zero nor a negative integer.

3 k-Bicomplex Confluent Hypergeometric
Function (CHF)

The extension of the confluent function in BC is
covered in this section, along with some fundamental
ideas about these functions. We also find the
derivative and integral representations of the
k-bicomplex (CHF) and find its convergence region
with some corollaries.

Theorem 1. Let ζ , δ , and λ ∈ BC , λ = a1 + j b1 =
λ1e1 + λ2e2 , δ = a2 + j b2 = δ1e1 + δ2e2, ζ = a3 +
j b3 = ξ1e1 +ξ2e2, then the k-bicomplex (CHF) yields
as

F k(ζ ;δ ;λ ) =
∞

∑
c=0

(
ζ )c,k

(δ )c,k
⊗ λ c

c!

={Fk(ζ1;δ1;λ1)} e1 +{Fk(ζ2;δ2;λ2)} e2,

(19)

where δ1, δ2 are neither zero nor a negative integer,
and a1,a2,a3,b1,b2,b3 ∈ C.

Proof. Using the idempotent components associated
with e1 and e2, the hyperbolic units to duplicate the
k-bicomplex (CHF). For bicomplex numbers
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ζ , δ , and λ , we get

F k(ζ ;δ ;λ ) =
∞

∑
c=0

(ζ )c,k

(δ )c,k
⊗ λ c

c!

=
∞

∑
c=0

(ξ1e1 +ξ2e2)c,k

(δ1e1 +δ2e2)c,k
⊗ (λ1e1 +λ2e2)

c!

=
∞

∑
c=0

(
(ξ1)c,k e1 +(ξ2)c,k e2

)
(
(δ1)c,k e1 +(δ2)c,k e2

)
⊗ (λ1e1 +λ2e2)

c!

=
∞

∑
c=0

(
λ1(ξ1)c,k

)
e1 +

(
(λ2 ξ2)c,k

)
e2

c! (δ1)c,k e1 + c! (δ2)c,k e2

=

(
∞

∑
c=0

(ξ1)c,k

(δ )c,k

(λ1)

c!

)
e1

+

(
∞

∑
c=0

(ξ1)c,k

(δ1)c,k

(λ1)

c!

)
e2

= {Fk(ζ1;δ1;λ1)} e1 +{Fk(ζ2;δ2;λ2)} e2.

Hence, the proof is completed.

The k-bicomplex (CHF) can also be rewritten as

F k(ζ ; δ ;λ ) =
∞

∑
c=0

(ζ )c,k

(δ )c,k
⊗ λ c

c!
=

∞

∑
c=0

σc,k ⊗λ
c,

which

σc,k =
(ζ )c,k

(δ )c,k ⊗ c!
= σ1,c,k e1 +σ2,c,k e2,

and

σ1,c,k =
(ξ1)c,k

(δ1)c,kc!
, σ2,c,k =

(ξ2)c,k

(δ2)c,kc!
.

Next, we study about this series convergence
region.
Corollary 2. The series (19) is hyperbolically
convergent in the ball BN(0,∞) = {λ : |λ |N <N ∞}
and diverges outside of its closure. Here, |λ |N denotes
the modulus of hyperbolic-valued and |λ |N <N ∞

means that λ can take any finite value in the
bicomplex space (see [3]).

Proof. Assume that λ = λ1 e1 + λ2 e2, δ = δ1 e1 +
δ2 e2, ζ = ξ1e1 + ξ2e2, where ξ1,ξ2,λ1,λ2,δ1,δ2 are
complex numbers. According to [23], we can use the
root and ration test to get

R = lim
c→∞

sup
|σc,k|N
|σc+1,k|N

, provided δ + r,ζ + t /∈O2.

R =

{
lim
c→∞

sup
∣∣∣∣ σ1,c,k

σ1,c+1,k

∣∣∣∣}e1 +

{
lim
c→∞

sup
∣∣∣∣ σ2,c,k

σ2,c+1,k

∣∣∣∣}e2

=

{
lim
c→∞

sup
∣∣∣∣ (ξ1)c,k

(δ1)c,k c!
(δ1)c+1,k (c+1)!

(ξ1)c+1,k

∣∣∣∣}e1

+

{
lim
c→∞

sup
∣∣∣∣ (ξ2)c,k

(δ2)c,k c!
(δ2)c+1,k (c+1)!

