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 Proportional-Integral-Derivative (PID) controllers are prominent due to their superior 

functionality and ease of use. However, optimizing their parameters presents a significant 

challenge. Adjusting parameters must be done carefully and cautiously because improper 

calibration can compromise the system’s stability. Although classic tuning techniques, such as 

the Ziegler-Nichols (ZN), are frequently employed, their efficiency is restricted due to the 

intricate and ever- changing nature of the systems, often leading to parameter settings that could 

be more optimal. Therefore, the need for a more accurate parameter-tuning technique is urgent. 

Various optimization strategies are used to fine-tune parameters with more precision. These 

methods include Gray Wolf Optimization (GWO), Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), and Ant Colony Optimization (ACO). These methods are applied to fine-

tune the PID parameters for a Direct Current (DC) motor to achieve optimal performance, and a 

comparative analysis of the results is conducted. Various fitness functions encompass 

performance metrics such as rise time, overshoot, peak time, settling time, and mean square error 

(MSE). These metrics are incorporated into the corresponding optimization approaches to 

quantitatively assess the controller’s performance. Various test cases have been utilized and the 

GA outperforms other algorithms ranging from 17% to 28% where rise time, settling time, and 

MSE are significant in the fitness function. 
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1. Introduction 

The PID (Proportional–Integral–Derivative) Controller stands as a closed-loop control system widely 

applied within industrial control systems [1]. Growing research has illustrated the advantages of meta-

heuristic algorithms in problem-solving contexts. Evolutionary algorithms (EAs) and Swarm Intelligence 

(SI) techniques have established notable search and optimization abilities in solving many exciting 

optimization problems [2]. Particularly, Firefly Algorithm (FA) and Particle Swarm Optimization (PSO) 

are leading methods within EAs and SI, respectively [3-5]. GA's ability is shown in solving real-world 

problems, particularly those with constraints or discrete parameter sets. This research explores the 

advantages of utilizing several metaheuristic search algorithms to fine-tune the parameters of a PID used to 

control a Direct Current (DC) motor system. By optimizing the model parameters, we aim to enhance the 

controller response. This inquiry delves into a novel fitness function prioritization, amalgamating all the 

performance above control aspects of the PID. The velocity regulation of a DC motor is realized via PID 

tuning algorithms [1],[6]. The ensuing outcomes of various scenarios are meticulously examined and 

juxtaposed to discern the most optimal configuration for the PID. 

The paper is organized as follows: In the next Section, a synopsis of the background and related studies 

is provided. Followed by an illustration of the problem statement. Then, delves into the mathematics of the 

PID controller. A comprehensive discussion on evolutionary algorithms is presented, followed by an 
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investigation of swarm intelligence algorithms. Afterward, the conceptual model of the DC motor is offered, 

and diverse fitness functions are introduced. Subsequently, the experimental results were derived from the 

algorithms. Finally, the study's conclusion and insights into forthcoming research directions are presented.. 
 

2. Background and Related Work 

Several heuristic approaches were utilized to fine-tune the parameters of PIDs [1]. The classical tuning 

criteria known as Ziegler-Nichols [7] were initially employed. However, attaining optimal or nearly optimal 

PID parameters through this formula in industrial settings often proves challenging. Nevertheless, recent 

strides in computational techniques have paved the way for developing optimization algorithms geared 

toward adjusting control parameters to enhance performance. 

In earlier research, scholars have delved into the application of Evolutionary algorithms and swarm 

intelligence for parameter tuning in DC motors [8-10]. GA, derived from the concept of natural selection 

and belonging to the broader spectrum of evolutionary algorithms, is one such method that has been 

harnessed to fine-tune PID parameters in DC motors by employing diverse fitness functions [11] [12]. The 

results indicate that the GA approach surpasses manual tuning techniques like the Ziegler-Nichols method. 

