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  Abstract 

Wood is an important raw material used in various activities, such as building, fur-
niture, and fuel. The timber industry is significant in many countries and has a sig-
nificant financial impact. There are diverse categories of wood, each with its unique 
properties, and experts typically perform wood species identification through vis-
ual inspection, which is a tedious and time-consuming process. To eliminate the 
need for manual detection, a deep learning-based wood Classification System was 
proposed in this paper. The system uses a transfer learning-based convolutional 
neural network model that handles feature extraction. Compared to other transfer 
learning models such as VGG16, ResNet50, and DenseNet201, the proposed Effi-
cientNetB7 model achieved a high validation accuracy of 99.824%, which suggests 
that it can be used to aid unskilled agents in wood categorization. This new strategy 
can save time and effort in the identification of wood species, making it an efficient 
method for the timber industry. 
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ing rates; EfficientNet, ResNet, and DenseNet 

1. Introduction 

Currently, wood is utilized worldwide as one of the most 

valuable carbon-neutral renewable resources, particu-

larly in the building and furniture sectors. Indeed, even 

before the emergence of the earliest human civic estab-

lishments, our predecessors involved wood widely. They 

used it as a fuel for fire, a building material, furniture, and 

weapons. Wood is also utilized as a source from which pa-

per or other valuable chemical compounds such as puri-

fied cellulose and cellphones, can be extracted. As a result, 

various tree species produce a diverse range of wood 

products on the market.  
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The arrangement of hardwoods and softwoods is the most 

well-known method for separating woods. Softwood is 

wood from confiner-type trees such as pine, whereas 

hardwood is wood from wide-leaved dicotyledons such as 

oak. Hardwood trees are commonly viewed as a top-notch 

wood type. Hardwood is typically distinguished by its 

darker hue, making it substantially more costly than other 

kinds of wood. The wood gathered from the hardwood 

trees is usually difficult to handle because of its hardness 

(Stelte & Sanadi, 2009). Meanwhile, end goods can endure 

time, and open-air components are superior to those 

made from less intense softwoods. Many hardwood spe-

cies are commonly used to build furniture but cannot be 

identified by olfactory discrimination or visual inspection. 

Owing to the variations in the quality and pricing of differ-

ent hardwood species, hardwood misclassification can re-

sult in significant economic losses. 

In contrast, softwood trees provide mid- and low-tier 

wood. Softwood can be used to make wooden products 

and furniture, but with various restrictions on durability, 

strength, and endurance of the final product. The vast ma-

jority of softwoods have a low-density internal structure, 

which makes them light and easy to process. Softwood 

trees have an inner construction that is paler than hard-

woods. 

Wood can be categorized into numerous categories based 

on its intended use. For example, Neobalanocarpus heimii 

and other local names are only wood with the appropriate 

strength that should be used to construct trustworthy 

roof trusses. On the other hand, Hevea brasiliensis, also 

known as rubber wood, (Mohan, Venkatachalapathy & Rai 

2014), can produce furniture and low-strength products. 

Traditionally, an expert performs wood categorization by 

visually inspecting timber parts. Expert should be familiar 

with the properties of all types of wood. A dichotomous 

method (wood structure analysis table) was posted as a 

guideline for experts to judge the tree species. However, 

these specialists are in short supply, which might lead to 

inaccurate classifications owing to weariness and, there-

fore, the complexity of the task. As a result, developing an 

automatic intelligent system for wood classification might 

be a promising undertaking because it would allow un-

trained agents to assess wood loads and obtain an accu-

racy that is not influenced by human factors. Another rea-

son for identifying wood is checking for scams, as some 

timber merchants mix different types of wood for profit.  

The motivation of this study is to design an efficient trans-

fer-learning algorithm for the classification of wood spe-

cies with the aim of attaining a superior performance. 

Nine types of well-known deep learning models based on 

CNN for wood species identification by transfer learning, 

including VGG16, ResNet-18, ResNet-50, DenseNet121, 

DenseNet169, DenseNet201, EfficientNetB5, Efficient-

NetB7, and EfficientNetB8 were compared. The purpose 

was to find a deep learning model suitable for the variant 

WOOD-AUTH dataset. The classification performance of 

the EfficientNetB7 model was found superior to that of 

other pre-trained models in the literature. The Efficient-

NetB7 model achieved the highest validation accuracy of 

99.824% among all CNN models, which is encouraging. 