(ξ2)c+1,k

∣∣∣∣}e2.

It follows that (ξ1)c+1,k = (ξ1 + ck)(ξ1)c,k

R =

{
lim
c→∞

sup
∣∣∣∣ (δ1 + ck)(c+1)

(ξ1 + ck)

∣∣∣∣}e1

+

{
lim
c→∞

sup
∣∣∣∣ (δ2 + ck)(c+1)

(ξ2 + ck)

∣∣∣∣}e2

= {∞}e1 +{∞}e2 = ∞.

In the ball BN(0,∞) = {λ : |λ |N <N ∞}, the series is
completely hyperbolically convergent and does not
diverge anywhere in the bicomplex plane (see [23]).
This is the proof.
Which O2 is the set of Zero divisors defined in [17].

Theorem 3. Suppose that ζ and δ are bicomplex
numbers, then Integral represention of k-bicomplex
(CHF) is given by:

F k(ζ ;δ ;λ ) =
Γ2,k(δ )

k Γ2,k(ζ ) ⊗ Γ2,k(δ −ζ )

∫
D
(1−ψ)

δ−ζ

k −1

⊗ψ
ζ

k −1 ⊗ eλ⊗ψ ⊗dψ.

For any finite value λ in the bicomplex space , which
ψ = ψ1e1 +ψ2e2 ∈ BC, ψ1 and ψ2 ∈ [0,1], and D
is a curve in BC made up of two components d1, d2
in C.

Proof. From the idempotent representation of the
k-bicomplex (CHF) and under the above conditions,
we have

F k(ζ ;δ ;λ ) =
∞

∑
c=0

(ζ )c,k

(δ )c,k
⊗ λ c

c!

=

{
∞

∑
c=0

(ξ1)c,k

(δ1)c,k
⊗

λ c
1

c!

}
e1

+

{
∞

∑
c=0

(ξ2)c,k

(δ2)c,k
⊗ λ c

c!

}
e2.

From the k-Pochhammer symbol’s definition we

can used (λ1)c,k =
Γk(λ1 + ck)

Γk(λ1)
, then
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F k(ζ ;δ ;λ ) =

{
Γk (δ1)

Γk (ξ1)

∞

∑
c=0

Γk (ξ1 + ck)
Γk (δ1 + ck)

×
λ c

1
c!

× Γk (δ1 −ξ1)

Γk (δ1 −ξ1)

}
e1

+

{
Γk (δ2)

Γk (ξ2)

∞

∑
c=0

Γk (ξ2 + ck)
Γk (δ2 + ck)

×
λ c

2
c!

× Γk (δ2 −ξ2)

Γk (δ2 −ξ2)

}
e2

=

{
Γk (δ1)

Γk (ξ1)Γk (δ1 −ξ1)

×
∞

∑
c=0

Γk (ξ1 + ck)×Γk(δ1 −ξ1)

Γk (δ1 + ck)
×

λ c
1

c!

}
e1

+

{
Γk (δ2)

Γk (ξ2)Γk (δ2 −ξ2)

×
∞

∑
c=0

Γk (ξ2 + ck)×Γk(δ2 −ξ2)

Γk (δ2 + ck)
×

λ c
2

c!

}
e2

=

{
Γk (δ1)

Γk (ξ1)Γk (δ1 −ξ1)

×
∞

∑
c=0

βk(ξ1 + ck,δ1 −ξ1)×
λ c

1
c!

}
e1

+

{
Γk (δ2)

Γk (ξ2)Γk (δ2 −ξ2)

×
∞

∑
c=0

βk(ξ2 + ck,δ2 −ξ2)×
λ c

2
c!

}
e2.

By using k-beta function definition in eq. 7, we get

F k(ζ ;δ ;λ ) =

{
Γk (δ1)

Γk (ξ1)Γk (δ1 −ξ1)

×
∞

∑
c=0

1
k

∫ 1

0
(1−ψ1)

δ1−ξ1
k −1

ψ

ξ1+ck
k −1

1 dψ1 ×
λ c

1
c!

}
e1

+

{
Γk (δ2)

Γk (ξ2)Γk (δ2 −ξ2)

×
∞

∑
c=0

1
k

∫ 1

0
(1−ψ2)

δ2−ξ2
k −1

ψ

ξ2+ck
k −1

2 dψ2 ×
λ c

2
c!