GA initiates with a set of potential solutions, and through multiple iterations involving processes like 

selection, crossover, and mutation, the most robust individuals endure, constituting the ultimate solution. 

PSO, a more recent heuristic strategy introduced by Kennedy and Eberhart [4], emulates a streamlined 

social system and proficiently addresses continuous nonlinear optimization challenges. Compared to 

alternative stochastic methodologies, PSO demonstrates swift production of high-quality solutions with 

consistent convergence characteristics. Consequently, the field demands sophisticated meta-heuristic 

algorithms like ACO and GWO, belonging to the Swarm Intelligence domain. ACO emulates how ants 

discover the optimal route from their nest to a food source by depositing pheromone traces along routes 

they consider optimal [13]. GWO is a metaheuristic search algorithm inspired by the Canis lupus behavior 

[14]. GWO maintains three types of wolves: alpha 𝛼, beta 𝛽, and delta 𝛿. The function of these types is to 

lead the search for the prey. α represents the leading best solution in our search. The other two solutions 

come next in line. The remaining wolves are designated as omega ω solutions. Gray wolves can locate the 

position of prey and create a circle around it. The α wolf always leads the hunting process. This emulation 

captures the intricate hierarchy of leadership within a wolf pack. Importantly, solutions rooted in heuristic 

principles consistently demonstrate superior performance in real-world scenarios, providing advantages 

over conventional methods. Not only do they optimize memory usage, but they also deliver enhanced 

results. Moreover, the authors [15] provided a comprehensive evaluation of contemporary and traditional 

approaches to tweaking the parameters of PID controllers by utilizing metaheuristic algorithms. 

 

3. Problem Statement 

A DC motor operates by converting DC electrical power into mechanical power [2]. Its speed and torque 

are regulated through the manipulation of voltage and current. Any alterations in the input parameters of a 

DC motor can directly impact its system behavior. PID controllers come into play to maintain precise 

control over the DC motor. However, for optimal performance, it becomes imperative to fine-tune the 

parameters of these PID controllers [11][12][16].  

Evolutionary Algorithms are renowned for their superior performance, attributed to their capacity to 

effectively and swiftly tackle diverse problems. Notably, these algorithms are able to overcome the 

challenge of local minimum entrapment, a pitfall encountered by other methodologies in path planning 

scenarios. The enhanced performance of evolutionary algorithms is underpinned by their non-greedy nature, 

enabling a harmonious balance between locally and globally optimal solutions. All evolutionary algorithms 

share a common trait of emulating nature's intelligent bionic evolution. For instance, the foraging behavior 

of ants inspired the "ant colony optimization" approach, while the Crow Search Algorithm replicates a 

crow's search and hiding strategies for food. Genetic algorithms are rooted in Darwin's theory of biological 

evolution and the natural selection processes governing genetic evolution. 



Vennapusa M. Kumar et al.                                                 Journal of Computing and Communication  Vol.4  , No.1 , PP. 31-42  , 2025 

 

33 
 

 

4. PID Controller Design 

The PID controller assesses the error as the variance between the setpoint, representing the desired or 

target value, and the process variable, denoting the current measured value of the process. In response, the 

controller adjusts the process control inputs to diminish this error. The three basic concepts of PID are 

described below and illustrated in Figure 1. 

 

 
FIGURE 1. PID Controller System 

 P -controller multiplies the proportional constant with the error to get the output. It reduces the 

fluctuation in the output. P depends on the present error. 

 I-controller is used to minimize steady-state error, yet there is always a persistent offset between the 

set value and the output. I-controller integrates steady-state error until it reaches the value zero. It 

depends on past errors. 

 D-controller depends on the change in error. It predicts the future behavior of the error. When the 

set point is modified By predicting the error’s potential future behavior, D-controller makes  the  

output  usually  responds. D-controller depends on future errors. 

One form of PID Controller is expressed as in Equation 1 with a list of definions in Table 1. It can be 

expressed as a transfer function in Equation 2. 

