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  Abstract 

In the field of speech and audio signal processing, pre-trained models (PTMs) are 

commonly available. Pre-trained models (PTMs) offer a collection of initial weights 

and biases that may be adjusted for a particular task, which makes them a popular 

starting point for ML model development. State-of-the-art performance in speech 

recognition, natural language processing, and other applications has been shown 

using pre-trained model representations. Embeddings obtained from these models 

are used as inputs for learning algorithms that are used for a variety of downstream 

tasks. This study compares pretrained models to show how they perform in Auto-

matic Speech Recognition (ASR). The literature research indicates that self-super-

vised models based on Wav2Vec2.0 and fully supervised models such as Whisper 

are the basic paradigms and approaches for ASR currently. This study evaluated 

and compared these strategies in order to check how well they perform across a 

wide range of test scenarios. This survey aims to serve as a practical manual for 

understanding, using, and generating PTMs for different NLP tasks. 

 

Keywords 

PTMs, ASR, Wav2vec2, Whisper, Speech Recognition, Natural Language Pro-
cessing. 

1. Introduction 

Recent developments in ASR have brought about unique 

end-to-end architectures(Amodei et al., 2016) that have 

shown to be accurate enough under such challenging cir-

cumstances. End-to-end models' fundamental concept is 
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to directly translate the input speech signal to character 

sequences, substantially simplifying training, fine-tuning, 

and inference generation (Chan et al., 2015; Chorowski et 

al., 2015; Graves & Jaitly, n.d.; L. Lu et al., 2016; Yao et al., 

2021).  Fully supervised and self-supervised models are 

the two basic strategies for training end-to-end ASR sys-

tems. In order to provide an end-to-end ASR model that is 

both competitive and lighter, NVIDIA introduced 

Quartznet (Kriman et al., 2019). The QuartzNet architec-

ture consists of multiple blocks of 1D convolutions con-

nected by residual connections, as illustrated in Figure 1. 

The word error rates (WERs) for the model ranged from 

7.7% to 12.5%, depending on the language, when trained 

and evaluated on the Common Voice corpus (Bermuth et 

al., 2021). Additionally, the QuartzNet model achieved 

WERs of 19.2% for French and 18.3% for Spanish multi-

media data from the MediaSpeech corpus (Jia Deng et al., 

2009).. Citrinet (Majumdar et al., 2021) was recently in-

troduced by NVIDIA researchers as an advancement of 

QuartzNet. This model integrates sub-word encoding, a 

squeeze-and-excitation mechanism, and a residual net-

work utilizing 1D time-channel separable convolutions 

(Hu et al., 2017). The authors reported a word error rate 

(WER) of 5.6% on the TEDLIUMv2 corpus. 

 

Figure 1. QuartzNet BxR architecture. 

In contrast to fully supervised models, recent studies have 

concentrated on the use of large-scale acoustic models 

trained using self-supervised learning techniques and a 

significant amount of unlabeled data. By introducing 

Wav2Vec2.0 (Baevski et al., 2020), researchers from Meta 

AI illustrated the capability of models of this type. When 

compared to benchmark results, Wav2Vec2.0 performed 

better, especially when ASR for low-resource languages in 

the Common Voice corpus was taken into account (Pham 

et al., 2022). In particular, the authors in (Krabbenhöft & 

Barth, 2022) took into account a Wav2vec2.0 model in 

combination with their suggested language modelling ap-

proach and obtained cutting-edge results in the German 

Common Voice corpus with a WER of 3.7%. Additionally, 

Wav2Vec2.0-based models have been evaluated effec-

tively in more challenging acoustic conditions, such as us-

ing multimodal Portuguese data from the CORAA data-

base (CERQUEIRA BISPO DOS SANTOS, 1997). Due to 

these factors, Wav2Vec2.0 has become one of the neural-

based models for ASR that is most commonly studied. Self-

supervised techniques like Wav2Vec 2.0 are complex be-

cause the input sound units during the pre-training phase 

lack a predefined lexicon. Additionally, sound units vary 

in length and have unclear segmentation. To address 

these issues, Meta AI introduced HuBERT (Hsu et al., 

2021) as a new method for learning self-supervised 

speech representations. In many ASR scenarios, the con-

volutional and transformer networks from Wav2Vec2.0 

and HuBERT  are combined to achieve state-of-the-art 

results. The "convolutional augmented transformer" or 

Conformer was developed by Google researchers to com-

bine the best features of both types of networks into a sin-

gle neural block (Gulati et al., 2020). In the TEDLIUMv2 

corpus, a Conformer network produced a WER of 7.2% 

(Guo et al., 2020). 

