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Abstract. This study presents the development of a hybrid Fractional Order

Dierential Equation (FODE) and Articial Neural Network (ANN) model de-

signed to predict the dynamics of Tuberculosis (TB) in Nigeria. The analysis

utilized data sourced from the World Health Organization (WHO) TB Data-

base and the Nigeria category, spanning the years 2010 to 2020. The Caputo

derivative was used to formulate the fractional tuberculosis model which was

enhanced with an ANN framework. The derived FODEs were discretized using

the Grünwald-Letnikov method for parameter estimation and numerical simu-

lation of the TB data in MATLAB, employing varying memory values for the

fractional-order model parameter 0 < α ≤ 1. To enhance predictive accuracy,

we integrate an Articial Neural Network (ANN) with the FDE model, lever-

aging machine learning techniques for parameter estimation and forecasting.

The ANN is trained using real-world TB data, employing the sigmoid function

to represent time-dependent transmission rates. Our results demonstrate that

the fractional-order model provides a more exible and accurate representa-

tion of TB dynamics compared to classical integer-order models. The proposed

hybrid approach eectively captures disease trends, making it a valuable tool

for epidemiological analysis and public health decision-making.

1. Introduction

Tuberculosis (TB) has long posed a signicant threat to global health. According
to the World Health Organization (WHO) in 2020, there were an estimated 10
million new cases of active TB worldwide, translating to approximately 130 cases
per 100,000 people. TB aects individuals across all countries and age groups.
In 2019, the distribution of cases indicated that 56% were adult males, 32% were
adult females, and 12% were children. The disease remains a major health concern,
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particularly in Low- and Middle-Income Countries (LMICs). Nigeria, for example,
ranks 6th among the 30 countries with the highest TB burden globally and hold the
top spot in Africa (GHE, 2020). In 2017, Nigeria was one of the top three countries
responsible for 80% of the global gap between TB incidence and reported cases
[1]. Additionally, Nigeria is classied as one of the 14 high-burden countries for
TB, TB/HIV co-infections, and multi-drugresistant TB. In 2018, it was reported
that around 30,000 children in Nigeria develop TB annually, and an alarming 18
people succumb to the disease every hour equating to 436 daily deaths (Centre for
Disease Control and Prevention, 2019). This alarming situation underscores the
urgent need for eective strategies to curb the spread of TB, a highly contagious
airborne disease, and to protect lives.

TB is an airborne infectious disease caused by the bacterium Mycobacterium
tuberculosis (MTB). TB is categorized into two types based on the area it aects.
When the bacteria target the lungs and nearby regions, it is referred to as Pul-
monary Tuberculosis (PTB). If the bacteria spread to other parts of the body, it
is classied as Extra-Pulmonary Tuberculosis (EPTB). There are also two primary
conditions of TB that are signicant contributors to TB-related deaths worldwide,
making them critical global health concerns: Active Tuberculosis (ATB) and Latent
Tuberculosis (LTB). Active TB occurs when the bacteria are active and multiply-
ing within the body. Individuals with active TB may exhibit symptoms such as
a persistent cough lasting over three weeks, weight loss, night sweats, weakness,
fever, chills, coughing up blood, increased mucus production, chest pain, and loss
of appetite. They can spread the bacteria to others through the air when they
talk, cough, laugh, or sneeze [2]. While TB primarily aects the lungs, it can oc-
casionally impact other parts of the body, including the brain, spine, and kidneys
[3]. Active TB is diagnosed through various methods, such as a skin test, blood
test, chest X-ray, positive sputum smear culture, or a combination of these. In
contrast, latent TB remains dormant in the body, does not cause symptoms, and
cannot be transmitted to others. It is typically identied when an individual tests
positive via a skin test or blood test [3]. Risk factors contributing to the devel-
opment of TB include a weakened immune system caused by conditions such as
HIV/AIDS, diabetes, and cancer. Additional factors include smoking, overcrowded
living conditions, prisons, substance abuse, alcoholism, end-stage renal disease, and
malnutrition, particularly among healthcare workers [4]. TB is an infectious dis-
ease that can be treated and cured using antibiotics. Prevention measures include
administering BCG vaccines to infants and healthcare workers, covering the mouth
when coughing or sneezing, and proper handling of sputum by laboratory personnel
[5, 6].