 

𝑢(𝑡) = 𝐺 × (𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)  𝑑𝑡 + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
) ⋅ 𝑒−𝐾𝑁𝑡                             (1) 

𝑈(𝑆) = 𝐾𝑝 + 𝐾𝑖 ×
1

𝑠
+ 𝐾𝑑 × 𝑠                                                     (2) 

where the output of the PID control circuit is denoted as 𝑢(𝑡), 𝐾𝑝 is the proportional gain, 𝐾𝑖 is the 

integral gain, 𝐾𝑑 is the derivation gain and 𝑒(𝑡) is the error signal (i.e., 𝑦(𝑡) − 𝑟(𝑡)). 

 

TABLE 1: Definitions of variables used in the PID controller 

Variable Definition 

𝑢(𝑡) Control output at time 𝑡 

𝐺 System gain 

𝐾𝑝 Proportional gain 

𝐾𝑖 Integral gain 

𝐾𝑑 Derivative gain 

𝑒(𝑡) Error signal at time 𝑡 

∫𝑒(𝑡)  𝑑𝑡 
Integral of the error signal over 

time 

𝑑𝑒(𝑡)

𝑑𝑡
 

Derivative of the error signal with 

respect to time 



Vennapusa M. Kumar et al.                                                 Journal of Computing and Communication  Vol.4  , No.1 , PP. 31-42  , 2025 

 

34 
 

𝐾𝑁 Exponential decay constant 

𝑡 Time variable 

𝑒−𝐾𝑁𝑡 Exponential decay factor 

 

The classical PID controllers are extensively employed in industrial control systems owing to their 

simplicity and efficacy [17]. 

 

5. Evolutionary Algorithms 

Evolutionary Algorithms (EA) derive insights from Darwin's theory of natural selection, which centers 

on the principle of "survival of the fittest." These algorithms employ biological operations such as mutation, 

crossover, and selection. Their application extends to optimization techniques and real-world problem-

solving. 

 

5.1. Genetic Algorithm (GA) 

Genetic Algorithms (GAs), a randomized, global search technique, emulate the principles of natural 

evolution. Over time, computational systems have progressively enhanced their efficacy, rendering them 

valuable for specific optimization tasks. The most favorable solution is ascertained based on environmental 

feedback, in conjunction with evolution operators like reproduction, crossover, and mutation. Commencing 

without prior knowledge of the optimal solution, the genetic algorithm averts the pitfalls of local minima 

and convergence to suboptimal outcomes by initiating multiple independent search points, thus conducting 

concurrent explorations. The step-by-step process of the Genetic Algorithm, inspired from [2] is delineated 

in Algorithm 1. 

 

Algorithm 1: GA Algorithm 

1. Procedure: 

(a) Set count for the number of generations; t = 0; 

(b) Create initial population of solutions P (0) randomly 

(c) Evaluate the fitness function for each individual P (t), where t is the population index t 

2. While Termination criteria is not satisfied do: 

(a) t + + 

(b) Create the next generation 

(c) Introduce crossover among a subset of the population t 

(d) Introduce mutation within a portion of the population t 

(e) Evaluate the fitness for the next generation. 

3. Return best solution 

 

6. Swarm Intelligence Algorithms 

Swarm Intelligence (SI) is a computational approach to addressing intricate challenges. Within this 

paradigm, a swarm constitutes an assembly of discrete entities, which could encompass individuals or 

animals. Each entity's accumulated information collectively contributes to the problem-solving process, 

ultimately deriving a solution. 