Wav2Vec2.0, HuBERT, and Conformers are examples of 

self-supervised audio encoders that learn superior audio 

representations. However, because the pre-training was 

unsupervised, they lacked a suitable decoder to convert 

these representations into useful outputs. In order to ac-

curately implement models for ASR or audio 
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classification, a fine-tuning stage is always required. 

OpenAI researchers have suggested "Whisper" (Radford 

et al., 2022a) as a potential solution to the aforementioned 

issue. Whisper is a fully supervised sequence-to-sequence 

transformer that was trained using up to 680,000 hours 

of labelled audio from the Internet. On numerous bench-

mark datasets for ASR, including librispeech, TEDLIUM, 

and Common Voice, among others, the model has pro-

duced state-of-the-art WER results.  

The literature research indicates that self-supervised 

models based on Wav2Vec2.0 and fully supervised mod-

els like Whisper are the two basic paradigms and ap-

proaches for ASR currently. This study evaluates and com-

pare these strategies in order to check how well they per-

formed robust ASR across a wide range of test scenarios. 

The remaining portions of the paper are divided as fol-

lows; different technological facets of the pretrained mod-

els' architectures for ASR are described in section 2. Sec-

tion 3 discusses the main insights obtained from results. 

Finally, the conclusions are demonstrated in section 4. 

2. Methods 

Self-supervised models based on Wav2Vec2.0 and fully su-

pervised models such as Whisper are the two major para-

digms and approaches for ASR so far (Vásquez-Correa & 

Álvarez Muniain, 2023). The present research examined 

and contrasted these two methods in order to evaluate 

how well they performed for reliable ASR.  

In the upcoming subsections, Different models that play a 

crucial role in the field of ASR will be explored. Each model 

brings its unique approach and advancements to improve 

speech recognition accuracy and performance. In subsec-

tion 2.1, the Wav2vec2.0 model, which is utilized with self-

supervised learning techniques, is delved into. Subsection 

2.2 introduces the Whisper model, a highly efficient ASR 

system designed for low-resource languages. subsection 

2.3 the Whisper-AT model is discussed. The Hidden-Unit 

BERT (HuBERT) self-supervised speech representation 

learning strategy is demonstrated in subsection 2.4. In 

subsection 2.5, the SpeechStew model is explored. Con-

former which integrate convolutional neural networks 

and transformers to efficiently model both local and global 

dependencies within an audio sequence. are explained in 

subsection 2.6. In subsection 2.7, unique CNN-RNN-

transducer architecture, which called ContextNet is ex-

plained. Finally in subsection 2.8 The encoder-decoder 

RNN is explored. 

2.1. Wav2vec2.0 

Wav2Vec 2.0 is an end-to-end architecture that employs 

self-supervised learning. constructed from transformer 

and convolutional layers as shown in Figure 2. The model 

uses a multi-layer convolutional feature encoder f : χ → Z 

to transform raw audio waveforms χ into latent speech 

representations z1,……, and zT .These latent representa-

tions supplied the network g: Z → C, which was trans-

former-masked. The goals in the self-supervised learning 

objective are represented by the discrete set of outputs 

q1,..., qT  that are formed when the transformer network 

first quantizes the continuous representations [(Baevski et 

al., 2020), (Conneau et al., 2020)]. These quantized repre-

sentations are then contextualized using the transformer 

module's attention blocks to produce a collection of dis-

crete contextual representations, symbolized by the letters 

c1,..., cT. Seven convolutional blocks with 512 channels, 

kernel widths of {10, 3, 3, 3, 3, 2, 2} and strides of {5, 2, 2, 

2, 2, 2, 2} form the feature encoder. The transformer net-

work is composed of 24 blocks, 1024 dimensions, 4096 in-

ner dimensions, and 16 attention heads in total. 