The use of fractional derivatives in epidemiological modeling has gained sig-
nicance due to their ability to account for the memory eects naturally present
in many biological systems. Fractional derivative models provide a realistic rep-
resentation of phenomena associated with the problem being studied [7]. These
derivatives and integrals eectively capture the memory and hereditary charac-
teristics inherent in various materials and processes[8]. As a result, non-integer
models exhibit memory eects, and many operators possess cross-over properties
that improve predictive accuracy.

Caputo and Fabrizio [9] introduced a new denition of fractional derivatives with-
out a singular kernel, which has proven eective. Many researchers have adopted



JFCA-2025/16(1) PREDICTING THE TRANSMISSION DYNAMICS OF TUBERCULOSIS 3

this approach and further explored the concept of fractional derivatives and their
application to hysteresis phenomena, particularly in 2017 [10, 11]. Fractional-order
models eectively account for the memory eects associated with diseases. They
are also widely recognized for their suitability in data tting, oering exibility
through a range of fractional-order parameter options. In recent years, numerous
studies have focused on fractional dierential equation models for tuberculosis (TB).
Fatmawati et al.[7] introduced a new fractional-order mathematical model for TB
transmission dynamics, categorizing the population into two groups: children and
adults. Their research utilized a novel fractional order to examine the dynamics of
TB transmission within these age groups. They proposed an innovative numerical
method to solve the fractional-order equations and employed two fractional oper-
ators, Caputo and Atangana-Baleanu, with graphical comparisons of their results
provided. Saima et al. [12] introduced a novel mathematical framework using gen-
eralized fractional-order derivatives to analyze a TB model with treatment. Their
study employed a generalized Caputo fractional derivative to investigate the non-
linear dynamics of the TB model, using Nigeria as a case study.

Saif Ullah et al. [13] developed a fractional model to study the dynamics of
tuberculosis (TB) infection using the Caputo-Fabrizio derivative. Their research
analyzed TB dynamics using conrmed cases reported by the National Tuberculo-
sis Program in Khyber Pakhtunkhwa, Pakistan, between 2002 and 2017 to estimate
the model’s biological parameters. They applied the Adams-Bashforth technique
to derive an iterative solution for the model. The study found that the fractional
TB model in the Caputo-Fabrizio sense provided valuable insights into the model’s
complexity and oered reliable information for both integer and non-integer cases.
A valuable approach in studying the epidemiology of TB is the application of Arti-
cial Intelligence (AI) methods for evaluating TB transmission and diagnosis. The
use of computer technologies has become increasingly signicant in TB diagnostic
procedures. In this context, Articial Neural Networks (ANNs) are computational
models designed to mimic the human brain. They comprise interconnected nodes
(neurons) that process information, leveraging their self-learning capabilities to
produce more accurate and reliable results. Syeda Meraj et al. [14] reviewed the
application of articial intelligence in diagnosing TB.

The research was motivated by the rising number of TB infections in Nigeria,
which ranks 6th among the countries with the highest TB burden globally and
1st in Africa. Despite signicant eorts by the Federal Government of Nigeria,
the National Tuberculosis and Leprosy Control Program (NTBLCP), the Ministry
of Health, and the WHO to combat the disease, TB remains a pressing public
health challenge. To date, no mathematical model incorporating hybrid fractional
dierential equations and ANN methods has been proposed to simulate and predict
the spread of TB in Nigeria. This study aims to ll that gap by formulating a hybrid
fractional dierential equation model combined with ANN techniques to forecast the
transmission dynamics of TB in the country. ANN establishes patterns for precise
calculations at each node in the architecture, driven by the sigmoid function. On
the other hand, FODE incorporate memory eects associated with diseases, making
them well-suited for data tting and prediction, with the exibility to select various
fractional order parameters, . Combining FODE with ANN creates an eective
tool for data tting and prediction. ANN performs accurate calculations of input
data at each node, while FODE predicts the output data generated by the ANN
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framework. This integration forms the foundation for using the hybrid FODE/ANN
model to predict TB transmission in Nigeria.