 

6.1. Particle Swarm Optimization (PSO) 

Kennedy and Eberhart [4] originally proposed Particle Swarm Optimization (PSO); they drew inspiration 

from sociobiological observations. They observed that a collective of birds or fish moving in unison could 

harness the collective experiences of all members, leading to enhanced outcomes. While one bird searches 

for food, the entire flock benefits from shared discoveries, augmenting their collective hunting success. 
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In the PSO framework, the simulation mimics the behavior of a bird flock, with each "bird" aiding in the 

quest for the optimal solution within a multi-dimensional problem space. The best position within the group 

encapsulates this individual contribution. Additionally, the global best position within the flock signifies 

the best solution as represented in Equation 3 and 4 [18]. Through iterative particle velocity and position 

updates, the algorithm navigates toward improved solutions, continuing until predefined stopping criteria 

are fulfilled. While PSO solutions often approach the ideal outcome, the algorithm's superiority as the 

ultimate solution is not guaranteed in all cases. 

 

𝑉𝑖 = ω𝑉𝑖−1 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖−1) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖−1)                        (3) 

𝑋𝑖 = 𝑋𝑖−1 + 𝑉𝑖                                                                 (4) 

 

Where 𝑉𝑖 to denote the particle's speed and 𝑋𝑖 to represent the particle's position. 𝑃𝑏𝑒𝑠𝑡 stands for the 

best individual value of a particle, and 𝐺𝑏𝑒𝑠𝑡 stands for the best global value of the entire population. 𝑐1, 𝑐2 

represents the acceleration coefficients, 𝜔 is the intertia weight, and 𝑟1, 𝑟2 represents the random numbers. 

Inspired from [2], the sequential PSO algorithm is given in Algorithm 2. 

 

Algorithm 2: PSO Algorithm 

1. Initialize position Xi(0) and velocity Vi(0) for each particle randomly as in Equation 3 

2. While The termination condition has not been met do: 

(a) For i = 1 . . . itmax Do: 

• Compute the Fitness Function 

• Revise the current and global best positions 

• Calculate each particle’s speed Vi 

• Revise each particle’s position Xi 

 

6.2. Ant Colony Optimization (ACO) 

The inception of ACO was initially put forth by Marco Dorigo [13]. Ants naturally gravitate towards 

living in colonies and engaging with one another through various communication modes, including touch, 

sound, and pheromones. For ants, the paramount goal revolves around locating food, a factor that 

significantly influences their behavior. As ants traverse their environment, they deposit pheromone-like 

organic substances onto the ground to establish navigational cues. These pheromones are chemical 

messengers, facilitating communication among ants. Upon stumbling upon a food source, an ant accumulates 

provisions and leaves pheromones along its path back to the colony. The amount and caliber of the food 

influence the amount of pheromones released by the ant. Other ants detect this olfactory trail and follow it 

to reach the food source. The intensity of the pheromone concentration directly correlates with the likelihood 

of other ants opting for the same route. 

Considering a network where ants can traverse between nodes, the probability of ant 𝑘 stationed at node 

𝐼 transitioning to another node in the network hinges upon the extent of pheromone presence along the path. 

This probabilistic aspect is depicted in Equation 5. 

𝑝𝑘
𝑖𝑗

= {

(𝜏𝑖𝑗
𝑘 )

𝛼
(𝜂𝑖𝑗

𝑘 )
𝛽

∑ (𝜏𝑖𝑙
𝑘)

𝛼
(𝜂𝑖𝑙

𝑘)
𝛽

𝑙∈𝑁𝑖
𝑘

    𝑖𝑓  𝑗 ∈ 𝑁𝑖
𝑘

0                                 𝑖𝑓  𝑗 ∉ 𝑁𝑖
𝑘

                                                  (5) 

 

where τ𝑖𝑗 represents the quantity of pheromone deposited for the transition from state 𝑖 to 𝑗, α ≥ 0 is a 

parameter regulating the impact of τ𝑖𝑗, η𝑖𝑗 signifies the desirability of the state transition 𝑖𝑗, and β ≥ 1 is a 
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parameter that regulates the impact of 𝜂𝑖𝑗. Additionally, τ𝑖𝑙 and η𝑖𝑙 represent the trial level and attractiveness 

for other potential state transitions. The evaporation rate, which reduces the value of deposited pheromone 

over time, is determined by Equation 6. 