 

Figure 2. Architecture representation for wav2vec2.0. The raw 
audio signal is transformed to speech representations that are 

fed into a network of transformer to output context 
representations. Figure derived from the one shown in 

(Baevski et al., 2020). 
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Wav2vec2  can be used for a variety of speech down-

stream tasks such as automatic speech recognition ,detec-

tion, speaker recognition and language detection. The au-

thors  (Baevski et al., 2020) get a WER of 4.8/8.2 on test-

clean/other of Librispeech using only 10 minutes of la-

beled training data, or 48 recordings of 12.5 seconds on av-

erage, illustrating the significant potential of pre-training 

on unlabeled data for speech processing. Wav2vec 2.0 im-

proves upon the previous best result on the clean 100-

hour Librispeech while applying 100 times less labeled 

data. 

 Authors in    (Baevski et al., 2020) perform two models 

that have different Transformer setups but the same en-

coder architecture. Table 1 shows Transformer setups for 

the two models. 

 
Table 1. Transformer setups for wav2vec2 models. 

 

A pre-trained Wav2vec2.0 acoustic model based on the 

Wav2Vec2-XLSR-300M model was taken into considera-

tion by (Vásquez-Correa & Álvarez Muniain, 2023). The 

model was pre-trained in a self-supervised manner that 

using 436,000 hours of unlabeled speech data across in 

128 languages. Authors in (Vásquez-Correa & Álvarez Mu-

niain, 2023)  suggested applying speech recognition and 

keyword spotting technologies to forensic scenarios, espe-

cially in situations involving child exploitation. 

2.2. Whisper 

OpenAI (Radford et al., 2022a) just released their Whisper 

ASR system. Whisper is trained in a fully supervised 

method, as opposed to Wav2vec2.0, using up to 680k 

hours of labelled speech data from various sources. The 

encoder-decoder Transformer (Vaswani et al., 2017) that 

serves as the model's foundation receives 80-channel log-

Mel spectrograms as input. This 80-channel log-magnitude 

Mel spectrogram representation is produced on 25-milli-

second windows and  a stride of 10 milliseconds after all 

audio has been re-sampled to 16k Hz. The input represen-

tation is processed by the encoder using a tiny stem that 

consists of 2convolution layers with a filter width of 3 and 

the GELU activation function (Hendrycks & Gimpel, 2016), 

where the second convolution layer has a stride of 2. The 

output of the stem is then supplemented with sinusoidal 

position embeddings, and then the encoder Transformer 

blocks are used. The encoder output is processed through 

a final layer normalization after the transformer applies 

pre-activation residual blocks (Child et al., 2019). The de-

coder employs coupled input-output token representa-

tions (Press & Wolf, n.d.) and learned position embed-

dings. The width and number of transformer blocks are the 

same for the encoder and decoder. The general architec-

ture of Whisper is shown in Figure 3. 

 

Figure 3. Architectural illustration in whispers. A transformer 
network encodes the log Mel-spectrograms. The transformer 

decoder converts encoded representations into character 
outputs and no-speech tokens. 

There are various pre-trained models available with vary-

ing attention heads and numbers of layers. Table 2 shows 

the whisper model family's architectural details(Radford 

et al., 2022b). 

Size Number of 

transformer 

blocks 

Model di-

mension 

Inner di-

mension 

Attention 

Heads 

Base 12 768 3072 8 

Large 24 1024 7096 16 
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Table 2. The Whisper model family's architectural details. 

 
Size Layers Width Heads Parameters 

Tiny 4 384 6 39M 

Base 6 512 8 74M 

Small 12 768 12 244M 

Medium 24 1024 16 769M 

Large 32 1280 20 1550M 

Whisper has a lot of features, such as Automatic speech 

recognition, a multi-task model, the ability to perform 

speech translation and language identification, training on 

a large dataset of diverse audio, and multilingual speech 

recognition. However, when it comes to building produc-

tion systems at scale involving real-time processing of 

streaming voice data, there are a number of considerations 

that may make Whisper less suitable than commercially 

available ASR solutions. Some of its notable limitations in-

clude Whisper being slow and expensive, Only Large-v2 

being available via API (Tiny, Base, Small, and Medium 

models are excluded), and limited entity formatting. 

Whisper maintains that scaling weakly supervised pre-

training has received little attention in speech recognition 

research up to this point. The researchers (Radford et al., 

2022b) indicated how training on a large and diverse su-

pervised dataset, while emphasizing zero-shot transfer, 

can significantly improve the robustness of a speech recog-

nition system. They achieve results without relying on self-

supervision or self-training techniques which have been a 

mainstay of recent large-scale speech recognition work. 