2. Material and Methods

2.1. Methodology of Fractional Dierential Equation Models. The model
is an SEIRS epidemic type introduced by infecting one individual. The model de-
scribes the transmission dynamics of a population that is susceptible to infection by
Mycobacterium tuberculosis. This model on the spread of TB transmission consists
of four compartments according to the disease related to the individual, namely;
Susceptible S(t), Exposed E(t), Infected I(t), and Recovered R(t) at any given
time, t. The model explains the transmission dynamics of a population suscepti-
ble to infection by Mycobacterium tuberculosis. In this framework, individuals in
the latent stage are not infectious, while those in the infected compartment have
active TB bacteria and can transmit the disease. Individuals in the recovered com-
partment have undergone treatment, recovered from TB , and acquired temporary
immunity. However, they eventually return to the susceptible compartment and
can be reinfected [15]. The population has two parameters, the birth rate b and
the death rate µ; and the model disease has ve compartments, the transmission
rate , the progression rate to infection  the recovery rate , the disease death
rate  and the acquired immunity temporary rate θ. The population size at time
t, is N(t) = S(t) + E(t) + I(t) + R(t) (when n is important an n -index is added).
The populates then initiate at Z(0) = S(0), E(0), I(0), R(0) = (n− 1, 1, 0, 0).
Considering the description, assumptions variables, and parameters, the system
dynamics of TB transmission is shown in Figure 1:

Figure 1. Schematic representation of tuberculosis transmission.
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The deterministic SEIRS model is given by the following system of ordinary
dierential equations:

dS(t)

dt
= bN − S(t)I(t)− µS(t) + θR(t) (1)

dE(t)

dt
= S(t)I(t)− (+ µ)E(t), (2)

dI(t)

dt
= E(t)− ( + µ+ )I(t), (3)

dR(t)

dt
= (t)− (µ+ θ)R(t), (4)

S(0) > 0;E(0) > 0; I(0) > 0;R(0) ≥ 0

We derive our model equations using fractional dierential equations, as they oer
an eective method for predicting and describing memory characteristics, a fun-
damental feature of biological systems [16]. The fractional-order model for TB
transmission, expressed in the Caputo sense, is presented in equation 5-8:

cDα
t S = b− S(t)I(t)− µS(t) + θR(t), (5)

cDα
t E = S(t)I(t)− (+ µ)E(t), (6)

cDα
t I = E(t)− ( + µ+ )I(t) (7)

,

cDα
t R = I(t)− (θ + µ)R(t), (8)

where cDα
t is the left Caputo derivative of order  ∈ [0, 1], represents the fractional

order and 0 <  ≤ 1.
The initial values for the model variables in the fractional order model are given
by:

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0 (9)

2.2. Grünwald-Letnikov Method. We use the Grünwald-Letnikov Method ac-
cording to Dorcak [17] for our numerical simulation in Matlab. The relation for the
numerical approximation of − tk derivative at the point kh, (k = 1, 2, 3,   ) has
the following form:

(K − Lmh)Dα
tkf(t) ≈ hα

k

j

(−1)jf (tk−1) = hα
k

j=v

Cα
−jf (tk−j) , (10)

where Lm is the memory length, tk = kh, where h the time is a step of calculation
and Cj(j = 1, 2, 3,   ) are binomial coecients. For their calculation, we can
use for instance the following expression:

Cα
0 = 1, Cα

j =


1− 1 + 

j


Cα

j−1 (11)
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A general numerical solution of a non-linear fractional dierential equation in the
form

aD
α
t y(t) = f(y(t)) (12)

This is expressed using the relations 11 and 12 as follow:

y (tk) = f (y (tk) , tk)h
α −


Cα

j f (tk−j) , (13)