τ𝑖𝑗 ← (1 − ρ)τ𝑖𝑗 + ∑ Δτ𝑖𝑗
𝑘𝑚

𝑘                                                              (6) 

Here, ρ stands for the coefficient of pheromone evaporation, 𝑚 represents the number of ants, and Δτ𝑥𝑦
𝑘  

denotes the amount of pheromone laid down by 𝑘𝑡ℎ ant. Once the pheromones evaporate and the ants that 

just crossed the trail have laid fresh pheromones, the new pheromone levels are updated according to 

Equation (7). 

Δ𝜏𝑖𝑗
𝑘 = {𝑄/𝐿𝑘          𝑖𝑓  𝑘𝑡ℎ 𝑎𝑛𝑡′𝑠 𝑡𝑢𝑟𝑛 

0                           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                   (7) 

 

where 𝐿𝑘 represents the cost of the tour length undertaken by the 𝑘𝑡ℎ ant and 𝑄 is a constant.  The detailed 

Algorithm of ACO is given in Algorithm 3. 

 

Algorithm 3: ACO Algorithm 

1. Procedure: 

(a) Initialize the system parameters 

2. While Termination state is not attained do: 

(a) Generate Solutions 

(b) Calculate fitness 

(c) Update Pheromone in Equation 5 

(d) Repeat 

 

6.3. Grey Wolf Optimization (GWO) 

The GWO was first presented by Mirjalili and his collaborators [14]. This algorithm derives its 

inspiration from the intricate behaviors exhibited by wolves in their living and hunting dynamics. Wolves 

tend to operate in cohesive packs, which are organized into distinct categories: alpha (α), beta (β), delta 

(δ), and omega (ω). Among them, alpha wolves possess the highest rank, serving as leaders to the other 

wolves. Following them in precedence are β and δ wolves, while ω wolves assume the lowest priority. 

Each category of wolves has its designated leader.  

When engaged in hunting, the wolves collectively adopt a strategy. First, they identify their target prey 

and subsequently update their individual positions accordingly. During this process, every wolf within the 

pack adheres to the guidance of their respective leaders, belonging to the alpha, beta, and delta categories 

according to Equation 8(a-f). This orchestration ensures that the pack operates cohesively to optimize their 

collective hunting endeavor. 

𝐷α
⃗⃗ ⃗⃗     =   | 𝐶1

⃗⃗⃗⃗ ∗  𝑋α
⃗⃗ ⃗⃗  (𝑡) − 𝒩(𝑡)|                                                       (8-a) 

   𝑋1
⃗⃗⃗⃗ (𝑡)   =   𝑋α

⃗⃗ ⃗⃗  (𝑡) − 𝐴2
⃗⃗ ⃗⃗ ∗  𝐷α

⃗⃗ ⃗⃗                                                            (8-b) 

𝐷β
⃗⃗ ⃗⃗     =   | 𝐶2

⃗⃗⃗⃗ ∗  𝑋β
⃗⃗ ⃗⃗ (𝑡) −  𝑋 (𝑡)|                                                        (8-c) 

𝑋2
⃗⃗⃗⃗ (𝑡)   =   𝑋β

⃗⃗ ⃗⃗ (𝑡) − 𝐴2
⃗⃗ ⃗⃗   ∗  𝐷β

⃗⃗ ⃗⃗                                                           (8-d) 

𝐷δ
⃗⃗ ⃗⃗     =   | 𝐶3

⃗⃗⃗⃗ ∗  𝑋δ
⃗⃗⃗⃗ (𝑡) − 𝑋 (𝑡)|                                                          (8-e) 

𝑋3
⃗⃗⃗⃗ (𝑡)   =   𝑋δ

⃗⃗⃗⃗ (𝑡) − 𝐴2
⃗⃗ ⃗⃗ ∗  𝐷δ

⃗⃗ ⃗⃗                                                             (8-f) 
 

Therefore, updating the position of grey can be computed according to Equation 9. 