The rest of the paper is organized as follows: Section 2 re-

views the most recent wood classification studies. Section 

3 provides a brief description and analysis of the wood 

species dataset and the proposed pre-trained models, as 

well as an explanation of the model training strategy. Sec-

tion 4 summarizes the evaluation metrics used to analyze 

and evaluate the reported results and outcomes of the 

nine proposed classifiers. Finally, Section 5 concludes the 

study and discusses future work. 

2. Related Research 

Huang et al. (2021) presented a two-stage approach for 

classification of wood images. First, they used transfer-

learning techniques to extract wood structural features 

before reducing the number of features using a Global Av-

erage Pooling layer (GAP). In the classification stage, ex-

treme learning machines (ELM) were utilized. On the 

Wood Species Dataset, this approach has a recognition ac-

curacy of 93.07%, which is higher than that of the dataset 

provider's approach. 

Fahrurozi et al. (2016) proposed a hybrid approach for 

wood classification that combines gray-level co-
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occurrence matrix (GLCM) with various edge detection 

techniques such as Roberts, Prewitt, Sobel, Laplacian of 

Gaussian and Canny. GLCM is a popular traditional ma-

chine-learning approach for texture analysis. They discov-

ered that the edge detection method could improve the 

appearance of the wood fiber in the image of the wood 

texture under observation. The GLCM can also provide a 

statistical fluctuation value for every edge detection tech-

nique. They tested their method on a four-category da-

taset from France's LE2i Laboratory. 

Panagiotis Barmpoutis (2028) introduced a new data set 

called 'WOOD-AUTH,' which contains over 4200 timber 

images (cross-sectional, tangential, and radial sections of 

traditional timber structures) of 12 Greek timber species. 

They also proposed a novel multidimensional texture 

analysis-based automatic wood species recognition strat-

egy. Each wood image is represented by the proposed 

methodology as a concatenation of histograms of higher-

order linear dynamical systems obtained from both hori-

zontal and vertical image patches. Finally, they classified 

histogram representations into 12 wood species using 

Support Vector Machines (SVM). Their method had an ac-

curacy of 91.47%. 

Yusof et al. (2019) designed an automatic classification 

system for tropical wood. Because the National Forest In-

stitute provides a limited number of wood samples, they 

used transfer learning to enhance the classification accu-

racy of their model. 

Miao et al. (2022) developed a new classification method 

based on an improved CNN. First, they developed the 

W_IMCNN model, which recognizes wood species using 

mobilenetV3 and Inception networks. In terms of training 

speed and recognition rate, the proposed model outper-

formed the others. They created an updated version of the 

WOOD-AUTH dataset. The proposed framework achieved 

recognition rate of 96.4% and 98.8% using the created 

and original WOOD-AUTH datasets, respectively. 

Sun et al. (2021) suggested using deep learning for wood 

species classification to significantly enhance the general-

ization and accuracy of the model. The proposed scheme 

was divided into three stages. First, they used a ResNet50 

model to extract image features after acquiring wood im-

ages with a 20X magnifying glass. The features were then 

refined using linear discriminant analysis (LDA). Finally, 

25 rare wood species were identified by using the KNN 

classifier. 

Kobayashi et al. (2019) presented an approach for classi-

fying wood images that integrates X-ray computed tomog-

raphy (CT), a non-invasive and non-destructive labora-

tory-scale technique, with machine learning. They used 

GLCM and local binary patterns (LBP) to classify the CT 

image of six hardwood species. They had a prediction ac-

curacy of 99.5%. 

De Geus et al. (2020) introduced an essential dataset of 

wood timber microscopic images in their study. There 

were 281 species in the dataset and three types of wood 

sections: transverse, radial, and tangential. They com-

pared transfer learning and state-of-the-art classic fea-

ture extraction techniques for wood species classification. 

They used four pre-trained models to assess the transfer 

learning method. The pre-trained models include Incep-

tionV3, DenseNet, ResNet, and SqueezeNet.  

