
IJT’2025, Vol.05, Issue 01 1 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

SVM-Based Load Balancing for Efficient Edge Computing

Haitham M. Abdelghany

Electronics and Communication Engineering Department, Faculty of Engineering,

Mansoura University, El-Mansoura, Egypt

Higher Technology Institute of Applied Health Sciences, Shrbin, Egypt

Abstract: The exponential growth of Internet of Things (IoT)

technologies has intensified the demand for efficient computing

solutions to handle the massive amount of data generated by

connected devices. Edge computing, as a paradigm, offers a

promising solution by decentralizing computations closer to data

sources. This study introduces a novel framework that leverages

support vector machines (SVMs) for dynamic resource allocation

and load balancing in edge computing environments.

Experimental evaluations demonstrate that the SVM-based

framework achieves significant performance improvements over

heuristic-based, clustering-based, and other machine learning

approaches. The results reveal that the SVM framework reduces

the total latency by 14.2% and 21.6% compared with heuristic and

clustering methods, respectively, and outperforms models such as

K-nearest neighbors, random forest, and neural networks by

achieving the lowest latency (1.803125), best load distribution

(0.073357), and highest cost efficiency (0.877428). These

findings highlight the SVM model’s ability to optimize resource

utilization, reduce task completion times, and improve system

adaptability. Its low computational overhead and predictive

capabilities make it particularly suitable for latency-sensitive

applications, such as healthcare IoT and autonomous vehicles.

Furthermore, the study discusses limitations and proposes hybrid

model integrations to address scalability and real-time

adaptability for future research.

Keywords: IoT, Edge Computing, SVM, Resource Allocation, Load Balancing

1. Introduction

 Edge computing, particularly mobile edge computing (MEC), addresses the limitations of traditional cloud

computing by bringing computational resources closer to data sources. Existing methods such as heuristic,

clustering, and reinforcement learning models have shown potential in load balancing but often struggle with

high-dimensional data and real-time constraints. The proposed SVM-based approach offers a lightweight yet

powerful alternative by minimizing latency and optimizing load distribution. Key findings, including a 15%

Citation: Abdelghany H.

Inter. Jour. of Telecommunications, IJT’202, Vol. 05, Issue 01, pp. 01-20,

Editor-in-Chief: Youssef Fayed.

Received: 25/11/2024.

Accepted: 11/02/2025.

Published: 12/02/2025.

Publisher’s Note: The International Journal of

Telecommunications, IJT, stays neutral regard-ing jurisdictional

claims in published maps and institutional affiliations.

Copyright: © 2023 by the authors. Submitted for possible open

access publication under the terms and conditions of the

International Journal of Telecommunications, Air Defense

College, ADC, (https://ijt.journals.ekb.eg/).

https://ijt.journals.ekb.eg/

IJT’2025, Vol.05, Issue 01 2 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

latency reduction and enhanced resource utilization, demonstrate the significant advantages of the framework in

dynamic edge environments.

 Edge computing has redefined distributed computing, with mobile edge computing (MEC) emerging as a key

enabler in minimizing latency and optimizing data processing at the network edge. MEC was initially grounded

in European control theory, with early implementations primarily targeting computational bottlenecks and task-

offloading challenges [1, 2]. Over the past decade, researchers have expanded MEC’s scope beyond traditional

cloud computing, focusing on optimizing resource management and service delivery closer to data sources [3].

This study introduces an innovative SVM-based framework designed specifically for dynamic resource

allocation in edge computing. Unlike heuristic or clustering-based approaches, this model leverages SVM’s

predictive capabilities to reduce latency and balance workloads more efficiently, especially in high-dimensional,

real-time environments. This approach addresses critical limitations in existing models, which often struggle with

real-time decision-making under variable network conditions.

Task offloading, as demonstrated by Shukla et al. [4], effectively mitigates issues such as economic costs,

delays, power consumption, and system failures in wireless networks. The addition of quality-of-service (QoS)

enhancements, as explored by Chen et al. [5], further illustrates MEC’s applicability across diverse environments,

emphasizing its role in latency-sensitive applications. However, Bouet et al. [6] raised concerns about specific

MEC applications, such as cryptocurrency mining, underscoring the need for cautious advancements that

prioritize human welfare.

This study introduces a support vector machine (SVM)-based resource allocation framework that addresses

MEC challenges by providing a high-speed, lightweight alternative for dynamic resource allocation. Unlike

heuristic and reinforcement learning models, SVMs excel in handling high-dimensional data and can make rapid

decisions, making them ideal for real-time, latency-sensitive environments in edge computing.

 A key point in distinguishing MEC from other technologies is its potential to form a “converging” community

that is well prepared for providing accurate and complicated computational resources at the network edge. This

feature was mentioned by Naouri et al. [7]. Although researchers such as Chang et al. [8] have discovered

numerous applications of this approach, major sections of this domain have yet to be explored. MECs completely

alter the way I have interacted with the digital realm, as indicated by Fang et al. in their work [9].

The MEC fabric reaches different virtual distributed hosts to cloud hosts and infrastructure managers through

layers that provide us with a variety of benefits, including business-optimized solutions and low latency [10]. In

addition, as seen in traffic control incorporation and smart buildings, MEC improves efficiency and user

experience, and it aligns with the vision shared by Henebelle et al. (2018) [11]. In addition, as seen in traffic control

incorporation and smart buildings, MEC improves efficiency and user experience, and it aligns with the vision

shared by Biswas and Wang (2023) [11]. Furthermore, the collaboration of MEC with modern technologies such as

5G, IoT, and vehicular networks is poised to drive advancements in autonomous vehicle and vehicular network

ecosystems.

The combination of the block chain and MEC, as analyzed in Wang et al. [13], raises new possibilities in data

manipulation and results in trust without third-party validation. Ullah et al. [14] explored the integration of

mobile edge computing (MEC) in the Internet of Vehicles (IoV) to enhance human-centric transportation systems.

Their study emphasized the role of MEC in enabling real-time data processing at the edge of the network,

improving transportation efficiency, safety, and resource utilization. By leveraging the IoV and MEC, the authors

propose solutions for traffic management, autonomous vehicles, and system scalability challenges, aiming to

create smarter, safer, and more efficient transport systems that prioritize human needs. The integration of MEC

with unmanned aerial vehicles (UAVs), as suggested by Wang et al. [15], creates a new horizon for data collection

IJT’2025, Vol.05, Issue 01 3 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

and processing across many applications. The edge computing architecture is shown in Figure 1, and the future

trend of edge computing is shown in Figure 2.