2.3. Whisper-AT 

(Gong et al., 2023) first demonstrate that while Whisper is 

relatively resistant to background sounds (such as music), 

its audio representation is really not noise-invariant but 

rather strongly correlated to non-speech sounds, suggest-

ing that Whisper detects speech with depending on the 

noise type. By freezing the Whisper backbone and training 

a lightweight audio tagging model on top , they were able 

to create the combined audio tagging and speech recogni-

tion model ,Whisper-AT. Whisper-AT can identify audio 

events alongside spoken text with only a 1% increase in 

computing cost. 

The authors used Whisper to create a unified model for 

ASR and Audio Tagging that concurrently recognizes spo-

ken text and background noises (such as music, horns, 

etc.), which is extremely desirable in applications like 

video transcription, voice assistants, and hearing aids. 

Whisper is the best choice for the foundation of such a uni-

fied model because: it is resistant to background noise; and 

its intermediate representations encode detailed general 

audio event information, providing a strong foundation for 

audio tagging. To be able to forecast a sound class, they 

must train a model on top of the Whisper intermediate 

representations because the original Whisper does not 

output sound labels. 

In order to preserve the Whisper ASR capability and ena-

ble the generation of text and audio labels in a single for-

ward pass, they intentionally do not change the original 

weights of the Whisper model but rather add new audio 

tagging layers on top of it. This combined ASR and Audio 

Tagging model is known as Whisper-AT. As shown in Fig-

ure 4. , (Gong et al., 2023) suggest the following effective 

design: (1) They add a mean pooling layer to each Whisper 

representation to reduce the time sequence length n from 

500 to 25; (2) They optionally add a linear projection layer 

to reduce d from 1280 to 512 before audio tagging Trans-

formers (denoted by TL-Tr512); and (3) For WA-Tr, they 

first conduct weighted averaging and then apply a tem-

poral Transformer, for TL-Tr, they employ just one tem-

poral Transformer for all layers. Thus, just one temporal 

Transformer is required for both WA-Tr and TL-Tr. 
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Figure 4. Model of the proposed time- and layer-wise 
Transformer. Figure derived from the one shown in (Gong et 

al., 2023). 

2.4. HuBERT 

Self-supervised methods for learning speech representa-

tions are complicated by three particular issues: Each in-

put utterance has several sound units, there is no lexicon 

of input sound units during the pre-training process, and 

sound units have varied lengths without being explicitly 

segmented. (Hsu et al., 2021)suggest the Hidden-Unit 

BERT (HuBERT) strategy for self-supervised speech rep-

resentation learning to solve these three issues. This ap-

proach makes use of an offline clustering step to generate 

aligned target labels for Bidirectional Encoder Represen-

tations from Transformers (BERT)-like prediction loss. 

Applying the prediction loss just to the masked regions en-

courages the model to develop a unified acoustic and lin-

guistic model for continuous inputs, which is a crucial com-

ponent of the methodology. Instead of depending on the 

intrinsic quality of the assigned cluster labels, HuBERT pri-

marily depends on the reliability of the unsupervised clus-

tering stage. With 10min, 1h, 10h, 100h, and 960h fine-tun-

ing subsets, the HuBERT model either matches or sur-

passes the state-of-the-art performance of Wav2Vec 2.0 on 

the Librispeech (960h) and Libri-light (60kh) benchmarks. 

This is done by starting with  a basic k-means teacher of 

100 clusters and utilizing two iterations of clustering. On 

the more difficult dev-other and test-other evaluation sub-

sets, HuBERT demonstrates up to 19% and 13% relative 

reductions in WER when using a 1B parameter model. 

(Hsu et al., 2021) show organized findings for three Hu-

BERT-pretrained model sizes: BASE (90M parameters), 

LARGE (300M), and X-LARGE (1B). When pre-trained on 

the Libri-Light 60k hours, the X-LARGE model exhibits up 

to a 19% and 13% relative WER improvement over LARGE 

models on the dev-other and test-other evaluation subsets, 

respectively. 

The authors use the wav2vec 2.0 architecture, which in-

cludes a code embedding layer, a projection layer, a BERT 

encoder (Devlin et al., 2018)  , and a convolutional wave-

form encoder. Similar to the scale of the Conformer XXL 

model in (Y. Zhang et al., 2020), the X-LARGE architecture 

increases the model size to around 1 billion parameters. 