They used LBP, the Local Phase Quantization (LPQ), and 

Rotation Invariant Local Phase Quantization (RI-LPQ) to 

evaluate a classic feature extraction approach. The tradi-

tional feature extraction methodology had an accuracy of 

84.23%, whereas the transfer learning-based approach 

had an accuracy of 98.75%. According to their findings, 

deep learning techniques for wood species recognition 

have outperformed the traditional feature-extraction ap-

proaches.  

Neethu and Syla (2021) created a new dataset that con-

tains three of the most familiar tree species on Indian 

land. They used the LBP and GLCM statistical feature ex-

traction methods. The resulting features from both meth-

ods were merged into a single feature vector and classi-

fied using a multi-SVM. Their model achieved a classifica-

tion accuracy of 97.2%. 

The surface pattern of wood is defined not only by pores 

but also by lines. Ghapar et al. (2021) proposed a new fea-

ture extraction technique using statistical line distribu-

tion (SPLD) characteristics to identify distinctive line 
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features of each wood species. They discussed the need to 

have a personalized feature extractor that works only 

with a specific wood pattern, such as the statistical char-

acteristics of pore distribution (SPPD). When combined 

with SPPD features, the SPLD achieved an accuracy of 

88%, which increased to 99.5%. Furthermore, the recog-

nition accuracy was 100% when SPPD, SPLD, and Basic 

Grey Level Aura Matrix features were combined, demon-

strating that SPLD is a necessary personalized feature for 

wood species classification. 

Haoran et al. (2021) created a solid wood board recogni-

tion system based on the CSPDarkNet. To create the ECA-

CSPDarkNet model, they combined it with an efficient 

channel attention (ECA) mechanism. They created a da-

taset of 9,000 images of nine solid wood board surface 

textures. The ECA-CSPDarkNet model performed well in 

terms of both speed and accuracy. It achieved a 5.88 ms 

inference time per single image, and 98.44% recognition 

rate. 

Recently, many studies have utilized deep learning mod-

els to detect and classify plants and plant leaf diseases. For 

example, Wang & Zan, et al. (2022) created MatDet, which 

is a novel three-stage model for detecting tomato ma-

turity. Firstly, they utilized ResNet-50 as the backbone 

network. In addition, they employed RoIAlign to develop 

more concise bounding boxes. Finally, they improved the 

model's ability to detect tomato maturity in complex en-

vironments, such as fruit interferences, branch back-

ground clutter, and varying light scenes by including a 

Path Aggregation Network (PANet). The suggested frame-

work had an mAP of 96.14%, indicating a significant step 

forward in the progress of ecological cultivation. 

Hu et al. (2022) used remote sensing UAV photos to detect 

and classify various severity levels of pine tree diseases to 

control and prevent disease in pine forests. They used ef-

ficient channel attention (ECA), and hybrid dilated convo-

lution (HDC) modules to improve the accuracy of the DDY-

OLOv5 model after preprocessing the dataset to increase 

it. In addition, they selected a low- confidence threshold 

to reduce the percentage of incorrect detections. Com-

pared with the original YOLOv5, RetinaNet, and Faster R-

CNN, the proposed technique significantly improved the 

recall, precision, and F1 score. 

The yield of chilli crops is negatively affected by chilli leaf 

diseases. Naik et al. (2022).  developed an automatic 

technique for classifying the five primary leaf diseases of 

chilli to aid in maintaining and managing the quality of 

chilli crops. Images were captured using a digital camera 

and assigned to the appropriate class. They used transfer 

learning to assess the efficiency of 12 pre-trained models. 

Additionally, they showed that adding more data can en-

hance the model performance and reduce overfitting. To 

improve their research findings, they created a squeeze-

and-excitation-based convolutional neural network 

(SECNN) model. Various datasets were used to evaluate 

the performance. The model had a 99.28% recognition 

rate for the classification of the 43 distinct classes. 

Krbaş & Cifci (2022) recently developed a transfer learn-

ing-based system for automatically classifying 12 wood 

species. They compared the performance of various deep 

learning architectures, such as VGG19, Inception V3, Res-

Net-50, and Xception. The WOOD-AUTH dataset was used 

to train and test the proposed models. The experimental 

results demonstrated that the Xception model outper-

formed the other models, with a classification accuracy of 

95.88%. 