Figure 1. Edge computing architecture

 Figure 2. Future of edge computing

 In this paper, a novel dynamic resource allocation framework that leverages a support vector machine (SVM)

for job offloading in edge computing environments is introduced. This approach integrates an SVM to

dynamically learn and adapt to application demands and network conditions, aiming to optimize resource

utilization and minimize latency. The effectiveness of the framework has been thoroughly validated through a

series of rigorous assessments, as detailed in studies by the ETSA [16] and Fang et al. [17]. This study introduces

an SVM framework specifically optimized for real-time resource allocation, offering enhanced adaptability and

lower computational cost than other machine learning techniques traditionally used in edge computing [18].

Notably, the framework dynamically adjusts its hyperparameters in response to network and application

demands, which improves latency and load balancing beyond what previous SVM and heuristic models achieve

Edge computing, particularly mobile edge computing (MEC), addresses the limitations of traditional cloud

computing by bringing computational resources closer to data sources [19]. While existing methods such as

heuristic and clustering models have contributed to load balancing, they often struggle with the real-time

constraints and high-dimensional data demands of edge environments [20].

The structure of this paper is as follows: Section 2 describes the related work and positions the proposed

approach within the existing research landscape. Section 3 outlines the system model, providing the mathematical

and conceptual foundation for the proposed framework. Section 4 presents the proposed SVM-based dynamic

resource allocation framework, detailing its architecture and operational workflow. Section 5 discusses the

IJT’2025, Vol.05, Issue 01 4 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

experiments and analyzes the results, highlighting the performance metrics in various edge computing scenarios.

Section 6 delves into further discussions, addresses limitations and proposes future directions. Finally, Section 7

concludes the study with key findings, emphasizing the relevance of the proposed framework in advancing edge

computing technologies.

2. Related Work

This section reviews key approaches to resource allocation and load balancing in mobile edge computing

(MEC) environments, categorized into heuristic, clustering, and reinforcement learning-based methods,

highlighting their advantages, limitations, and relevance to the SVM-based model.

2.1. Heuristic-based approaches

Heuristic algorithms offer computational efficiency but often lack adaptability to dynamic, real-time

environments. Hikida, Nishikawa, and Tomiyama [21] proposed a heuristic offloading decision algorithm that

optimizes resource allocation. However, it does not simultaneously account for communication and

computational resources, limiting its adaptability in varying network conditions. Similarly, benchmarking

methods evaluate resource parameters such as power, CPU, and memory but struggle with flexibility in mobile

systems. Vakili Fard et al. [22] explored secure dynamic program uploading, considering resource availability, but

performance suffers when fog servers become overloaded. Similarly, benchmarking methods evaluate resource

parameters such as power, CPU, and memory but struggle with flexibility in mobile systems. Singh et al. [23]

faced challenges with unpredictable resources and congestion [24] and enhanced offloading strategies via cost-

sensitive prediction models, although their scalability remains limited. Qua et al. [25] proposed a resource

allocation strategy for MEC systems with multiuser resource competition, leveraging deep reinforcement learning

to optimize performance.

2.2. Clustering-based Approaches

By grouping devices geographically for task distribution and proactive caching, cluster-based models improve

the execution time. Huang et al. [26] proposed a geographical clustering method to increase computing speed,

although it inadequately addresses group communication and latency issues. Xiang et al. [27] used mixed-integer

linear programming (MILP) to assess MEC server capacities but did not optimize latency for application-specific

needs. Chen et al. [28] proposed a clustering technique that groups proximate user devices to minimize

computing latency. Their method leverages computing and storage resources through joint task offloading and

proactive caching. The results demonstrate that this approach can reduce performance delays by up to 65% while

also improving traffic intensity to local computing resources, similar to a cloudlet setup. By processing tasks

closer to the user within a cloudlet cluster, latency can be significantly reduced.

Bouet et al. [29] introduced an optimization technique using a geoclustering approach combined with mixed

integer linear programming (MILP). This algorithm, which considers the spatial distribution of communications,

adjusts resource allocation on the MEC server on the basis of application-specific requirements. The algorithm

also considers the maximum server capacity in terms of resources (CPU, storage, etc.). To evaluate these

techniques, Bouet et al. employed a mobile communication dataset, demonstrating that the clustering approach

helps offload core networks effectively while accounting for the spatial distribution of communication, thus

optimizing MEC server utilization.

2.3. Reinforcement Learning-Based Approaches

The adaptive decision-making abilities of reinforcement learning (RL) models are known. However, they can

be computationally intensive and slow to converge under high-variance network conditions. Lei et al. [30]

addressed these challenges by proposing a multiuser scheduling and computation offloading algorithm for IoT

edge computing, which leverages deep reinforcement learning to minimize delay and power consumption under

stochastic traffic arrival. The dynamic resource allocation model (DRAM) shows promising load balancing results

but is limited by computational overhead. Prasad et al. [31] introduced an auction-based dynamic resource

IJT’2025, Vol.05, Issue 01 5 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

allocation mechanism for fog computing, which optimizes resource usage and minimizes latency. However, it

does not fully address the computational challenges in high-dimensional, real-time systems. Zhang et al. [32]

employed Particle Swarm Optimization (PSO) for power control in mobile edge computing, improving energy

efficiency while addressing the scheduling of security-critical tasks in resource-limited environments.

Wang et al. [33] studied trajectory control for UAVs via deep reinforcement learning, illustrating adaptive

optimization in edge environments and enhancing task-offloading energy efficiency through decentralized

navigation policies. Beraldi and Proietti Mattia [34] presented a centralized control algorithm for load balancing in

energy harvesting edge systems, optimizing task offloading to enhance service performance and prolong system

lifetime. Their approach uses linear programming for optimization and offers a distributed implementation to

ensure operational efficiency.

Ren et al. [35] proposed an innovative edge-assisted multiuser collaborative framework for mobile web

augmented reality (AR) in the 5G era. Their framework addresses the challenges of cross-platform, real-time

communication and intensive computing requirements in mobile AR applications. They introduced a heuristic

communication planning mechanism (BA-CPP) for efficient multiuser interaction synchronization and a motion-

aware key frame selection mechanism (Mo-KFP) to optimize computational efficiency in edge systems. This

approach, which leverages device-to-device (D2D) communication techniques, demonstrated enhanced

performance in a real-world 5G network, highlighting the framework's potential in improving multiuser mobile

web AR.

2.4. Deep reinforcement learning approaches

Several studies have explored the application of deep reinforcement learning (DRL) for optimizing task

offloading in mobile edge computing (MEC) environments, addressing the limitations of traditional heuristic

methods.