}
e2

=

{
Γk (δ1)

k Γk (ξ1)Γk (δ1 −ξ1)

×
∫ 1

0
(1−ψ1)

δ1−ξ1
k −1

ψ

ξ1
k −1

1 ×
∞

∑
c=0

(λ1ψ1)
c

c!
dψ1

}
e1

+

{
Γk (δ2)

k Γk (ξ2)Γk (δ2 −ξ2)

×
∫ 1

0
(1−ψ2)

δ2−ξ2
k −1

ψ

ξ2
k −1

2 ×
∞

∑
c=0

(λ2ψ2)
c

c!
dψ2

}
e2

=

{
Γk (δ1)

k Γk (ξ1)Γk (δ1 −ξ1)

×
∫ 1

0
(1−ψ1)

δ1−ξ1
k −1

ψ

ξ1
k −1

1 eλ1ψ1 dψ1

}
e1

+

{
Γk (δ2)

k Γk (ξ2)Γk (δ2 −ξ2)

×
∫ 1

0
(1−ψ2)

δ2−ξ2
k −1

ψ

ξ2
k −1

2 eλ2ψ2 dψ2

}
e2

=
Γ2,k(δ )

k Γ2,k(ζ ) ⊗ Γ2,k(δ −ζ )

⊗
∫
D
(1−ψ)

δ−ζ

k −1⊗ψ
ζ

k −1 ⊗ eλ⊗ψ ⊗dψ.

This completes the proof.

Remark 4. If ζ , δ , and λ ∈C, we obtain the integral
representation of k-(CHF) (see, [24]), and if we put
k = 1, we get the integral representation of (CHF) (see,
[19]).

Theorem 5. Assume that ζ ,δ and λ ∈BC. Then the
mth derivative of k-bicomplex (CHF) is given by
dm

dλ m

[
F k(ζ ;δ ;λ )

]
=

(ζ )c,k

(λ )c,k
⊗F k(ζ + ck;δ + ck;λ ), k > 0.

(20)

Proof.
When m = 0, the relation is correct , then when

m = 1, we have

d
dλ

[Ψk(ζ ;δ ;λ )] =
d

dλ

(
∞

∑
c=0

(ζ )c,k

(δ )c,k
⊗ λ c

c!

)

=
∞

∑
c=1

(ζ )c,k

(δ )c,k
⊗ λ c−1

(c−1)!
(let c = v+1)

=
∞

∑
v=0

(ζ )v+1,k

(λ )v+1,k
⊗ λ v

(v)!

=
ζ

δ
⊗

∞

∑
c=0

(ζ + k)c,k

(λ + k)c,k
⊗ λ c

(c)!
,

which (ζ )c+1,k =ζ ⊗ (ζ + k)c,k.

Likewise, we obtain the 2nd differential, which

d2

dλ 2

[
F k(ζ ;δ ;λ )

]
=

d2

dλ 2

(
∞

∑
c=0

(ζ )c,k

(δ )c,k
⊗ λ c

c!

)

=
ζ ⊗ (ζ + k)
δ ⊗ (δ + k)

⊗
∞

∑
c=0

(ζ +2k)c,k

(δ +2k)c,k
⊗ λ c

(c)!
.
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By differentiation m times, then we obtain the general
relation:

dm

dλ m

[
F k(ζ ;δ ;λ )

]
=
(ζ )c,k

(δ )c,k
⊗

∞

∑
c=0

(ζ + ck)c,k

(δ + ck)c,k
⊗ λ c

c!

=
(ζ )c,k

(δ )c,k
⊗F k(ζ + ck;δ + ck;λ ).

This concludes the proof of the theorem.

4 Application

The following is how the authors [17] defined
k-Bicomplex R-L Fractional Calculus :

The k-Bicomplex R-L Fractional integration is
provided by :

0Iα

k,λ F(λ ) =
1

k Γ2,k(α)

⊗
∫

λ

0
(λ−ψ)

α

k −1 ⊗F(ψ)⊗dψ, k ∈ R+,

(21)

where λ ,α and ψ ∈ BC, λ = a1 + jb1 = λ1e1 +λ2e2,
with Re(a1) > | Im(b1)|, α = α1e1 + α2e2, with
Re(α1) > 0, Re(α2) > 0. and ψ = ψ1e1 + ψ2e2,
ψ1,ψ2 ∈ R+.