Maruyama et al. (2018) presented an image-based 

method for automatic identification of native wood char-

coal species. For this purpose, features based on two con-

figurations of the Local Binary Patterns (LBP) along with 

state-of-the-art machine learning classifiers and repre-

sentation learning using Convolutional Neural Networks 

were evaluated. In addition, they created an image data-

base comprising 44 wood charcoal species. The best re-

sults for the handcrafted and automatically learned fea-

tures were 93.9% and 95.7% recognition rates, respec-

tively. 

In this study, we performed a comparison to develop and 

analyze the performance of nine transfer learning-based 

classifiers for classifying wood into 12 species. We used 

progressive resizing and differential learning rates ap-

proaches to improve the performance of the classifiers 
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while training them using the Fastai library. In addition, 

various data augmentation strategies have been used to 

reduce overfitting and increase dataset size. Finally, sev-

eral metrics were used to demonstrate the efficiency of 

the proposed models on the validation and test sets. 

3. The Dataset  

The wood species dataset, which is a variant of the 

"WOOD-AUTH" dataset (Barmpoutis et al.2028) was used 

in this study. The wood species dataset includes over 8000 

wood images of 12 common hard- and soft- wood species 

found in the Greek domain. The image size in the "WOOD-

AUTH" dataset was 400 × 400 pixels, whereas all images in 

the wood species dataset were 200 × 200 pixels. Images 

were captured at a 15-20 cm distance using a Nikon D3300 

digital camera with a resolution of 24 megapixels at Aris-

totle University of Thessaloniki's Laboratory of Wood 

Technology. In contrast to the "WOOD-AUTH" dataset, 

which includes cross, radial, and cordwood sections, the 

wood species dataset primarily uses cross-sectional data. 

Figure 1 depicts the samples of the 12 wood species in the 

dataset. 

 

 

Figure 1. Samples of wood species dataset: (a) Fagus sylvatica, 

(b) Juglans regia, (c) Castanea sativa, (d) Quercus cerris, (e) Al-

nus glutinosa, (f) Fraxinus ornus, (g) Picea abies, (h) Pinus syl-

vestris, (i)Ailanthus altissima, (j) Robinia pseudoacacia, (k) Cu-

pressus sempervirens, (l) Platanus orientalis. 

4. Transfer learning models 

Advances in deep learning and transfer learning have 

paved the way for automatic recognition systems in many 

areas of daily life, including plant disease, pest, and weed 

identification in agriculture, healthcare, the environment, 

aeronautics, transportation, and remote sensing. In addi-

tion, recent trends in wood species classification have em-

phasized the use of CNNs. A CNN comprises a series of lay-

ers in which a differentiable function changes one volume 

of activations to another. The design of a CNN consists of 

three various layers: Convolutional Layer, Pooling Layer, 

and Fully Connected Layer. The convolutional layer is the 

fundamental building block of a CNN and is where most of 

the processing occurs. It begins by computing the output 

of neurons associated with specific input areas. Then, be-

fore transferring the input through the subsequent layer, 

an activation function such as Sigmoid, ReLU, or Leaky 

ReLU adds non-linearity. A pooling layer (width and 

height) reduces the dimensionality along the spatial di-

mensions. Finally, using a traditional feed-forward neural 

network, the Fully Connected layer determines the class 

scores (Sahili & Awad 2022). Deep learning model train-

ing is difficult because training data is either expensive or 

difficult to collect, and there is a need for wood-domain-

specific pre-trained models. Consequently, robust classifi-

ers must be trained on more commonly encountered data 

from various domains. Transfer learning is a powerful 

method for overcoming dataset constraints and reaping 

the full benefits of deep CNN architectures (Nowakowski 

2021). 

We frequently stack extra layers in Deep Neural Networks 

to handle complex problems, which improves perfor-

mance and accuracy. The reason behind the addition of 

more layers is that these layers may learn more complex 

characteristics over time. In contrast, the conventional 

CNN model has a maximum depth threshold. Further-

more, He et al. (2016) proposed Residual Neural Net-

works (ResNets) that comprise Residual Blocks. The con-

cept of residual blocks has facilitated the training of deep 

networks. Furthermore, ResNet skip connections address 

the vanishing gradient issue in deep neural networks by 

allowing the gradient to take an extra shortcut. We used 

ResNet18 and ResNet50 pre-trained models in this study, 
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with accuracies of 97% and 98.3%, respectively. 