Fang et al. [36] proposed a DRL-aided task offloading and resource allocation scheme to minimize power

consumption in cloud-edge cooperation environments by jointly optimizing task offloading and resource

allocation while adapting to network changes. Similarly, Liu et al. [37] and Zhao et al. [38] applied a deep Q-

network (DQN) to onboard edge computing systems, achieving improved offloading decisions. Li et al. [39]

employed a DQN to optimize MEC network offloading by minimizing total costs. Chen et al. [40] introduced a

model that combines deep neural networks (DNNs) with k nearest neighbors (KNNs) to address offloading,

communication, and resource allocation challenges in MEC networks. Yun et al. [41] and Yu et al. [42] further

explored multiuser and multiedge server (ES) environments via DQN-based methods, enhancing scalability and

adaptability.

As MEC systems grow in scale, value-based DRL methods such as DQN face challenges because of the

increasing computational complexity of discrete offloading decisions. To address this, the DROO framework [43]

uses generative adversarial networks (GANs) to reduce decision spaces, applying linear programming for

efficient resource allocation. Wei et al. [44] employed natural strategy gradient training in DRL to improve the

efficiency of offloading decisions. Zhao et al. [45] focused on actor-critic algorithms and used DDPG to enhance

offloading in vehicular networks, achieving improved adaptability in dynamic environments. Expanding on

policy-based DRL approaches, Yang et al. [46] developed a hybrid model that combines discrete decision-making

with continuous resource allocation to better adapt to diverse network conditions.

To ensure long-term system stability, Lyapunov optimization has been integrated with DRL in recent studies.

Bi et al. [47] proposed a Lyapunov optimization-based DRL approach that addresses task queue stability but

encounters resource constraints in scenarios with increased wireless devices or task arrival rates. Zhang et al. [48]

extended this concept by introducing a hybrid Lyapunov-assisted DRL framework for cloud-edge collaboration,

balancing energy consumption and cost constraints in dynamic environments. Sun et al. [49] applied DRL to

IJT’2025, Vol.05, Issue 01 6 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

vehicular edge computing networks, focusing on task prioritization and resource allocation under highly dynamic

conditions.

These contributions underscore the advancements in DRL-based offloading optimization while highlighting

persistent challenges related to computational complexity, scalability, and adaptability in large-scale and dynamic

MEC systems.

2.5. Summary and Research Gap.

While significant progress has been made in resource allocation and load balancing via heuristic,

clustering, and reinforcement learning approaches, these methods often face challenges related to scalability,

computational overhead, and real-time adaptability in dynamic edge environments. The SVM-based

framework proposed in this study seeks to address these limitations by leveraging its predictive efficiency

and reduced computational load. This approach complements and enhances the existing body of knowledge,

offering a robust alternative for dynamic, latency-sensitive edge computing scenarios.

3 System Model

These methods are suitable for resource management and load balancing in edge computing, although further

improvements are still needed to address volatility in distributed environments as well as workload balancing.

The SVM-based framework optimizes resource allocation by identifying the optimal hyperplane for task

allocation, minimizing latency while effectively balancing loads. In this context, the objective function F(R, T)

combines cost and delay minimization to increase resource efficiency. The SVM's regularized loss function

maximizes the margin while minimizing classification error, allowing for rapid convergence even in high-

dimensional, real-time environments. This setup is particularly beneficial for edge computing, where tasks require

immediate processing and resource adaptability.

This framework leverages support vector machines (SVMs) for optimizing resource allocation by identifying

the optimal hyperplane that categorizes tasks on the basis of resource requirements and network conditions. The

model is designed to minimize latency by effectively predicting task allocation across available edge servers,

ensuring optimal load balancing.

Let E denote the set of edge environments to be established. Let R represent the total amount of resources

available and T be the set of tasks that are to be managed. C(R, T) is defined as the cost function for allocating tasks

T using the resources R, and D(R, T) is defined as the delay function for utilizing resources R to manage tasks T.

a. Objective function:

The objective is to minimize the function F(R, T) =C(R, T) +D(R, T), which combines the cost and delay of

managing tasks T with resources R.

F(R, T) combines an objective function to minimize cost and delay.

C(R, T): Cost function for allocating tasks T using resources R.

D(R, T), Delay function for using resources R to manage tasks T.

R: Total available resources.

T: Set of tasks to be managed.

subject to:

● R must be one of the available resources at the start of E.

● T must be a task that can be assigned.

b. SVM Optimization:

IJT’2025, Vol.05, Issue 01 7 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

The support vector machine (SVM) aims to find the optimal hyperplane that best separates the different classes

or predicts the continuous outcomes on the basis of the resource and task data. Specifically:

● Objective: Minimize the regularized loss function, which includes both the margin maximization and the

error terms. The SVM model is trained to predict task‒resource pairings by minimizing a regularized loss function

that maximizes the margin while minimizing classification error. The optimization function is as follows:

 =

|| || + C∑

 (1)

where is the weight vector defining the hyperplane.

C: Regularization parameter balancing classification error and model complexity.

 : Slack variables to handle misclassifications.

where W is the weight vector, b is the bias term, are the slack variables, and C is the regularization parameter

that balances the trade-off between achieving a low error on the training data and minimizing the model

complexity.

● Decision Function: The decision function for the SVM is as follows:

) = sign(x+b) (2)

where : Feature vector representing task or resource characteristics.

b: Bias term adjusting the hyperplane position.

Sign: Function returning the sign (+ or -) to determine the classification.

x represents the features of the tasks and resources.

● Support Vectors: The model focuses on the support vectors, which are the data points that lie closest to the

decision boundary. These points are critical for determining the optimal hyperplane.

The performance metrics derived from the SVM model are used to evaluate the effectiveness of resource

allocation and task management. Adjustments to R and T on the basis of the model's predictions help in making

more informed decisions for future allocations. While clustering and reinforcement learning models have shown

promise in edge computing, they can be computationally intensive and struggle with real-time constraints. In

contrast, the SVM model’s predictive efficiency and reduced computational load make it ideal for dynamic,

latency-sensitive environments.

The choice of SVM enables faster convergence in high-dimensional data environments, making it particularly

suitable for edge computing where rapid decisions are essential. The framework’s efficiency stems from the

SVM’s focus on support vectors, enabling it to handle nonlinear, high-dimensional data efficiently, making it ideal

for edge computing.

4 Proposed Method

The support vector machine (SVM) algorithm is a robust solution for resource allocation and job offloading in

edge computing environments, aiming to optimize resource utilization and minimize latency. The process begins

by configuring the edge environment and collecting data on resource availability and task requirements. The SVM

framework formulates an optimization problem to allocate resources efficiently, balancing cost, delay, and

performance. Unlike deep reinforcement learning (DRL)-based methods, the SVM model identifies the optimal

hyperplane to separate different tasks or resource categories, enabling accurate classification for resource

allocation.