𝑋 (𝑡 + 1) = 𝐴𝑉𝐸𝑅𝐴𝐺𝐸(𝑋1
⃗⃗⃗⃗ , 𝑋2

⃗⃗⃗⃗ , 𝑋3
⃗⃗⃗⃗ )                                              (9) 
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where $𝑡$ represents the actual iteration, $𝐴$ and $𝐶$ are coefficients associated with vectors, and 

𝑋𝛼, 𝑋𝛽, and 𝑋𝛿 denote the positions of the α, β, and δ wolves, respectively, with 𝑋 signifying any wolf's 

location. The coefficients 𝐴 and 𝐶 are determined as follows: 

𝐴 = 2𝑎 × 𝑟1⃗⃗⃗  − 𝑎                                                               (10) 

𝐶 = 2𝑟2⃗⃗  ⃗                                                                     (11) 

As the iterations go on, the value decreases from 2 to 0, 𝑟1 and 𝑟2 are random values, {𝑟1, 𝑟2} ∈ [0,1]. 
The step-by-step procedure of the GWO Algorithm is given in Algorithm 4. 

 

Algorithm 4: GWO Algorithm 

1. Generate initial population Xi, i = 1 , . . . ,  n 

2. Calculate a, A, and C using Equations 10 and 11. 

3. Determine the fitness of each search wolf. 

(a) Xα = best search wolf 

(b) Xβ = second best search wolf 

(c) Xδ = third best search wolf 

4. While t < itmax Do: 

(a) For each wolf Do: 

• Randomly initialize r1 and r2 

•  Update the position of current wolfusing Equation 8 

(b) Compute a, A, and C 

(c) Compute the fitness of all the wolves 

(d) Update Xα, Xβ, and Xδ 

(e) t + + 

5. Return Xα 

 

7. Problem Formulation 

The PID Controller governs the attributes of the DC motor, ensuring their regulation. We can attain the 

targeted output through parameter adjustment within the PID while minimizing errors. The DC motor's traits 

are consolidated into a singular function for study purposes. To analyze its dynamics, the DC motor is 

encapsulated within a Transfer function: 

𝐺(𝑠) =
1

𝑠3+9×𝑠2+23×𝑠+15
                                                                 (12) 

 

A closed-loop feedback controller (CLFC) is used to regulate the dynamics of the DC motor. PID 

controller is represented as in Equation 13.  

𝑈(𝑆) = 𝐾𝑝 + 𝐾𝑖 ×
1

𝑠
+ 𝐾𝑑 × 𝑠                                                       (13) 

7.1. Fitness Function 

Within optimization problems, the fitness function is pivotal, guiding the algorithm toward identifying 

the optimal solution. Essentially, this function assesses the system's performance output and measures the 

extent to which a proposed solution deviates from the desired setpoint. Consequently, the fitness function 

considers essential metrics such as settling time, rise time, etc. In the context of this research, our selected 

fitness functions encompass rise time, peak time, settling time, overshoot, and Mean Square Error (MSE). 

Specifically, MSE computes the average squared difference between the setpoint and the process variable 

according to Equation 14. 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦(𝑖) − 𝑤(𝑖))

2𝑛
𝑖=1                                                      (14) 
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Where 𝑦(𝑖) and 𝑤(𝑖) are DC motor output and desired output, respectively.  

 

It is important to first establish certain key definitions before outlining the fitness function. 