Unlike classical CNNs, the core idea behind DenseNets 

(Huang et al. 2017) is that each layer is linked to every 

other layer, resulting in a Densely Connected Convolu-

tional Network. This is similar to ResNet but with some 

significant differences. First, DenseNets appends the out-

put feature maps of the layer to the input feature maps in-

stead of summing them. In DenseNet, the input of a layer 

concatenates the feature maps from the previous layers. 

The DenseNet architecture comprises several dense 

blocks, each adding new features on top of the existing 

feature maps. Three models from the DenseNet family, 

namely Densenet121, Densenet169, and Densenet201, 

were used in this study, and their performances were 

compared. 

Tan and Le presented a new family of models called Effi-

cientNets, which accomplished much-preferred efficiency 

and accuracy over past ConvNets (Tan & Le 2019). Prior 

to EfficientNets, the most commonly used method for scal-

ing up ConvNets was to increase only one of three dimen-

sions: - number of layers (depth), number of channels 

(width), and image quality (resolution). EfficientNet is a 

convolutional neural network that utilizes a compound 

coefficient to scale all depth/width/resolution aspects 

equally. They achieved this equilibrium by scaling each di-

mension using a fixed ratio. Figure 2 illustrates the key 

differences between standard convolutional neural net-

works (ConvNets), ResNets, and DenseNets. 

 

5. Training details 
 

Rather than building a convolutional neural network from 

scratch, this study employed transfer learning to create 

the classifier. To implement the classifier, we used the 

Fastai Pytorch library, (Howard et al. 2020) which simpli-

fies the initial setup for neural network training inte-

grated with the pre-trained models from the Timm library 

(Wightman et al. 2021). Our experiments were performed 

in Python using a Kaggle NVIDIA TESLA P100 GPU. 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 

Figure 2. Comparison between ConvNets, ResNets and Dense-

Nets. (a) Standard ConvNets, (b) ResNet concept, and  

(c) One Denseblock in DenseNet 

 

First, we divided the training dataset into two parts: a 

training set with 80% of the Wood Species Dataset (4567 

images) and a validation set with 20% of the images (1141 

images). All the images were resized to 456 × 456 pixels. 

Data augmentation is a popular technique for increasing 

the size and diversity of training data. Image augmenta-

tion is commonly used to improve computer vision per-

formance and has evolved into a common implicit regu-

larization approach to avoid overfitting. In this study, we 

utilized Albumentations (Buslaev et al 2020) a quick and 

adaptable open-source library with numerous image 

transform operations. We applied horizontal flipping, ver-

tical flipping, shift scale rotation, random brightness con-

trast, random resized crops, and cut out. To improve 

model generalization, progressive image resizing is an-

other form of data augmentation employed here for 

model training. It works by starting training using small 

images to help complete the training much faster and 

gradually increase the image size. Resizing images from 

smaller to larger sizes during training provides an entirely 

new dataset to train the model. To apply progressive 
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resizing, we started model training with a smaller image 

size of 64 × 64 pixels. Then we unfreeze the weights from 

that model to find the optimal learning rate by employing 

the Cyclical Learning Rate (CLR) approach introduced in 

(Smith 2017) to train another model on images of larger 

size (128 × 128), and finally repeating the same process 

by increasing image dimension to 256 × 256. Figure 3 de-

picts the progressive image resizing process. 

 

Figure 3. Gradually increasing the size of the training images. 

 

Training was organized into three phases, each 

corresponding to a different dimension of the input image. 

Phase-1: In this phase, random resized crops of 64×64×3 

pixels were created, and the pre-trained model was 

trained for ten epochs using a learning rate of 3e-3. 

Phase-2: The entire output network phase 1 was fine-

tuned for another ten epochs using random resized crops 

of size 128×128×3 and a learning rate suggested by the 

CLR.  

Phase-3: Finally, the entire network was fine-tuned for 

ten epochs with randomly resized crops of 256×256×3. It 

was fine-tuned for another ten epochs using the discrimi-

native learning rate proposed in (Howard & Ruder 2018). 