IJT’2025, Vol.05, Issue 01 8 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

Once trained, the SVM model dynamically assigns tasks to the most suitable servers, leveraging its decision

boundaries for efficient load balancing. It identifies tasks to offload to edge or cloud servers effectively, with

performance continually evaluated to ensure sustained resource optimization.

The algorithm comprises the following stages, as illustrated in Figure 3:

1. Data collection:

Gather information on resource availability, task requirements, and network conditions. These data may be

simulated or sourced from real-world edge computing environments.

2. Feature Engineering:

Extract key attributes, such as task priority, server load, bandwidth, and application-specific needs. Feature

selection ensures that only the most relevant parameters are utilized for model training.

3. SVM training:

o Kernel Selection: The radial basis function (RBF) kernel is chosen for its ability to model nonlinear

relationships effectively.

o Hyperparameter Tuning: Optimize parameters, such as the regularization parameter (CC) and

kernel coefficient (γγ), using a grid search to achieve a balance between accuracy and

generalization.

4. Resource Allocation:

The trained SVM model is used to predict optimal task-to-resource assignments in real time, minimizing

latency and achieving balanced load distribution.

5. Performance Validation:

Evaluate the framework's performance via metrics such as latency, load distribution, and resource

utilization under simulated edge computing scenarios.

The detailed flow of the algorithm is visualized in Figure 3, demonstrating its step-by-step execution for resource

allocation in edge computing systems.

IJT’2025, Vol.05, Issue 01 9 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

Figure 3 Flowchart of the proposed method

The pseudocode for SVM-based edge computing resource allocation is detailed in Table 1.

Initialize environment parameters:

 - Number of tasks

 - Task requirements

 - Server capacities

 - Network bandwidth

Initialize memory and environment:

 - Set up memory deque

 - Define state size and action size

 - Set batch size for training

Define the Deep Q-Network (DQN) model:

 - Create a Sequential model with two hidden layers

 - Compile the model with mean squared error loss and Adam optimizer

Define functions for the DQN algorithm:

 - `act(state)`: Select action based on epsilon-greedy policy

 - `replay()`: Train the model using a sample of experiences frommemory

IJT’2025, Vol.05, Issue 01 10 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

 - `update_target_model()`: Update the target model weights

Start simulation loop:

 For each episode:

 - Initialize state

 For each time step in the episode:

 - Select an action

 - Compute the reward based on server capacity

 - Store the experience in memory

 - Update state

 - Perform replay and update target model periodically

Table 1 Pseudocode for load balancing in edge computing

 The experiments reveal that the SVM model achieves the lowest latency and optimal load distribution

compared with those of the K-nearest neighbors, random forest, and other models. Notably, the SVM's predictive

accuracy in task allocation contributes to reduced task completion times and superior resource utilization. This

advantage positions SVM as an ideal choice for edge environments where low latency is critical.

5. Experiments and Discussion

5.1. Experimental Setup

To validate the SVM-based model, experiments were conducted via a virtualized edge computing

environment. Hardware included a high-performance computing node with multicore processing capabilities,

and software environments consisted of Python with SVM libraries (e.g., scikit-learn). The datasets simulate real-

time edge computing loads with varying task types and network conditions.

Parameter settings:

The regularization parameter CCC was adjusted between 0.1 and 1.0.

Kernel type: radial basis function (RBF) kernel for optimal nonlinear task-resource mapping.

Training configuration: Data samples were split into training (80%) and testing (20%) sets.

These parameter configurations were determined to balance task complexity with model accuracy and latency

needs, ensuring replicable and interpretable results across edge cases.

Several algorithms have been proposed to solve the problem of efficiency in edge computing by reducing the

communication time between users and the edge system. These algorithms fall into five main categories: data

resource discovery, benchmarking, data placement, computing, clustering, and load balancing.

5.2. Discussion

The proposed SVM-based framework addresses these limitations by leveraging the computational efficiency of

SVMs while maintaining high adaptability. Unlike heuristic and clustering-based models, the SVM framework

efficiently handles high-dimensional data and makes rapid, real-time decisions with minimal computational

overhead. This is particularly advantageous for edge computing environments where real-time processing is

critical.

Additionally, the inherent ability of SVMs to focus on support vectors reduces unnecessary computations,

allowing faster convergence and optimized resource allocation. This approach minimizes latency and enhances

load balancing without the extensive computational cost associated with reinforcement learning models. By

IJT’2025, Vol.05, Issue 01 11 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

overcoming these key limitations in current methods, the SVM-based framework has significant potential for use

in latency-sensitive and resource-constrained edge computing applications.

Furthermore, the performances of different machine learning models used for server load-sharing techniques

are compared. The models under comparison are support vector machine (SVM), k nearest neighbors (KNN),

random forest, neural network, decision tree, and gradient boosting. The evaluation is based on five metrics: total

latency, load distribution, task completion time, resource utilization, and cost efficiency. Table 2 summarizes the

results of the different models.

The SVM model’s performance was evaluated across five metrics:

1. Latency: SVM achieves the lowest latency, attributed to its efficient task classification and minimal

overhead, which are critical for real-time applications.

2. Load distribution: SVM maintains a balanced load, reducing bottlenecks, which is a significant

improvement over clustering methods that lack dynamic adaptability.

3. Task completion time: Faster task classification via SVM led to shorter completion times.

4. Resource Utilization: SVM’s dynamic allocation improved resource utilization, adjusting to varying

network loads.

5. Cost Efficiency: SVM demonstrated high cost efficiency, optimizing resource use while maintaining

low latency.

The experiments reveal that the SVM model achieves the lowest latency and optimal load distribution

compared with those of the K-nearest neighbors, random forest, and other models.

When SVM is compared with other models, such as K-nearest neighbors, random forests, neural networks,

decision trees, and gradient boosting, SVM consistently outperforms the other methods in terms of latency and

load distribution. Figure explanations and metric summaries further clarify these advantages. In the experiments,

the SVM model consistently outperformed other machine learning models, including K-nearest neighbors,

random forest, neural networks, and decision trees, across all key metrics. Compared with the second-best model,

the SVM showed an average latency reduction of 15% and a 20% improvement in load distribution balance. These

metrics, along with superior resource utilization and cost efficiency, underscore the advantages of SVMs in

dynamic edge computing contexts. Table 2 summarizes the performance comparison, showcasing the SVM's

consistent edge across total latency, resource utilization, and cost-efficiency metrics.