1. Rise-time (tr) is the time taken to transition from 10% to 90% of the steady-state value. 

2. Settling-time (ts) is the time needed for the output to reach and consistently stay within a specified 
error margin. 

3. Peak-time (tp) is the time at which the first response peak value occurs. 

4. Overshoot(to) is the fact that the output value exceeds the desired steady-state value. 

 

In this research, we propose the following fitness function: 

𝐹 = γ1 × 𝑡𝑟 + γ2 × 𝑡𝑠 + γ3 × 𝑡𝑝 + γ4 × 𝑡𝑜 + γ5 × 𝑀𝑆𝐸                          (15) 

where: γ1…5 represent the weights changed to alter how well each function contributes to fitness. The 

above fitness function gives importance to all the parameters, and by changing the weights, we can get the 

desired fitness function. 

 

8. Experiemental Results 

To refine the PID controller's parameters, a trial-and-error method was utilized to identify the most 

appropriate parameters for Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), and Grey Wolf Optimization (GWO). The setting parameters are presented in tables 

2-5, respectively. 

 

TABLE 2: GA Parameter Settings. 

Parameter Value 

Population Size 100 

Mutation Fraction 0.1 

Crossover Fraction 0.6 

Lower Bound 100 

Upper Bound 500 

Iterations 100 

 

TABLE 3: PSO Parameter Settings. 

Parameter Value 

Swarm Size 100 

Inertia Weight (𝜔) 0.2 

Cognitive Parameter (𝑐1) 0.8 

Social Parameter (𝑐2) 0.8 

Lower Bound 100 

Upper Bound 500 

Iterations 100 

 

TABLE 4: ACO Parameter Settings. 

Parameter Value 

Number of Ants 30 

Initialisation of pheromone 100 

Pheromone Weight (𝜔) 0.2 
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Heuristic data Weight (𝛼) 0.8 

Evaporation rate (𝜌) 0.7 

Lower Bound 100 

Upper Bound 500 

Iterations 100 

 

TABLE 5: GWO Parameter Settings. 

Parameter Value 

Number of Search Agents 30 

Lower Bound 100 

Upper Bound 500 

Iterations 100 

 

8.1. Test Case 1 

The fitness function has been adjusted with the following parameters: γ1 = 10, γ2= 20, γ3= 10, 𝛾4= 10, 

and 𝛾5= 40. The relevant findings are displayed in Table 6. Figure 2 depicts the convergence curve and the 

step response. 

 

TABLE 6: Calculated time for each algorithm (case 1) 

Algorithm 𝒕𝒓 𝒕𝒔 𝒕𝒑 𝒕𝒐 

GA 0.3203 1.5436 0.5703 0.5172 

PSO 0.2643 1.4926 0.4894 1.5297 

ACO 0.2309 1.9409 3.6494 1.9066 

GWO 0.2643 1.4898 0.4894 1.5394 

 

 
FIGURE 2. Curves for 𝛾1 = 10, 𝛾2= 20, 𝛾3= 10, 𝛾4= 10, and 𝛾5= 40 

 

From Table 6, ACO is the fastest in terms of rise-time (𝒕𝒓) but has significant drawbacks in terms of 

settling time, peak time, and overshoot, which suggests that it is quick to react but prone to instability and 

slower convergence to the steady-state value. PSO and GWO are more balanced, with good performance 

in rise-time, settling-time, and peak-time, though PSO suffers from a high overshoot. GWO appears to be 

more stable, with a lower overshoot compared to PSO. However, GA shows the most controlled behavior, 

with the lowest overshoot and reasonable times in other parameters, though it is slower in rise-time and 

peak time. It may be a better choice for systems requiring precision and minimal deviation from the steady-

state value.  Therefore, giving significance to rising time, settling time, and 𝑀𝑆𝐸 in the fitness function, 

GA outperforms PSO by 17%, GWO, and ACO by 28%. This is evident in the performance indices, where 

rising time, peak time, and settling time exhibit lower values, signifying better performance. However, it is 

noteworthy that the overshoot experiences a considerable increase in this scenario. 
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8.2. Test Case 2 

For the second test case, we have adjusted the values of the fitness function to: 𝛾1 = 1, 𝛾2= 30, 𝛾3= 1, 

𝛾4= 10, and 𝛾5= 40. Table 7 contains the relevant findings, while Figure 3 shows the convergence curve 

and step response. 