The earliest layer was trained using a learning rate equal 

to the learning rate divided by ten, and the last layer is 

trained with the learning rate suggested by CLR. Learning 

rates within the range of these two values were used to 

train the middle-layers. Table 1 summarizes the learning 

rate values for the three stages associated with the vari-

ous pre-trained models used in this study. 

Table 1 Summarization of the learning rate values for the proposed models. 

 

Model Stage 1 LR Stage 2 LR Stage 3 LR Discriminative LRs 

VGG16 3e-03 4.786300996784121e-05 3.0199516913853586e-06 
(3.0199516913853586e-07, 
1.4454397605732084e-04) 

ResNet18 3e-03 6.309573450380412e-08 1.0000000474974513e-04 
(1.0000000474974513e-05, 
5.754399462603033e-05) 

ResNet50 3e-03 3.981071640737355e-05 6.309573450380412e-08 
(6.309573450380412e-09, 
2.0892961401841602e-06) 

DenseNet121 3e-003 8.317637839354575e-05 1.2022644514217973e-04 
(1.2022644514217973e-05, 
1.737800776027143e-04) 

DenseNet169 3e-03 3.981071640737355e-05 6.309573450380412e-08 
(6.309573450380412e-09, 
1.737800776027143e-04) 

DenseNet201 3e-003 3.981071640737355e-05 1.0964781722577755e-07 
(1.0964781722577755e-08, 
3.311311302240938e-05) 

EfficientNetB5 3e-03 1.318256749982538e-07 8.317637839354575e-05 
(8.317637839354575e-06, 
1.737800776027143e-04) 

EfficientNetB7 3e-03 2.089296234771609e-04 5.754399462603033e-05 
(1.58489319801447e-07, 
5.754399462603033e-06) 

EfficientNetB8 3e-03 6.918309954926372e-05 2.0892962347716094e-04 
(2.0892962347716094e-05, 
1.4454397605732084e-04) 

64× 64 128 × 128 256 × 256
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6. Experimental Results and Discussion 
 

Various metrics were used in this study to assess the 

model quality. The confusion matrix for a multi-class 

classifier is shown in Figure 4, where the total number 

of classes is given by "N." 

 

 Predicted Class 

A
ct

u
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 c
la

ss
 

 C1 C2 ... CN 

C1 C11 C12 … C1N 

C2 C21 C22 … C2N 

…
 

…
 

…
 

…
 …

 

CN CN1 CN2 … CNN 

 

Figure 4. Confusion matrix for a multi-class classifier 

 

A confusion matrix, which represents the performance 

of the classifier, compares the predicted classes with the 

actual classes. For a binary classifier, matrix is divided 

into four categories. These were True Positives (TP), 

True Negatives (TN), False Positives (FP) and False Neg-

atives (FN). The model correctly predicts the positive 

class, resulting in TP. Furthermore, TN is the result in 

which the model correctly predicted the negative class. 

However, FP is an outcome in which the model mispre-

dicts a positive class. 

Furthermore, an FN occurs when the model incorrectly 

predicts the negative class. Unlike binary classification, 

multi-class classification does not include positive or 

negative classes. Instead, the TP, TN, FP, and TN were 

defined for each class. 

The entry C_ij indicates the number of samples predicted 

as class “j” while belonging to the class “i”. As demon-

strated in Fig. 4, the green cells on the diagonal of the 

matrix, C_ij where i = j, represent the TPs for class “i”. 

The ideal classifier is one with zero values in non-diago-

nal entries. Equations 1, 2, 3, and 4, respectively, Ezz-

Eldin et al. (2021), give TP, TN, FP, and FN for class “k”. 

 

TP(k) =  Ckk                                                                            (1) 

 

TN(k) = ∑ Cij

N

i,j=1

i≠k,j≠k

                                                                  (2) 

 

FP(k) = ∑ Cik

N

i=1
i≠k

                                                                       (3) 

 

FN(k) = ∑ Ckj

N

j=1

j≠k

                                                                      (4) 

 

The most commonly used metric for evaluating machine-

learning classification models is accuracy Jierula (2021). 