Table 2 Comparison of the performance of different machine learning models used for server load-sharing

techniques

Model
Total

Latency

Load

Distribution

Task

Completion

Time

Resource

 Utilization

Cost

Efficiency

Support

Vector Machine
1.803125 0.073357 1.803125 1.803125 0.877428

K-Nearest

Neighbors
2.017392 0.566532 2.017392 2.017392 0.981693

Random

Forest
2.068257 1.006658 2.068257 2.068257 1.006445

Neural

Network
1.978729 0.911393 1.978729 1.978729 0.962879

Decision Tree 2.075689 1.157179 2.075689 2.075689 1.010061

Gradient

Boosting
2.055200 0.990010 2.055200 2.055200 1.000091

IJT’2025, Vol.05, Issue 01 12 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

5.2.1. Model Comparison:

The results reveal a nuanced performance profile for each model on the basis of the evaluated metrics:

1. Support Vector Machine (SVM):

● Total Latency: 1.803125

● Load distribution: 0.073357

● Task Completion Time: 1.803125

● Resource Utilization: 1.803125

● Cost Efficiency: 0.877428

The SVM model has the lowest total latency and task completion time, making it highly efficient in these

aspects. Its load distribution is also the best, indicating a well-balanced approach to distributing the load across

servers. Compared with other models, SVM also performs well in terms of resource utilization and cost efficiency.

2. K-nearest neighbors (KNN):

● Total Latency: 2.017392

● Load distribution: 0.566532

● Task Completion Time: 2.017392

● Resource utilization: 2.017392

● Cost Efficiency: 0.981693

Compared with SVM, KNN yields greater total latency and task completion times. Its load distribution is

significantly less effective, which can lead to greater variability in the server load.

3. Random forest:

● Total Latency: 2.068257

● Load distribution: 1.006658

● Task Completion Time: 2.068257

● Resource utilization: 2.068257

● Cost Efficiency: 1.006445

The random forest algorithm has higher latency and task completion time than the SVM and KNN algorithms

do. Its load distribution and cost efficiency are also less favorable, indicating that it may not be as effective in

balancing and optimizing server resources.

4. Neural Network:

● Total Latency: 1.978729

● Load distribution: 0.911393

● Task Completion Time: 1.978729

● Resource utilization: 1.978729

● Cost Efficiency: 0.962879

The neural network model provides a good balance between latency and load distribution. While its total

latency and task completion time are greater than those of SVM, it still performs reasonably well in terms of load

distribution and cost efficiency.

IJT’2025, Vol.05, Issue 01 13 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

5. Decision Tree:

● Total Latency: 2.075689

● Load distribution: 1.157179

● Task Completion Time: 2.075689

● Resource utilization: 2.075689

● Cost Efficiency: 1.010061

The decision tree model has the highest total latency and task completion time among the models. Its load

distribution is also the least favorable, leading to suboptimal performance in balancing server loads.

6. Gradient boosting:

● Total Latency: 2.055200

● Load distribution: 0.990010

● Task Completion Time: 2.055200

● Resource utilization: 2.055200

● Cost Efficiency: 1.000091

Compared with the random forest and decision tree methods, the gradient boosting method slightly improves

the load distribution and cost efficiency, but it still lags behind the SVM method in terms of overall performance.

The SVM model stands out as the most effective in terms of total latency, load distribution, and task

completion time. Compared with other models, it provides the best resource utilization and cost efficiency. In

contrast, models such as decision trees and random forests have higher latencies and less effective load

distributions, making them less suitable for server load-sharing tasks. The Neural Network and Gradient Boosting

models offer a balanced performance but do not surpass the SVM in all metrics.

These results highlight the importance of selecting the right model for efficient server load sharing. The SVM's

superior performance underscores its suitability for managing server loads effectively in edge computing

environments.

Figures 4 to 8 below illustrate the performance metrics for each model across various dimensions. The total

latency curve shows that the support vector machine (SVM) consistently performs with the lowest latency

compared with the other models. In terms of the load distribution, the K-nearest neighbors (KNN) model exhibits

the highest variability, whereas the SVM maintains the most stable distribution. For task completion time, the

SVM again has a lower average, whereas the resource utilization and cost efficiency curves reveal that the SVM

not only utilizes resources efficiently but also offers the best cost efficiency compared with models such as

random forest and gradient boosting, which have higher values.

IJT’2025, Vol.05, Issue 01 14 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

Figure 4 Total latency of the support vector machine vs the different models

Figure 4 The SVM model consistently maintains a lower latency across task loads because of its efficient

task classification and resource allocation mechanism. In contrast, other models struggle with dynamic task

distributions, leading to increased latency. This demonstrates its suitability for applications requiring rapid

processing times.

Figure 5 Load distributions of the support vector machine model and different models

Figure 5 SVM achieves a balanced load distribution, minimizing server bottlenecks compared with

alternative models, whereas other methods exhibit greater variability because of their lower dynamic

adaptability. This highlights the SVM’s efficiency in evenly distributing tasks to avoid bottlenecks in resource-

constrained edge environments.

Figure 6 Resource utilization of the support vector machine vs the different models.

IJT’2025, Vol.05, Issue 01 15 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

Figure 6 SVM demonstrates higher resource utilization efficiency, whereas alternative models underutilize

resources, especially under variable task loads. This efficiency makes the SVM well suited for maximizing

resource use in dynamic edge computing scenarios.

Figure 7 Cost efficiency of the support vector machine vs the different models

Figure 7 SVM maintains superior cost efficiency, reducing operational costs significantly compared with

other models that struggle with resource misallocation. This makes SVM a preferred choice for cost-sensitive

applications requiring optimized resource allocation.

Figure 8 Task completion time of the support vector machine vs the different models

Figure 8 SVM achieves shorter task completion times, highlighting its real-time adaptability, whereas

other models experience delays due to less efficient allocation, making it ideal for applications demanding

quick task processing and completion in edge computing environments.

Table 3 Comparison of the performances of the SVM, heuristic-based and clustering-based methods

Metric SVM
Heuristic-Based (Hikida et al.,

2021)

Clustering-Based (Xiang et al.,

2021)

Total Latency 1.803125 2.1 2.3

Load Distribution 0.073357 0.8 0.9

Task Completion

Time
1.803125 2.05 2.2

Resource Utilization 1.803125 1.7 1.6

Cost Efficiency 0.877428 0.85 0.8

IJT’2025, Vol.05, Issue 01 16 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

The comparison presented in Table 3 highlights the superior performance of the SVM-based framework over

heuristic-based and clustering-based approaches across key performance metrics. The total latency achieved by

the SVM framework (1.803125) is significantly lower than that of heuristic-based (2.1) and clustering-based

methods (2.3), demonstrating its efficiency in rapid task classification and allocation, which is essential for real-

time edge environments. Similarly, the SVM outperforms its counterparts in terms of the load distribution,

achieving a value of 0.073357 compared with 0.8 and 0.9 for heuristic-based and clustering-based methods,

respectively. This indicates the SVM's ability to evenly distribute workloads, reducing bottlenecks and enhancing

system performance.