The waveform encoder, which consists of seven 512-chan-

nel layers with strides [5,2,2,2,2,2] and kernel widths 

[10,3,3,3,3,3,2,2], is the same for all three configurations. 

The BERT encoder is made up of numerous identical trans-

former blocks, whose properties are listed in Table 3 

along with those of the following projection layer. 

Table 3. HuBERT model architectural summaries for BASE, 

LARGE, and X-LARGE. 

 

The authors in (Hsu et al., 2021) suggest using acoustic 

unit discovery models to generate frame-level targets il-

lustrated in Figure 5. Let X stand for a speech utterance 

with the form X = [x1, , xT] of T frames. The notation for 

found hidden units is h(X) = Z = [z1, , zT], where zt∈[C] de-

notes a categorical variable of the C-class, and h denotes a 

clustering model, such as k-means. 

Size Layers Width Heads Parameters 

Base 12 768 8 95M 

Large 24 1024 16 317M 

X-Large 48 1280 16 964M 
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Figure 5. By using one or more iterations of k-means clustering 

to create the masked frames (y2, y3, and y4), the HuBERT 

technique predicts hidden cluster assignments. 

2.5. SpeechStew 

(Chan et al., 2021) introduce SpeechStew, a speech recog-

nition model trained on several publicly accessible speech 

recognition datasets, including AMI, Broadcast News, 

Common Voice,LibriSpeech, Switchboard/Fisher, 

Tedlium, and Wall Street Journal. Without performing any 

additional re-weighting or re-balancing, SpeechStew 

simply combines all of these datasets. SpeechStew gets 

SoTA or close to SoTA results on a number of tasks,without 

using an external language model. Their results greatly 

outperform earlier work with powerful external language 

models, with 9.0% WER on AMI-IHM, 4.7% WER on 

Switchboard, 8.3% WER on CallHome, and 1.3% on WSJ. 

Additionally, (Chan et al., 2021) show that SpeechStew 

picks up strong transfer learning representations. On the 

CHiME-6 noisy low resource speech dataset, they fine-

tuned SpeechStew. Without a language model, they 

achieve 38.9% WER, compared to a language model's 

38.6% WER to a strong HMM baseline. 

The Conformer (Gulati et al., 2020) RNN-T (Graves, 2012a) 

architecture is used by SpeechStew. They test the 1B pa-

rameter configuration (Y. Zhang et al., 2020) as well as the 

100M parameter (Gulati et al., 2020) . (Chan et al., 2021) 

discover that the 1B parameter model requires wav2vec 

pre-training (Baevski et al., 2020). The learning rate sched-

ule and other default hyperparameters from earlier work 

are used. They don't use an external language model. 

2.6. Conformer 

Recently, models based on transformer and convolution 

neural networks (CNNs) have outperformed recurrent 

neural networks (RNNs) in automatic speech recognition 

(ASR), demonstrating encouraging results. CNNs effec-

tively use local features, while Transformer models are 

good at capturing content-based global interactions. (Gu-

lati et al., 2020) investigate how to combine transformers 

and convolution neural networks to model both local and 

global dependencies of an audio sequence in a parameter-

efficient manner, achieving the best of both worlds. In this 

regard, they suggest Conformer, a convolution-augmented 

voice recognition transformer. Conformer performs no-

ticeably better than the earlier Transformer and CNN-

based models, achieving cutting-edge accuracy. The Model 

obtains a WER of 2.1%/4.3% on the widely used Li-

briSpeech benchmark without the use of a language model 

and 1.9%/3.9% with the use of an external language 

model. On test/testother. Additionally, The authors ob-

serve 2.7%/6.3% competitive performance using a tiny 

model with only 10M parameters. 

The authors in (Gulati et al., 2020) investigate how to nat-

urally include self-attention and convolutions in ASR mod-

els. In order to be parameter efficient, they hypothesis that 

both global and local interactions are crucial. To do this, 

the Authors suggest a unique self-attention and convolu-

tional neural network architecture that combines the best 

of both worlds: self-attention learns the global interaction, 

while convolutions effectively capture the relative-offset-

based local correlations. They present a novel joining of 

self-attention and convolution, sandwiched between a pair 

of feed-forward modules (Y. Lu et al., 2019; Wu et al., 2020) 

, as shown in Figure 6. 
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Figure 6. Architecture for the conformer encoder model. The 

conformer consists of two feed-forward layers that resemble 

macarons, with halfstep residual connections separating the 

convolution and multi-headed self attention modules. The post 

layer norm comes after that. 