The fractional derivative k-R-L of a bicomplex
function F of order α can be written as follows:

(0Dα

k,λ F)(λ ) = 0Dµ

k,λ (0D−(µ−α)
k,λ F(λ ))

=
1

kΓ2,k(µ −α)

⊗ dµ

dλ µ

∫
λ

0
(λ −ψ)

µ−α

k −1 ⊗F(ψ)⊗dψ,

(22)

which λ ,α and ψ ∈ BC, λ = a1 + jb1 = λ1e1 +λ2e2,
with Re(a1)> | Im(b1)|, α = σ1 + jσ2 = α1e1 +α2e2,
with Re(α1) > 0, Re(α2) > 0 and µ = [Re(σ1)]+ 1.
ψ = ψ1e1 +ψ2e2, ψ1,ψ2 ∈ R+.

Definition 6. Assume ζ ∈ BC. The bicomplex k-Fox
-Wright function is defined by the formula:

pΨ
k
p = pΨ

k
q

[
(Mn,Pn)1,p
(Nm,Qm)1,q

;ζ

]
=

∞

∑
u=0

∏
p
n=1 Γ2,k(Mnu+Pn)

∏
q
m=1 Γ2,k(Nmu+Qm)

⊗ ζ u

u!
,

(23)

where p and q denote the function numerators and
denominators, respectively. Mn,Nm,Pn and
Qm ∈ BC,n = 1,2, . . . , p;m = 1,2, . . . ,q. Such that

1+
q

∑
m=1

Qm −
p

∑
n=1

Pn ≥ 0.

The bicomplex k-R-L fractional operator is applied
to the k-bicomplex (CHF) in this section.

Theorem 7. Suppose that the bicomplex function
F k(ζ ;δ ;λ ) is piecewise continuous on O′ = (0,∞)

and integrable on any finite subinterval of O = [0,∞),
then

0Iα

k,λ [F
k(ζ ;δ ;λ )]

= λ
α

k ⊗
Γ2,k(δ )

Γ2,k(ζ )
⊗2Ψ

k
2

[
(k,ζ ),(k,k)
(k,δ ),(k,α + k) ;λ

]
,

(24)

where ζ ,δ ,λ ,α and ψ ∈ BC, k > 0, ψ = ψ1 + jψ2,
with ψ1,ψ2 ∈ R+.

Proof. Applying the k-R-L fractional operator (21) to
the k-bicomplex (CHF) (19), we obtain

0Iα

k,λ [F
k(ζ ;δ ;λ )] = 0Iα

k,λ

[
∞

∑
c=0

(ζ )c,k

(δ )c,k
⊗ λ c

c!

]

=
1

kΓ2,k(α)
⊗
∫

λ

0
(λ −ψ)

α

k −1 ⊗F k(ζ ;δ ;ψ)⊗dψ

=
1

kΓ2,k(α)
⊗
∫

λ

0
(λ −ψ)

α

k −1

⊗

[
∞

∑
c=0

(ζ )c,k

(δ )c,k
⊗ ψc

c!

]
⊗dψ

=
1

kΓ2,k(α)
⊗

∞

∑
c=0

(ζ )c,k

(δ )c,k c!

⊗
∫

λ

0
(λ −ψ)

α

k −1 ⊗ψ
c ⊗dψ

=
1

kΓ2,k(α)
⊗

∞

∑
c=0

(ζ )c,k

(δ )c,k c!

⊗
∫

λ

0

(
1− ψ

λ

) α

k −1
⊗λ

α

k −1 ⊗ψ
c ⊗dψ

=

{
1

kΓk(α1)

∞

∑
c=0

(ξ1)c,k

(δ1)c,k c!

×
∫

λ1

0

(
1− ψ1

λ1

) α1
k −1

λ

α1
k −1

1 ψ
c
1 dψ1

}
e1

+

{
1

kΓk(α2)

∞

∑
c=0

(ξ2)c,k

(δ2)c,k c!