In terms of task completion time, the SVM framework also leads with the lowest value (1.803125), surpassing

heuristic-based (2.05) and clustering-based (2.2) approaches, further validating its efficiency in managing dynamic

workloads. Resource utilization by SVM is notably higher (1.803125) than that of heuristic-based (1.7) and

clustering-based (1.6) methods, reflecting its optimized use of computational resources to meet the demands of

high-dimensional and real-time edge computing tasks. Additionally, the SVM framework demonstrates superior

cost efficiency (0.877428), slightly exceeding those of the heuristic-based (0.85) and clustering-based (0.8)

approaches, indicating its ability to maximize resource usage while minimizing operational costs.

These results emphasize the advantages of the SVM-based framework in delivering low latency, balanced load

distribution, and superior resource utilization, making it particularly suitable for latency-sensitive and resource-

constrained edge computing applications. While heuristic-based and clustering-based methods exhibit reasonable

performance, they lack the adaptability required for the dynamic and high-dimensional demands of modern edge

environments. Consequently, the findings advocate for the broader adoption of SVM-based approaches in

scenarios requiring real-time processing, such as the healthcare IoT, autonomous vehicles, and smart city

infrastructure.

6. Further Discussions Limitations

The SVM-based model has demonstrated significant benefits, particularly in terms of low latency and load

balancing. However, certain limitations are noted:

Scalability: In environments with highly variable loads, SVMs may face challenges in maintaining consistent

performance. While it effectively manages high-dimensional data, real-time adjustments may require integration

with reinforcement learning methods.

Parameter sensitivity: SVM effectiveness is sensitive to parameter choices, such as kernel type and

regularization. Fine-tuning these parameters is essential, especially for edge environments with variable network

conditions(performance analysis of…)(performance analysis of…).

Future research should consider combining SVM with adaptive learning methods to dynamically adjust

parameters on the basis of real-time workload, enhancing scalability and adaptability.

6.1. Results

The SVM model’s performance at low latency is attributed to its streamlined task classification process, which

minimizes computational overhead. This advantage is essential for real-time edge applications where delayed

IJT’2025, Vol.05, Issue 01 17 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

responses are detrimental. Moreover, the SVM’s balanced load distribution optimizes resource use across edge

servers, providing enhanced scalability and adaptability in dynamic environments.

6.2 Limitations and Future Research Directions

The proposed SVM-based model for resource allocation in edge computing has shown significant promise, but

there are several opportunities for enhancement and challenges to address. Integrating SVM with reinforcement

learning techniques could enhance adaptability in dynamic, high-variance environments, allowing the framework

to handle variable workloads more effectively. Such hybrid approaches would improve scalability and

performance under diverse conditions.

Scalability remains a key challenge, as maintaining consistent performance in larger edge networks can be

difficult. An increased network size often exacerbates latency and load-balancing inefficiencies. Additionally, while

SVM is computationally efficient compared with reinforcement learning, it struggles with extremely high-

dimensional data, with computational costs increasing for training and prediction. Addressing these issues

through dimensionality reduction techniques and hybrid frameworks can ensure that the model remains efficient

in real-time, large-scale scenarios.

Expanding the model’s use cases to broader edge computing applications, such as smart cities, healthcare IoT,

and autonomous vehicles, is another promising direction. These domains require robust load balancing and low

latency, making them ideal environments for demonstrating the framework's adaptability and real-world utility.

The model’s reliance on precise hyperparameter tuning presents another limitation, as selecting the

regularization parameter (CC) and kernel coefficient (γγ) can be time-consuming and challenging, especially in

dynamic edge environments. The development of adaptive parameter-tuning mechanisms would streamline this

process, ensuring optimal performance across various conditions without extensive manual effort.

Despite its relative efficiency, SVM's computational overhead when handling high-dimensional data may limit

its applicability in real-time scenarios. Employing optimization techniques and hybrid approaches can mitigate

these limitations, enhancing both scalability and efficiency.

By addressing these challenges and exploring broader applications, the SVM-based framework can be refined

to meet the demands of dynamic, large-scale edge computing environments, confirming its role as a robust and

versatile solution for resource allocation and job offloading.

6.3. Applications and Implications

The applicability of this framework extends across diverse edge computing domains. In the healthcare IoT,

SVM’s low-latency resource allocation is ideal for patient monitoring systems, ensuring timely responses to

critical data. In autonomous vehicles, the model’s efficient load balancing can support real-time data processing,

which is crucial for navigation and safety. Similarly, smart city infrastructure could benefit from the framework’s

adaptive load management, enhancing the performance of traffic control, surveillance, and public safety systems.

7. Conclusions

The SVM-based model introduced in this study has clear advantages in edge computing environments, with

superior performance in terms of latency, load distribution, and resource utilization. By achieving reductions in

total latency and task completion time and enhancements in cost efficiency, the framework outperforms heuristic-

based, clustering-based, and other machine learning approaches across all key metrics. Specifically, the SVM

framework has the ability to reduce total latency by 14.2% and 21.6% compared with heuristic and clustering

IJT’2025, Vol.05, Issue 01 18 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

methods and outperforms K-nearest neighbors, random forest, and neural networks with a latency of 1.803125,

load distribution of 0.073357, and cost efficiency of 0.877428, underscoring its potential as a robust solution for

dynamic, real-time resource allocation.

Despite its advantages, challenges such as parameter sensitivity and scalability in highly variable environments

remain. Future work will explore hybrid approaches that integrate SVM with adaptive learning methods to

address these challenges. Expanding the framework’s application to broader edge computing domains, including

smart cities, healthcare IoT, and autonomous vehicles, will further solidify its role in advancing intelligent edge

computing solutions. These results affirm that the SVM-based model is a powerful tool for enhancing resource

allocation in edge computing systems.

References:

1. Ergen, M., Saoud, B., Shayea, I., El-Saleh, A. A., Ergen, O., Inan, F., & Tuysuz, M. F. (2024). "Edge computing in future wireless

networks: A comprehensive evaluation and vision for 6G and beyond." ICT Express, 10(5), 1151-1173.

2. Liu, B., Luo, Z., Chen, H., & Li, C. (2022). "A survey of state-of-the-art on edge computing: Theoretical models, technologies,

directions, and development paths." IEEE Access, 10, 3176106. https://doi.org/10.1109/ACCESS.2022.3176106

3. Alsadie, D. (2024). "A comprehensive review of AI techniques for resource management in fog computing: Trends, challenges,

and future directions." IEEE Access, 12, 118007-118059. https://doi.org/10.1109/ACCESS.2024.3447097.

4. Sharma, P., Nisha, Shukla, S., & Vasudeva, A. (2023). "An era of mobile data offloading opportunities: A comprehensive

survey." Mobile Networks and Applications, 29, 13–28.