This is the proportion of correct predictions to the total 

number of evaluated instances. This determines how close 

the measured value is to the actual value. It is defined in 

Equation 5 as: 

 

Accuracy (Acc) =  
TP + TN

TP + TN + FP + FN

=  
∑ Cii

N
i=1

∑ Cij
N
i,j=1

                                              (5) 

 

Figure 5 depicts the class distribution of the wood spe-

cies dataset (training and testing). Class 3 contained the 

most images (1024) in the training set, whereas class 2 

contained only 200 images. Furthermore, the other ten 

classes contain many images, indicating a significant 

skew in the class distributions. When there is a class im-

balance in a dataset, accuracy can become a misleading 

measure of model performance. As a result, a confusion 

matrix was utilized to assess the model's performance 

using Precision, Recall, and F1 score metrics for each 

class. However, each class is dependent only on the TP.  

TN elements were not considered in terms of precision 

and recall. 
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Figure 5. class distribution of Wood Species Dataset 

 

Precision denotes the accuracy of the model is. This was 

calculated by dividing the percentage of TP elements by 

the total number of positively predicted units (the row 

sum of the actual positives). Recall, however, measures 

how well the model identifies positive labels. This was 

calculated by dividing the percentage of TP elements by 

the total number of positively classified units (the col-

umn sum of the predicted positives). Equations 6 and 7 

provide precision and recall for the class "k." 

 

Precision(k) =  
TP

TP + FP
=  

Ckk

∑ Cik
N
i=1

                                (6) 

 

Recall(k) =  
TP

TP + FN
=  

Ckk

∑ Ckj
N
j=1

                                     (7) 

The weighted average of all classes was used to compute 

overall precision and recall. The weighted average Preci-

sion and Recall were calculated by dividing Precision and 

Recall by the sample size for each class. In other words, the 

contribution of each class to the average is weighted by size. 

Equations 8 and 9 calculate the weighted average Precision 

and Recall, respectively:- 

 

Weighted Average Precision

=  ∑ Precision(k) × Wk

N

k=1

                    (8) 

Weighted Average Recall

=  ∑ Recall(k) × Wk

N

k=1

                          (9) 

The F1 score (Grandini et al. 2021) uses the harmonic mean 

concept to combine Precision and Recall measures to deter-

mine the ideal trade-off between them. The F1 score has a 

value between 0 and 1. The F1 score for class "k" is given 

by the following equation:- 

F1 score(k) =  
2 × [Recall(k) × Preceision(k)]

[Recall(k) + Preceision(k)]
        (10) 

The F1 score in a multi-class classifier should include all 

classes. The weighted average F1 score computes the F1 

score for each class separately but adds them together 

using a weight calculated according to the sample size of 
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every class. Equation 11 calculates the weighted aver-

age F1 score. 

 

Weighted Average F1 = ∑ F1 score(k) × Wk

N

k=1

          (11) 

Figure 6 shows the test confusion matrices for the nine 

pre-trained models proposed in Section 4. As defined 

above, EfficientNetB5 had the best precision, recall, and 

F1 score among the models. It achieved 99% precision, 

98.9% recall, and an F1 score. 

 
  

(a) (b) 

 
  

(c) (d) 
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(e) (f) 

 

 

(g) (h) 
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(i) 

 

Figure 6 Test set Confusion Matrix for all proposed models 

 

The validation and test classification accuracies for the 

nine proposed pre-trained models described in Section 

4 are shown in Figure 7. The proposed models were 

tested using a test set of 2836 images. Except for the 

VGG16 model, the simulation shows that the validation 

accuracy is greater than the test accuracy by a maximum 

of 1.5% for all proposed models. For example, although 

the EfficientNetB7 and EfficientNetB8 achieved 99.82% 

validation accuracy, EfficientNetB5 achieved 98.87% 

test accuracy. The ResNet18 model achieved a test 

accuracy of 96.72%. This result implies that the pro-

posed models generalize well, and thus learn to predict 

the test dataset perfectly. Furthermore, the results for 

these models showed significant differences in the types 

of training, validation, and test datasets used for evalua-

tion. Because the VGG16 model was overfitted and drop-

out regularization was used, the test accuracy was 2.4% 

higher than the validation accuracy. The validation and 

test accuracies of the VGG16 model are 93.33% and 

95.77%, respectively. 
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Figure 7 Evaluation metric for the nine proposed models 

 

Table 2 shows a comparison between the proposed 

study and previous studies in the field of wood species 

recognition and classification. Readers should be aware 

that the datasets used in these various studies are not 

the same and that comparisons of different methods 

should be made on the same database. As can be seen, 

the developed model, EfficientNetB7, outperformed the 

other two models that used the same dataset. The accu-

racy was enhanced by 8.354% for the SVM model, Barm-

poutis et al. (2018) and 3.944% for the Xception model, 

Kırbaş & Çifci (2022). 