The proposed numerical simulation on the set of four non-linear FODEs used for
describing the mathematical model for predicting TB in 5 - 8 with fractional order
 has a solution of the form:

S (tk) = [b− S (tk−1)) (tk−1)− µ (tk−1) + θR (tk−1)h
α −

k

j=v

Cα
j S (tk−j)

E (tk) = [S (tk) I (tk−1)− (+ µ)E (tk−1)]h
α −

k

j=v

Cα
j E (tk−j)

I (tk) = [ηE (tk−1)− ( +m+ σ)I (tk−1)]h
α −

k

j=v

Cα
j I (tk−j)

R (tk) = [ (tk)− (µ+ θ)R (tk−1)]h
α −

k

j=v

Cα
j R (tk−j)

(14)

2.3. Fitting Data on FODE Model. In this study, a numerical solution for the
model is obtained by tting TB data to the FODE model to validate the accuracy
of the data. The Grünwald-Letnikov method is applied to derive explicit solutions
for the non-linear fractional order dierential equation. Initially, the system of
equations for the TB model is discretized, as shown in equation (14), and a MAT-
LAB code is developed to simulate the system. The time horizon for the simulation
spans 11 years. For parameter estimation, the rst curve t function in MATLAB
is utilized, employing the Levenberg-Marquardt algorithm. Additionally, the sig-
moid function is used to calculate the transmission rate (t), considering the time
dependency of the transmission parameters.

2.4. Description of Articial Neural Network (ANN). An Articial Neural
Network (ANN) is a highly interconnected network of multiple processing units,
referred to as neurons, structured in a manner that mimics the human brain. The
fundamental objective of neural networks is to transform input data into meaningful
outputs. These computational models operate in parallel, utilizing numerous simple
units, and are particularly eective in tasks such as pattern recognition [18].

A standard ANN model comprises three distinct layers with interconnected nodes
that facilitate signal transmission between them: the input layer, hidden layer,
and output layer. Neurons within the network are linked and interact with one
another. Each node receives input data, processes it through basic computations,
and transmits the output to the subsequent neuron. This output, known as the
activation or node value, is determined by assigned weights for each connection.
The ANN framework is systematically structured into the following three layers:
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• Layer 1 (Input layer): this is the rst layer that receives the input values
or data.

• Layer 2 (Hidden layer): this is the second layer where the computations
are carried out to give the required output. Weights are being adjusted at
each node to the desired output. This is also where learning or training is
carried out at this stage. This is the determinant of the output. It is made
up of a set of neurons between inputs and output layers. The layers can be
single or multiple depending on the desired model output.

• Layer 3 (Output layer): The output layer typically consists of multiple
neurons corresponding to the predicted compartments of the model. In this
case, the output includes Susceptible (S), Exposed (E), Infected (I), and
Recovered (R) individuals. Each output neuron provides a value ranging
between 0 and 1, representing the proportion of the population in each
compartment. The number of output neurons depends on the training of
the model to capture the required epidemiological dynamics.

Figure 2. Articial Neural Network Scheme for SEIR TB model.

2.5. Articial Neural Network Model Analysis. For the NN model analysis,
we utilized an ANN, specically a simple feed-forward neural network, to predict
TB cases for a given year. The model comprises three layers: an input layer, two
hidden layers with multiple nodes, and an output layer. The input layer consists of
four nodes, corresponding to the four input variables Susceptible (S), Exposed (E),
Infected (I), and Recovered (R) from the SEIR TB model. The data used for simu-
lation includes either yearly conrmed infection cases or cumulative infection cases.
Since these plots exhibit non-linear trends, they can be eectively represented using
an exponential function, such as the sigmoid function, which is expressed as follows:
Sigmoid function = 1

1+e−a(t−c)
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Here, a represents the power gain (exponent), which can be either positive or neg-
ative, while c denotes the time constant. The sigmoid function remains positive
regardless of the signs of these parameters, ensuring its suitability for representing
physical components such as the variables in this model. At each time c, when
a signicant change occurs in the reported data, the sigmoid function adjusts its
magnitude to determine new parameter values. In other words, the newly proposed
rate function is composed of multiple branches of sigmoid functions, each charac-
terized by a distinct gain and time constant. The nal rate function is obtained by
summing these branch functions, as expressed below:

Rate Function (1) =
n

i=1
g(i)

1+e−a(t−c(i))

where g is the gain of the branch −i. The following rate function is the latter
concept with a generalized infection or recovery rate function used for tracking
the problem. The higher the number of branches (n) the smoother and better the
correlation between the reported and the
simulated plots. The generalized rate is given by:

R(t) =





n
i=1

 g(i)
1+e−a(t−0) − g(i+1)

1+e−a(t−c(1))

 , for i = 1

n−1
i=2


g(i)

1+e−a(t−c(i)) − g(i+1)
1+e−a(t−c(i+))


, for i ̸= {1, n}

n
i=1

g(i)
1+e−a(t−c(i)) , for i = n

(15)

The time parameter c is represented by a vector whose length is the number of
sigmoid branches i.e. the number of iterations of the rate functions. The summed
sigmoid function can further be generalized by subtracting the previous sigmoid
function from the one under consideration. Parameters with other options can be
estimated using the following equation:
Rate function (3) =


((1) + (2) + (3))e−pt + q

where p and q are the parameters that need to be estimated.
To determine the initial parameter values, we utilize the conrmed infection ratio
and normalize it within the range of 0 to 1. This normalized value is then applied to
the gain parameters of the sigmoid branches, denoted as g . Considering the time
parameter c from serial number 2 in equation 15, a statistical approach is employed
to automatically identify the optimal parameter values for the best curve t. Due
to its simplicity and broad applicability, this statistical method is regarded as the
standard approach for the program.

3. Result and discussion

3.1. Data Presentations. These data were obtained from TB reports by the
WHO, Nigeria TB Data Base 2021. The data sourced was from 2010 to 2020 for
Exposed, Infected, and Recovered individuals over the period as shown in Table 1.
The parameters used for the model plots and their estimated values are presented
in Table 2;
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Year Exposed Infected Recovered
2010 347000 84121 70340
2011 357000 86778 72562
2012 366000 92818 77613
2013 376000 94825 79080
2014 386000 86464 74824
2015 397000 87211 73071
2016 407000 97279 83626
2017 418000 102387 87643
2018 429000 103921 90075
2019 440000 117320 103029
2020 452000 135784 121785
Table 1. Nigeria TB Data from 2010-2020

Parameter Value
A 0.2500
P 7.5365
Q 0.0000
Λ 0.0752
Γ 0.0299
1 0.9490
2 1.0000
3 1.0000
4 0.9012
B 0.9325
M 0.1524
C 0.9000
Θ 0.3917
∆ 0.0292
B 0.9164
R2 0.9968

Table 2. Model parameters and estimated values

Figure 3. Plot of yearly infected individuals.
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Figure 4. Plot of cumulative infected individuals.

Examining the plots of yearly infected TB individuals in Figure 3 and cumulative
infected TB individuals in Figure 4, it is evident that the orange line, representing
the model data, aligns more closely with the reported data in Figure 4 than in Figure
3. This suggests that the transmission rate  of TB is estimated more accurately
when using cumulative yearly TB infection data rather than yearly infection data
alone. Consequently, the orange line signies the model data that closely matches
all reported TB data points within a 15% condence interval. A 15% condence
interval indicates that the transmission rate predictor  provides a more precise
and reliable t between the reported TB data and the model data. As a result,
the accuracy and stability of the model coecients improve when using cumulative
TB case data. Therefore, forecasting the transmission rate of TB cases in Nigeria
is more eective when cumulative infection data is incorporated into the model
rather than relying solely on yearly infection data. Additionally, it is important to
note that a higher condence interval reduces prediction accuracy, whereas a lower
condence interval enhances the precision of the predictions.
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Figure 5. Plots of the FODE model.