 

TABLE 7: Calculated time for each algorithm (case 2) 

Algorithm 𝒕𝒓 𝒕𝒔 𝒕𝒑 𝒕𝒐 

GA 0.281 1.4236 0.524 1.3588 

PSO 0.2637 1.3941 0.4891 1.771 

ACO 0.251 2.7848 0.5004 5.8543 

GWO 0.2637 1.402 0.4892 1.7482 

 

 
FIGURE 3. Curves for 𝛾1 = 1, 𝛾2= 30, 𝛾3= 1, 𝛾4= 10, and 𝛾5= 40 

 

Based on the results of rise time (𝒕𝒓) listed in Table 7, ACO is the fastest, followed closely by GA, which 

shows a 10.7% improvement compared to ACO. PSO and GWO show a smaller improvement of 4.9%. For 

Settling time (𝒕𝒔), PSO is the best performer here, with a small 2.1% improvement over GA, while ACO 

shows a substantial improvement of 50% over PSO, making it the most improved in this parameter. 

According to peak-time (𝒕𝒑), both PSO and GWO perform equally well in this parameter, achieving the 

lowest peak time. GA and ACO show moderate improvements over the best values. However, GA is the 

best performer in terms of Overshoot (𝒕𝒐=1.3588). All methods converge almost simultaneously in the 

fitness function when the MSE is given more weight. The results achieved surpass those of the prior 

function; nonetheless, the overshoot is very high. 

 

8.3. Test Case 3 

In the third test case, the fitness function is modified with the following values: 𝛾1 = 20, 𝛾2= 50, 𝛾3= 

20, 𝛾4 = 10, and 𝛾5 = 50. Table 8 displays the outcomes that were achieved. Figure 4 displays the 

convergence curve and step response. 

 

TABLE 8: Calculated time for each algorithm (case 3) 

Algorithm 𝒕𝒓 𝒕𝒔 𝒕𝒑 𝒕𝒐 

GA 0.2757 1.31 0.4962 1.865 

PSO 0.2631 1.3322 0.489 1.9999 

ACO 0.2336 2.5135 0.4414 3.7458 

GWO 0.2632 1.3371 0.489 1.9822 
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FIGURE 3. Curves for 𝛾1 = 20, 𝛾2= 50, 𝛾3= 20, 𝛾4= 10, and 𝛾5= 50 

 

While the ACO performs best with the shortest rise time of (𝒕𝒓=0.2336) , the GA shows the most 

improvement in rise time, with a 15.3% reduction compared to ACO. Also, GA performs best in 𝒕𝒔=1.3100, 

𝒕𝒐=1.8650 which makes it a good choice for stability and control.  

Despite assigning significant weight to Overshoot in the fitness function, there is no observed reduction 

in overshoot when compared to the other performance indices. 

 

9. Conclusion and Future Work 

This paper aimed to enhance the parameters of a Proportional-Integral-Derivative (PID) to control a 

Direct Current (DC) motor system through the utilization of Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), Ant Colony Optimization (ACO), and Grey Wolf Optimization (GWO) techniques. 

The fitness function considered in this study encompassed various performance metrics, including rise-

time, settling-time, peak-time, overshoot, and Mean Square Error. The study's findings demonstrated that 

the proposed methodology yielded significant improvements in terms of rise time, peak time, response 

precision, and error reduction compared to conventional approaches. Moreover, the step response exhibited 

enhanced performance, establishing the superiority of the proposed PID controller over existing designs. 

Future research endeavors could explore further adjustments to the weighting of the fitness function and 

the investigation of novel algorithms to enhance the PID controller's parameters further using various 

evolutionary and swarm-based optimization techniques. 
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