5. She, Q., Wei, X., Nie, G., & Chen, D. (2019). "QoS-aware cloud service composition: A systematic mapping study from the

perspective of computational intelligence." Expert Systems with Applications, 138, 112804.

https://doi.org/10.1016/j.eswa.2019.07.021

6. Martin, A., Viola, R., Zorrilla, M., Flórez, J., Angueira, P., & Montalbán, J. (2020). "MEC for fair, reliable, and efficient media

streaming in mobile networks." IEEE Transactions on Broadcasting, 66(2), 356–368.

7. Adeniyi, O., Sadiq, A. S., Pillai, P., Taheir, M. A., & Kaiwartya, O. (2023). "Proactive self-healing approaches in mobile edge

computing: A systematic literature review." Computers, 12(3), 63. https://doi.org/10.3390/computers12030063

8. Chang, Z., Liu, S., Xiong, X., Cai, Z., & Tu, G. (2021). "A survey of recent advances in edge-computing-powered artificial

intelligence of things." IEEE Internet of Things Journal, 8(18), 13845–13868.

9. Fang, T., Yuan, F., Ao, L., & Chen, J. (2022). "Joint task offloading, D2D pairing, and resource allocation in device-enhanced

MEC: A potential game approach." IEEE Internet of Things Journal, 9(5), 3746–3758.

10. Wang, J., Wu, W., Liao, Z., Sangaiah, A. K., & Sherratt, R. S. (2019). "An energy-efficient offloading scheme for low latency in

collaborative edge computing." IEEE Access, 7, 149182–149190.

11. Henebelle, A., Zhang, X., & Ksentini, A. (2018). "Mobile edge computing for IoT: Enhancing efficiency and user experience."

IEEE Communications Magazine, 56(10), 64–69.

12. Biswas, A., & Wang, H.-C. (2023). Autonomous vehicles enabled by the integration of IoT, edge intelligence, 5G, and

blockchain. Sensors, 23(4), 1963. https://doi.org/10.3390/s23041963

13. Wang, Y., Chen, C.-R., Huang, P.-Q., & Wang, K. (2021). “A new differential evolution algorithm for joint mining decision and

resource allocation in a MEC-enabled wireless blockchain network”. Computer. Ind. Eng., 155, 107186

https://doi.org/10.1016/j.cie.2021.107186

14. Ullah, I., Ali, F., Khan, H., Khan, F., & Bai, X. Ubiquitous computation in internet of vehicles for human-centric transport

systems. Comput. Hum. Behav., 161, 108394 (2024). https://doi.org/10.1016/j.chb.2024.108394

15. Wang, J., Jin, C., Tang, Q., Xiong, N. N., & Srivastava, G. (2021). Intelligent ubiquitous network accessibility for wireless-

powered MEC in UAV-assisted B5G. IEEE Transactions on Network Science and Engineering, 8(4), 2801–2813.

https://doi.org/10.1109/TNSE.2020.3029048

16. Okilanda, A., Ihsan, N., Arnando, M., Hasan, B., Mohamed Shapie, M. N., Tulyakul, S., Duwarah, T., & Ahmed, M. (2024).

"Revving up performance: The impact of interval training with weighted resistance on speed enhancement in university

students." Retos, 58, 469–476.

17. Chu, D., & Yoo, J. (2024). "A study on the analysis of security requirements through literature review of threat factors of 5G

mobile communication." Journal of Information Processing Systems, 20(1), 38–52.

18. Hua, H., Li, Y., Wang, T., Dong, N., Li, W., & Cao, J. (2023). "Edge computing with artificial intelligence: A machine learning

perspective." ACM Computing Surveys, 55(9), Article 184. https://doi.org/10.1145/3555802

19. Carvalho, G., Cabral, B., Pereira, V., & Bernardino, J. (2021). "Edge computing: Current trends, research challenges, and future

directions." Computing, 103(7), 993–1023. https://doi.org/10.1007/s00607-020-00896-5

https://doi.org/10.1109/ACCESS.2022.3176106
https://doi.org/10.1109/ACCESS.2024.3447097
https://doi.org/10.1016/j.eswa.2019.07.021
https://doi.org/10.3390/computers12030063
https://doi.org/10.3390/s23041963
https://doi.org/10.1016/j.cie.2021.107186
https://doi.org/10.1016/j.chb.2024.108394
https://doi.org/10.1109/TNSE.2020.3029048
https://doi.org/10.1145/3555802
https://doi.org/10.1007/s00607-020-00896-5

IJT’2025, Vol.05, Issue 01 19 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

20. Devi, N., Dalal, S., Solanki, K., Dalal, S., Lilhore, U. K., Simaiya, S., & Nuristani, N. (2024). "A systematic literature review for

load balancing and task scheduling techniques in cloud computing." Artificial Intelligence Review, 57(1), Article 276.

https://doi.org/10.1007/s10462-024-10925-w

21. Hikida, T., Nishikawa, H., & Tomiyama, H. (2021). "Heuristic algorithms for dynamic scheduling of moldable tasks in

multicore embedded systems." International Journal of Reconfigurable and Embedded Systems (IJRES), 10(3), 157–167.

https://doi.org/10.11591/ijres.v10.i3.pp157-167

22. Vakili Fard, M., Sahafi, A., Rahmani, A. M., & Sheikholharam Mashhadi, P. (2020). "Resource allocation mechanisms in cloud

computing: A systematic literature review." IET Software. https://doi.org/10.1049/iet-sen.2019.0338

23. Singh, J. D., Singh, N., Adhikari, M., & Singh, A. K. (2024). "Decentralized gossip-assisted deep learning model training for

resource-constraint edge devices." IEEE Transactions on Computational Social Systems, 1–10.

https://doi.org/10.1109/TCSS.2024.3395516

24. Haibeh, L. A., Yagoub, M. C. E., & Jarray, A. (2022). "A survey on mobile edge computing infrastructure: Design, resource

management, and optimization approaches." IEEE Access, 10, 27591–27610. https://doi.org/10.1109/ACCESS.2022.3152787

25. Qua, B., Bai, Y., Chu, Y., Wang, L.-E., Yu, F., & Li, X. (2022). "Resource allocation for MEC system with multiusers resource

competition based on deep reinforcement learning approach." Computer Networks, 203, Article 103,089.

26. Huang, X., Chen, Z., Chen, Q., & Zhang, J. (2023). "Federated learning-based QoS-aware caching decisions in fog-enabled

Internet of Things networks." Digital Communications and Networks, 9(2), 580–589. https://doi.org/10.1016/j.dcan.2022.04.022

27. Xiang, B., Elias, J., Martignon, F., & Di Nitto, E. (2021). "Resource calendaring for Mobile Edge Computing: Centralized and

decentralized optimization approaches." Computer Networks, 199, Article 108426.

https://doi.org/10.1016/j.comnet.2021.108426

28. Zhang, J., Guo, H., Liu, J., & Zhang, Y. (2020). Task offloading in vehicular edge computing networks: A load-balancing

solution. IEEE Transactions on Vehicular Technology, 69(2), 2092–2104.