×
∫

λ2

0

(
1− ψ2

λ2

) α2
k −1

λ

α2
k −1

2 ψ
c
2 dψ2

}
e2,

where I1 =
∫

λ1

0

(
1− ψ1

λ1

) α1
k −1

λ

α1
k −1

1 ψ
c
1 dψ1,

I2 =
∫

λ2

0

(
1− ψ2

λ2

) α2
k −1

λ

α2
k −1

2 ψ
c
2 dψ2.

Let n1 = ψ1
λ1
, when ψ1 = 0, n1 = 0, when

ψ1 = λ1, n1 = 1.
Then

I1 =
∫ 1

0
(1−n1)

α1
k −1

λ

α1
k +c

1 nc
1 dn1,

similarly I2 =
∫ 1

0
(1−n2)

α2
k −1

λ

α2
k +c

2 nc
2 dn2.
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Then

0Iα

k,λ [F
k(ζ ;δ ;λ )]

=
λ

α

k

kΓ2,k(α)
⊗

∞

∑
c=0

(ζ )c,k

(δ )c,k
⊗ λ c

c!
⊗
∫ 1

0
(1−N)

α

k −1 ⊗Nc ⊗dN

=
λ

α

k

Γ2,k(α)
⊗

∞

∑
c=0

(ζ )c,k

(δ )c,k
⊗ λ c

c!
⊗βββ 2,k (α,ck+ k)

=λ
α

k ⊗
∞

∑
c=0

(ζ )c,k

(δ )c,k
⊗ λ c

c!
⊗

Γ2,k(ck+ k)
Γ2,k(α + ck+ k)

=λ
α

k ⊗
Γ2,k(δ )

Γ2,k(ζ )
⊗

∞

∑
c=0

Γ2,k(ζ + ck)
Γ2,k(δ + ck)

⊗
Γ2,k(ck+ k)

Γ2,k(α + ck+ k)
⊗ λ c

c!

=λ
α

k ⊗
Γ2,k(δ )

Γ2,k(ζ )
⊗ 2Ψ

k
2

[
(k,ζ ),(k,k)
(k,δ ),(k,α + k) ;λ

]
.

Where 2Ψ
k

2 represent bicomplex k-Fox-Wright
function that defined in eq. (23). Thus, the proof is
finished.

Theorem 8. Assume that F k(ζ ;α;λ ) be a piecewise
bicomplex function that continuous on O′ = (0,∞),
and integrable on any finite subinterval of O = [0,∞).
Consider µ = Re(a1) + 1, where λ = a1 + jb1,
a1, b1 ∈ C, with µ −1 < α < µ , Then

0Dα

k,λ [F
k(ζ ;δ ;λ )] =

λ
µ−α

k −µ

kµ
⊗

Γ2,k(δ )

Γ2,k(ζ )

⊗ 3Ψ
k

3

[
(k,ζ ),(k,µ −α + k),(k,k)
(k,δ ),(k,µ −α −µk+ k),(ck,µ −α + k) ;λ

]
.

(25)

Proof. Applying the bicomplex k-R-L fractional
operator (22) to the k-bicomplex (CHF) (19), we
obtain

0Dα

k,λ [F
k(ζ ;δ ;λ )] =

1
kΓ2,k(µ −α)

⊗ dµ

dλ µ

⊗
∫

λ

0
(λ −ψ)

µ−α

k −1⊗F k(ζ ;δ ;ψ)⊗dψ

=
1

kΓ2,k(µ −α)
⊗ dµ

dλ µ

⊗
∫

λ

0
(λ −ψ)

µ−α

k −1 ⊗
∞

∑
c=0

(ζ )c,k

(δ )c,k
⊗ ψc

c!
⊗dψ

=
1

kΓ2,k(µ −α)
⊗

∞

∑
c=0

(ζ )c,k

(δ )c,k c!
⊗ dµ

dλ µ

⊗
∫

λ

0
(λ −ψ)

µ−α

k −1 ⊗ψ
c ⊗dψ.