 

 

Table 2 Comparison of our model and various studies conducted on recognition and classification of wood species. 

 

Reference Dataset Model Accuracy 

Huang et al. 

2021 
WOOD-AUTH 

ResNet50 (Features) + Global Average Pooling + ELM 

Classifier 
93.07% 

Yusof et al. 

2019 

Forest Research Institute of 

Malaysia (FRIM) 
ResNet-50 98.8% 

Miao et al. 

2022 
WOOD-AUTH Inception and mobilenetV3 98.8% 

Sun et al. 

2022 

Commercial images of 3000 

wood species 
ResNet50 + KNN Classifier 99.4% 

De Geus et al. 

2020 
wood timber microscope DenseNet 98.75% 

 

 

9
9

.7
4

%

9
9

.8
2

%

9
9

.8
2

%

9
7

.6
3

%

9
8

.4
2

%

9
7

.9
8

%

9
9

.0
3

%

9
8

.2
5

%

9
3

.3
3

%

9
8

.8
7

%

9
8

.5
5

%

9
8

.0
6

%

9
6

.7
2

%

9
6

.9
0

%

9
7

.8
8

%

9
8

.0
3

%

9
7

.6
0

%

9
5

.7
7

%

9
9

%

9
8

.6
0

%

9
8

%

9
6

.8
0

%

9
6

.9
0

%

9
7

.8
0

%

9
8

.1
0

%

9
7

.6
0

%

9
6

.0
0

%

9
8

.9
0

%

9
8

.5
0

%

9
8

.2
0

%

9
7

.2
0

%

9
7

.2
0

%

9
8

%

9
8

.1
0

%

9
7

.8
0

%

9
5

.8
0

%

9
8

.9
0

%

9
8

.5
0

%

9
8

.1
0

%

9
7

%

9
7

.1
0

%

9
7

.9
0

%

9
8

.1
0

%

9
7

.6
0

%

9
5

.9
0

%

EVALUATION METRICS

Validation Accuracy Test Accuracy Precision Recall F1 score



Mazen et al. 

 

 

DOI: 10.21608/FUJE.2024.276630.1070 14 Fayoum University Faculty of Engineering, 2025, Vol: 8(1)  

 

Neethu & Syla 

2021 
Indian Dataset Multi-SVM with LBP and GLCM features 97.2% 

Haoran et al. 

2021 
Solid Wood Board CSPDarkNet 98.44% 

Kırbaş & Çifci 

2022 
Variant WOOD-AUTH Xception 95.88% 

Maruyama et 

al. 2018 

Brazilian native wood char-

coal species 

Local Binary Patterns (LBP) along with Inception_v3 

convolutional neural network 
95.7% 

Barmpoutis et 

al. 2018 
Variant WOOD-AUTH SVM Classifier 

91.47% 

 Variant WOOD-AUTH Our proposed EfficientNetB7 model 99.824% 

7. Conclusion and Future Work 
 

In this study, we classified 12 wood species using nine 

different pre-trained models from four families. The 

models were trained for 30 epochs on the Wood Species 

Dataset and demonstrated a good recognition rate for all 

classes. The dataset was divided into 4567 training im-

ages and 1141 validation images. In contrast, the test set 

contained 2836 images. We also demonstrated the im-

portance of data augmentation in increasing the size of 

the training set and improving model generalization. We 

used cyclical and discriminative learning rates, which 

are two cutting-edge techniques, to determine the best 

learning rates for increased accuracy and speed. The 

best validation accuracy was 99.82% for EfficientNetB7 

and EfficientNetB8, whereas the lowest validation accu-

racy was 93.33% for VGG16. Owing to the skewed dis-

tribution of classes in the training and testing sets, all 

the models were evaluated using the test set and four 

metrics: accuracy, F1 score, weighted average recall, 

and weighted average precision. 

Future research should focus on deploying the model as 

a mobile application to help untrained workers identify 

different wood species. 
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