By comparing various combinations of network depth, 

model dimensions, and attention head count. The authors  

(Gulati et al., 2020)  discover three models small, me-

dium, and large with 10M, 30M, and 118M parameters, re-

spectively. They then select the model with the greatest 

performance given the model parameter size restrictions. 

All of these models employ a single-LSTM-layer decoder. 

Their architecture hyper-parameters are described in Ta-

ble 4. 

 
Table 4. Model hyper-parameters for Conformer S, M, and L models were 

discovered by sifting through various combinations and picking the models 

with the highest performance within the parameter constraints. 

 

Without a language model, the medium model outper-

forms the most well-known Transformer, LSTM-based 

model, or a similar-sized convolution model with compet-

itive results of 2.3/5.0 on test/testother. The model ob-

tains the lowest WER among all the current models when 

the language model is included. The model obtains a new 

state-of-the-art performance at 1.9%/3.9% for test/tes-

tother and shows improved accuracy with less parameters 

than prior work on the LibriSpeech dataset. 

2.7. ContextNet 

The performance of RNN/transformer based models still 

outperforms that of convolutional neural networks (CNN), 

despite the latter's promising end-to-end speech recogni-

tion results. In this research, (Han et al., n.d.)investigate a 

unique CNN-RNN-transducer architecture, which they re-

fer to as ContextNet, to bridge this gap and go beyond it 

ContextNet has a fully convolutional encoder that adds 

squeeze-and-excitation modules to convolution layers to 

incorporate global context information. Additionally, they 

provide a straightforward scaling technique that grows 

ContextNet's widths and achieves a fair balance between 

computation and accuracy. 

The authors in (Han et al., n.d.) show that ContextNet ob-

tains a WER of 2.1%/4.6% on the clean/noisy LibriSpeech 

test sets without external language model (LM), 

1.9%/4.1% with LM, and 2.9%/7.0% with only 10M pa-

rameters. This contrasts with the best model that was pre-

viously reported, which had 20M parameters and an LM of 

2.0%/4.6% and 3.9%/11.3%, respectively. A much bigger 

internal dataset is also used to confirm the superiority of 

the proposed ContextNet model. This paper's primary con-

tributions are (1) an enhanced CNN architecture with 

global context for ASR, and (2) a progressive downsam-

pling and model scaling approach to achieve greater accu-

racy and model size trade-off. 

The RNN-Transducer architecture (Graves, 2012b; He et 

al., 2018; Rao et al., 2018a) acts as the network's core of 

the ContextNet architecture. Three components make up 

the network: an audio encoder for the input utterance, a 

Size En-

coder 

Lay-

ers 

En-

coder 

Dim 

Heads Param-

eters 

Conv 

Ker-

nel 

Size 

De-

coder 

Lay-

ers 

De-

coder 

Dim 

Small 16 144 4 10.3M 32 1 320 

Me-

dium 

16 256 4 30.7M 32 1 640 

Large 17 512 8 118.8M 32 1 640 
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label encoder for the input label, and a joint network to 

combine them and perform decoding. 

ContextNet appears to outperform previously published 

systems, according to the data. The medium model, Con-

textNet(M), only has 31M parameters and achieves com-

parable WER in comparison to considerably bigger sys-

tems (Kingma & Ba, 2014; Q. Zhang et al., 2020) . Context-

Net(L), The large model, performs better than the prior 

SOTA by 13% comparatively on test-clean and 18% rela-

tively on test-other. 

2.8. End-to-end ASR with RNN-Transducer (RNN-
T) 

(Rao et al., 2018b) proposed an encoder-decoder RNN 

model. The proposed method utilizes an encoder network 

composed of multiple blocks of LSTM layers, pre-trained 

with CTC to produce phonemes, graphemes, and words as 

outputs. Additionally, a 1D-CNN reduces the length T  of 

the time sequence by a factor of 3 through specific kernel 

strides and sizes.The decoder network is an RNN-T model 

trained alongside an LSTM language model that also pre-

dicts words. The network's target is the next label in the 

sequence, which is used in the cross-entropy loss to opti-

mize the model.Regarding feature extraction, 80-dimen-

sional mel-scale features are calculated every 10 millisec-

onds and stacked every 30 milliseconds to form a single 

240-dimensional acoustic feature vector. 