Figure 5 presents the FODE model plots for TB data in Nigeria, illustrating
the trends of susceptible, exposed, infected, and recovered individuals from 2010
to 2020. The results indicate a proportional increase in recovered cases alongside
infected cases over the years. This trend suggests that with enhanced intervention
strategies, there is potential for signicant reduction or even eradication of TB in
Nigeria.

3.2. Fitting Data on Hybrid FODE/ANN Models. In this section, we in-
tegrate TB data into a hybrid FODE and ANN model by combining the outputs
of both models to create a unied FODE/ANN framework. The results are then
compared to identify the most accurate approach for predicting TB cases in Nige-
ria. The SEIR model is trained within the ANN using the estimated parameters
from the FODE model. Figures 5 and 6 illustrate the predictive performance and
validation accuracy of the FODE and ANN models, respectively. Figure 5 presents
the FODE model’s predictions of the number of infected individuals from 2010 to
2020, comparing the model’s elevated predictions with recorded data. This compar-
ison highlights the model’s capability to capture the trend of TB transmission over
time. Meanwhile, Figure 6 demonstrates the ANN model’s validation performance,
showing that the best Mean Squared Error (MSE) achieved is 1196 × 10−14 at
epoch 63. This exceptionally low MSE indicates the ANN model’s high predictive
accuracy, reinforcing its reliability in forecasting TB dynamics.
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Figure 6. Validation performance of the ANN model

Figure 7. Training stage of the ANN model
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Figure 8. Error histogram of the ANN model

Figures 7–10 provide a comprehensive analysis of the training and performance of
the Hybrid ANN and FODE model. Figure 7 highlights the training progress of the
ANN model, showing key parameters such as the gradient (28.4856) and Mu value
(1010) at epoch 66, along with three validation checks, indicating model stability.
Figure 8 presents the error histogram with 20 bins, illustrating the distribution of
errors across training, validation, and test datasets, which helps assess biases and
anomalies. Figure 9 showcases the regression analysis, visually demonstrating the
alignment between the model’s predictions and actual data, thereby validating its
accuracy. Finally, Figure 10 displays the hybrid ANN and FODE model’s predic-
tive performance, emphasizing the advantage of integrating ANN with FODE to
enhance the model’s reliability and precision.
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Figure 9. Regression of the data and ANN model prediction

Figure 10. Plot of the Hybrid ANN and the FODE model
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4. Conclusion

In this study, we developed and analyzed a fractional-order SEIRS model to in-
vestigate the transmission dynamics of tuberculosis (TB). The model incorporates
the memory eect inherent in fractional dierential equations, which provides a
more realistic representation of TB progression compared to classical integer-order
models. The deterministic SEIRS model was extended to its fractional counter-
part using the Caputo derivative, which eectively captures the long-term depen-
dencies in disease transmission and recovery processes. The numerical simulation
was performed using the Grunwald-Letnikov method, allowing us to approximate
the solutions of the fractional-order system. Our ndings demonstrate that the
fractional-order approach oers improved exibility in modeling the spread of TB
by accounting for past states of the system, thereby enhancing predictive accuracy.
The estimated parameters obtained through curve tting with real-world TB data
conrm the validity of the fractional model in capturing epidemiological trends.
Additionally, we integrated an Articial Neural Network (ANN) framework to re-
ne model predictions and provide a data-driven approach to forecasting TB cases.
The ANN model, structured as a feed-forward network with multiple hidden layers,
eectively mapped the complex non-linear relationships within the SEIRS com-
partments. By using sigmoid functions, the ANN was able to adjust transmission
rate parameters dynamically, improving the model’s capability to predict infection
trends over time. Our results indicate that the combination of fractional dierential
equations and articial intelligence techniques enhances the understanding of TB
transmission dynamics. This hybrid modeling approach not only oers a robust
theoretical foundation but also serves as a valuable tool for public health planning
and intervention strategies. Future work may focus on incorporating additional
factors such as vaccination strategies, drug resistance, and spatial eects to further
rene the model’s applicability to real-world scenarios.
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