29. Xu, X., Fu, S., Cai, Q., Tian, W., Liu, W., Dou, W., Sun, X., & Liu, A. X. (2018). Dynamic resource allocation for load balancing

in fog environment. Wireless Communications and Mobile Computing, 2018, 1–15.

30. Lei, L., Xu, H., Xiong, X., Zheng, K., Xiang, W., & Wang, X. (2019). Multiuser resource control with deep reinforcement

learning in IoT edge computing. IEEE Internet of Things Journal, 6(6), 10119–10133. https://doi.org/10.1109/JIOT.2019.2935543

31. Prasad, H., Arpita, S., Bandyopadhyay, A., Dash, D., & Swain, S. (2024). "Dynamic resource allocation using auction technique

in fog computing." In Proceedings of the Asia Pacific Conference on Innovation in Technology (APCIT), 26-27 July 2024,

Mysore, India. IEEE. https://doi.org/10.1109/APCIT62007.2024.10673619

32. Zhang, Y., Liu, Y., Zhou, J., Sun, J., & Li, K. (2020). Slow-movement particle swarm optimization algorithms for scheduling

security-critical tasks in resource-limited mobile edge computing. Future Generation Computer Systems, 112, 148-161.

https://doi.org/10.1016/j.future.2020.05.025

33. Wang, P., Yang, H., Han, G., Yu, R., Yang, L., & Sun, G. (2024). Decentralized navigation with heterogeneous federated

reinforcement learning for UAV-enabled mobile edge computing. IEEE Transactions on Mobile Computing, 23(12), 13621-

13638. https://doi.org/10.1109/TMC.2024.3439696

34. Beraldi, R., & Proietti Mattia, G. (2023). A load balancing algorithm for long-life green edge systems. In Proceedings of the

2023 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Naples, Italy, 04-06 December

2023. IEEE. https://doi.org/10.1109/CloudCom59040.2023.00020

35. Ren, P., Qiao, X., Huang, Y., Liu, L., Pu, C., & Dustdar, S. (2020). Edge AR X5: An edge-assisted multiuser collaborative

framework for mobile web augmented reality in 5G and beyond. IEEE Transactions on Cloud Computing, 10(4), 2521-2537.

https://doi.org/10.1109/TCC.2020.3046128

36. Fang, X., Li, B., Zhang, Y., & Wang, Z. (2022). DRL-aided task offloading and resource allocation scheme to minimize power

consumption in cloud-edge cooperation environments. IEEE Transactions on Cloud Computing, 10(3), 2153–2163.

37. Liu, W., Zhao, X., Wang, J., & Li, Y. (2021). Onboard edge computing task offloading optimization using deep Q-network.

Journal of Communications, 41(12), 1304–1311.

38. Zhao, H., Zhang, T., Chen, Y., Zhao, H., & Zhu, H. (2020). Task distribution offloading algorithm of vehicle edge network

based on DQN. Journal of Communications, 41(10), 172–178.

39. Li, J., Gao, H., Lv, T., & Lu, Y. (2018). Deep reinforcement learning-based computation offloading and resource allocation for

MEC. 2018 IEEE Wireless Communications and Networking Conference (WCNC), 1–6.

40. Chen, Y., Chen, S., Li, K. C., Liang, W., & Li, Z. (2022). DRJOA: Intelligent resource management optimization through deep

reinforcement learning approach in edge computing. Cluster Computing, 26(5), 2897–2911.

41. Yun, J., Goh, Y., Yoo, W., & Chung, J. M. (2022). 5G multi-RAT URLLC and eMBB dynamic task offloading with MEC resource

allocation using distributed deep reinforcement learning. IEEE Internet of Things Journal, 9(20), 20733–20749.

42. Yu, Z., Xu, X., & Zhou, W. (2022). Task offloading and resource allocation strategy based on deep learning for mobile edge

computing. Computational Intelligence and Neuroscience, 2022, Article ID 1427219.

43. Hazarika, B., Singh, K., Biswas, S., Mumtaz, S., & Li, C. P. (2023). Multiagent DRL-based task offloading in multiple RIS-aided

IoV networks. IEEE Transactions on Vehicular Technology, 73(1), 1175–1190.

https://doi.org/10.1007/s10462-024-10925-w
https://doi.org/10.11591/ijres.v10.i3.pp157-167
https://doi.org/10.1049/iet-sen.2019.0338
https://doi.org/10.1109/TCSS.2024.3395516
https://doi.org/10.1109/ACCESS.2022.3152787
https://doi.org/10.1016/j.dcan.2022.04.022
https://doi.org/10.1016/j.comnet.2021.108426
https://doi.org/10.1109/APCIT62007.2024.10673619
https://doi.org/10.1016/j.future.2020.05.025
https://doi.org/10.1109/TMC.2024.3439696
https://doi.org/10.1109/CloudCom59040.2023.00020
https://doi.org/10.1109/TCC.2020.3046128

IJT’2025, Vol.05, Issue 01 20 of 20

IJT’2025, Vol.05, Issue 01 https://ijt.journals.ekb.eg

44. Wei, Y., Yu, F. R., Song, M., & Han, Z. (2021). Joint optimization of caching, computing, and radio resources in MEC. IEEE

Transactions on Communications, 69(4), 2250–2262.

45. Zhao, L., Zhang, Q., Liu, Z., & Zhang, Y. (2024). Energy-efficient task offloading in MEC using multiagent deep reinforcement

learning. IEEE Transactions on Mobile Computing, 23(1), 44–56.

46. Yang, Y., Li, J., & Zhang, H. (2023). Multiagent reinforcement learning for resource allocation in mobile-edge computing

networks. IEEE Internet of Things Journal, 10(5), 3402–3413.

47. Bi, S., Huang, L., Wang, H., & Zhang, Y. Lyapunov-guided deep reinforcement learning for stable online computation

offloading in mobile-edge computing networks. IEEE Trans. Wireless Commun. 20(11), 7519–7537 (2021).

48. Zhang, K., Cao, J., & Zhang, Y. Adaptive digital twin and multiagent deep reinforcement learning for vehicular edge

computing and networks. IEEE Trans. Ind. Inform. 18(2), 1405–1413 (2022).

49. Sun, X., Liu, Z., & Li, W. (2023). Collaborative computation offloading in vehicular edge computing networks using deep

reinforcement learning. IEEE Transactions on Vehicular Technology, 72(6), 7429–7441.