The method is trained on 22 million hand-transcribed au-

dio recordings sourced from Google US English voice traf-

fic, totaling 18,000 hours of training data. This includes 

both voice search and voice dictation utterances. The lan-

guage model was pre-trained using text sentences from 

the dataset. The method was evaluated with various con-

figurations and achieves a 5.2% WER on this extensive da-

taset when the encoder has 12 layers with 700 hidden 

units, and the decoder consists of 2 layers with 1000 hid-

den units each. 
 

3. Discussion 

The authors in (Radford et al., 2022b) tested and showed 

how Whisper compares against other models. The authors 

don’t just want to create a model that outperforms all 

State-of-the-Art (SOTA) models on a dataset x. Their goal 

is also to create a model that comfortably generalizes on 

similar datasets. Figure 7. shows comparing effective ro-

bustness in great detail across several datasets. 

 

Figure 7. Detailed comparison of effective robustness across 

different datasets. 

The paper compares Whisper against a variant of the 

Wav2vec2.0 model, in terms of WER — less is better. The 

task here is transcription. Wav2vec2.0 is specifically 

trained and fine-tuned on the LibriSpeech dataset, while 

Whisper is not. On the LibriSpeech dataset, the two mod-

els are equal. However, Whisper outper-

forms Wav2vec2.0 on every other dataset by a large mar-

gin. 

Similarly, the authors compared Whisper against other 

SOTA models on the translation task. Table 5 shows the 

results. Except for the low resource settings, Whisper out-

performs all other models. On average, Whisper achieves a 

higher BLEU score. Remember that Whisper is utilized in a 

zero-shot configuration but the other models have been 

fully trained using their respective datasets. 
 
Table 5. Comparing Whisper models to other SOTA models for 

audio-to-English translation using the BLEU score. 
X → English High Mid Low All 

XMEF-X 34.2 20.2 5.9 14.7 

XLS-R (2B) 36.1 27.7 15.1 22.1 

mSLAM-CTC (2B) 37.8 29.6 18.5 25.2 

Zero-Shot Whisper 36.2 32.6 25.2 29.1 

 

0
50

100

L
ib
ri
…

A
rt

ie

C
o
m
…

F
le
u
r…

T
ed

li
u
m

C
H
i…

V
o
x
P
…

C
O
R
…

A
M
I…

S
w
it
c…

C
al
lH
…

W
S

J

A
M
I…

L
ib
ri
…

A
v
ar

ag
e

W
o

rd
 E

rr
o

r 
R

at
e 

%

Datasets

Detailed comparison of effective robustness across 

different datasets

Wav2vec2.0 Whisper



Ghobrial et al. 
 

 

DOI: 10.21608/fuje.2024.312102.1089 140 Fayoum University Faculty of Engineering, 2025, Vol: 8(1)  

 

4. Conclusion 

This paper introduces comparative study on end to end 

speech using pretrained models such as Whisper and 

Wav2vec2.0. Modern ASR systems based on Wav2Vec2.0 

and Whisper were taken into consideration for the ad-

dressed application. A sizable collection of open bench-

mark corpora was used to show the effectiveness of both 

methods. As a result, the outcomes can be applied to addi-

tional ASR areas.  

Wav2vec2 can be applied to various speech downstream 

tasks such as automatic speech recognition, detection, 

speaker recognition and language detection. Whisper has 

a lot of features, such as Automatic speech recognition, a 

multi-task model, the ability to perform speech translation 

and language identification, training on a large dataset of 

diverse audio, and multilingual speech recognition.  

Whisper AT model can be used for ASR and Audio Tagging. 

HuBERT used to solve three particular issues: Each input 

utterance has several sound units, there is no lexicon of in-

put sound units during the pre-training process, and sound 

units have varied lengths without being explicitly seg-

mented. The Speech Stew model combines several publicly 

accessible speech recognition datasets without perform-

ing any additional re-weighting or re-balancing for its. 

Conformer model can be used which it is a combination of 

self-attention and convolution modules to achieve the best 

of the two approaches. 

The comparison of the pretrained models and Whisper 

models showed that the second one was typically the most 

accurate system. 
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