Let I =
∫

λ

0
(λ −ψ)

µ−α

k −1 ⊗ψ
c ⊗dψ

=λ
µ−α

k −1 ⊗
∫

λ

0
(1− ψ

λ
)

µ−α

k −1 ⊗ψ
c ⊗dψ

=

{
λ

µ1−α1
k −1

1

∫
λ1

0
(1− ψ1

λ1
)

µ1−α1
k −1 ⊗ψ

c
1 ⊗dψ1

}
e1

+

{
λ

µ2−α2
k −1

2

∫
λ2

0
(1− ψ2

λ2
)

µ2−α2
k −1 ⊗ψ

c
2 ⊗dψ2

}
e2

=I1 e1 + I2 e2,

where I1 = λ

µ1−α1
k −1

1

∫
λ1

0
(1− ψ1

λ1
)

µ1−α1
k −1 ⊗ψ

c
1 ⊗dψ1,

I2 = λ

µ2−α2
k −1

2

∫
λ2

0
(1− ψ2

λ2
)

µ2−α2
k −1 ⊗ψ

c
2 ⊗dψ2.

Suppose that n1 =
ψ1
λ1

. When ψ1 = 0, n1 = 0 and when
ψ1 = µ1,n1 = 1. Then

I1 =λ

µ1−α1
k +c

1

∫ 1

0
(1−n1)

µ1−α1
k −1 ⊗nc

1 ⊗dn1,

similarly I2 =λ

µ2−α2
k +c

2

∫ 1

0
(1−n2)

µ2−α2
k −1 ⊗nc

2 ⊗dn2.

Then

0Dα

k,λ [F
k(ζ ;δ ;λ )]

=
1

kΓ2,k(µ −α)
⊗

∞

∑
c=0

(ζ )c,k

(δ )c,k
⊗ dµ

dλ µ

[
λ

µ−α

k +c
]

⊗
∫ 1

0
(1−N)

µ−α

k −1 ⊗Nc ⊗dN

=
1

Γ2,k(µ −α)
⊗

∞

∑
c=0

(ζ )c,k

(δ )c,k c!
⊗ dµ

dλ µ

[
λ

µ−α

k +c
]

⊗βββ 2,k (µ −α,ck+ k)

=
∞

∑
c=0

(ζ )c,k

(δ )c,k c!
⊗

Γ2
(

µ−α

k + c+1
)

Γ2
(

µ−α

k + c−µ +1
)

⊗λ
µ−α

k +c−µ ⊗
Γ2,k(ck+ k)

Γ2,k(µ −α + ck+ k)
,

using property Γ2,k(ζ ) = k
ζ

k −1 ⊗Γ2

(
ζ

k

)
, then

0Dα

k,λ [F
k(ζ ;δ ;λ )] =λ

µ−α

k −µ
∞

∑
s=0

(ζ )s,k

(δ )s,k

⊗
k−µ ⊗Γ2,k(µ −α + ck+ k)
Γ2,k (µ −α + ck−µk+ k)

⊗
Γ2,k(ck+ k)

Γ2,k(µ −α + ck+ k)
⊗ λ c

c!

=
λ

µ−α

k −µ

kµ
⊗

Γ2,k(δ )

Γ2,k(ζ )

⊗ 3Ψ
k

3

[
(k,ζ ),(k,µ −α + k),(k,k)
(k,δ ),(k,µ −α −µk+ k),(k,µ −α + k) ;λ

]
.

The theorem has been clearly explained.

5 Conclusion

In this paper, we introduced the k-bicomplex (CHF)
and developed a foundational theory for this special
function within the framework of bicomplex analysis.
By applying bicomplex parameters to the (CHF), we
established its series representation and convergence
properties. We also formulated integral and
differential representations specific to the bicomplex
k-confluent case, which serve as essential tools for
further analysis. Utilizing the k-R-L fractional
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calculus, we proved several new theorems that extend
the utility of fractional operators within the bicomplex
domain.

Our results underscore the versatility and potential
applications of the k-bicomplex (CHF) in
mathematical modeling, physics, and engineering
fields where complex systems require advanced
analytic tools. By providing a framework for these
functions and fractional operators, we contribute to
the ongoing expansion of bicomplex special
functions, enhancing their applicability in diverse
contexts.

Looking forward, further research could explore
applications of the k-bicomplex (CHF) in solving
differential equations and in mathematical physics,
particularly in areas like quantum mechanics, control
systems, and electromagnetic theory. Additionally,
exploring connections between k-bicomplex (CHF)
and other classes of special functions could yield new
insights and broaden the theoretical scope of
bicomplex analysis. These findings set the stage for
the continued development of bicomplex function
theory and its applications in both theoretical and
applied sciences.
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