
IJT’2025, Vol.05, Issue 01                                                                                                      1 of 20 

IJT’2025, Vol.05, Issue 01                                                                 https://ijt.journals.ekb.eg 

 
 

 

SVM-Based Load Balancing for Efficient Edge Computing 

Haitham M. Abdelghany 

 

 

Electronics and Communication Engineering Department, Faculty of Engineering, 

Mansoura University, El-Mansoura, Egypt 

Higher Technology Institute of Applied Health Sciences, Shrbin, Egypt 

Abstract: The exponential growth of Internet of Things (IoT) 

technologies has intensified the demand for efficient computing 

solutions to handle the massive amount of data generated by 

connected devices. Edge computing, as a paradigm, offers a 

promising solution by decentralizing computations closer to data 

sources. This study introduces a novel framework that leverages 

support vector machines (SVMs) for dynamic resource allocation 

and load balancing in edge computing environments. 

Experimental evaluations demonstrate that the SVM-based 

framework achieves significant performance improvements over 

heuristic-based, clustering-based, and other machine learning 

approaches. The results reveal that the SVM framework reduces 

the total latency by 14.2% and 21.6% compared with heuristic and 

clustering methods, respectively, and outperforms models such as 

K-nearest neighbors, random forest, and neural networks by 

achieving the lowest latency (1.803125), best load distribution 

(0.073357), and highest cost efficiency (0.877428). These 

findings highlight the SVM model’s ability to optimize resource 

utilization, reduce task completion times, and improve system 

adaptability. Its low computational overhead and predictive 

capabilities make it particularly suitable for latency-sensitive 

applications, such as healthcare IoT and autonomous vehicles. 

Furthermore, the study discusses limitations and proposes hybrid 

model integrations to address scalability and real-time 

adaptability for future research. 

Keywords: IoT, Edge Computing, SVM, Resource Allocation, Load Balancing 

 

1. Introduction 

       Edge computing, particularly mobile edge computing (MEC), addresses the limitations of traditional cloud 

computing by bringing computational resources closer to data sources. Existing methods such as heuristic, 

clustering, and reinforcement learning models have shown potential in load balancing but often struggle with 

high-dimensional data and real-time constraints. The proposed SVM-based approach offers a lightweight yet 

powerful alternative by minimizing latency and optimizing load distribution. Key findings, including a 15% 
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latency reduction and enhanced resource utilization, demonstrate the significant advantages of the framework in 

dynamic edge environments. 

 Edge computing has redefined distributed computing, with mobile edge computing (MEC) emerging as a key 

enabler in minimizing latency and optimizing data processing at the network edge. MEC was initially grounded 

in European control theory, with early implementations primarily targeting computational bottlenecks and task-

offloading challenges [1, 2]. Over the past decade, researchers have expanded MEC’s scope beyond traditional 

cloud computing, focusing on optimizing resource management and service delivery closer to data sources [3]. 

This study introduces an innovative SVM-based framework designed specifically for dynamic resource 

allocation in edge computing. Unlike heuristic or clustering-based approaches, this model leverages SVM’s 

predictive capabilities to reduce latency and balance workloads more efficiently, especially in high-dimensional, 

real-time environments. This approach addresses critical limitations in existing models, which often struggle with 

real-time decision-making under variable network conditions. 

Task offloading, as demonstrated by Shukla et al. [4], effectively mitigates issues such as economic costs, 

delays, power consumption, and system failures in wireless networks. The addition of quality-of-service (QoS) 

enhancements, as explored by Chen et al. [5], further illustrates MEC’s applicability across diverse environments, 

emphasizing its role in latency-sensitive applications. However, Bouet et al. [6] raised concerns about specific 

MEC applications, such as cryptocurrency mining, underscoring the need for cautious advancements that 

prioritize human welfare. 

This study introduces a support vector machine (SVM)-based resource allocation framework that addresses 

MEC challenges by providing a high-speed, lightweight alternative for dynamic resource allocation. Unlike 

heuristic and reinforcement learning models, SVMs excel in handling high-dimensional data and can make rapid 

decisions, making them ideal for real-time, latency-sensitive environments in edge computing. 

 

 A key point in distinguishing MEC from other technologies is its potential to form a “converging” community 

that is well prepared for providing accurate and complicated computational resources at the network edge. This 

feature was mentioned by Naouri et al. [7]. Although researchers such as Chang et al. [8] have discovered 

numerous applications of this approach, major sections of this domain have yet to be explored. MECs completely 

alter the way I have interacted with the digital realm, as indicated by Fang et al. in their work [9]. 

The MEC fabric reaches different virtual distributed hosts to cloud hosts and infrastructure managers through 

layers that provide us with a variety of benefits, including business-optimized solutions and low latency [10]. In 

addition, as seen in traffic control incorporation and smart buildings, MEC improves efficiency and user 

experience, and it aligns with the vision shared by Henebelle et al. (2018) [11]. In addition, as seen in traffic control 

incorporation and smart buildings, MEC improves efficiency and user experience, and it aligns with the vision 

shared by Biswas and Wang (2023) [11]. Furthermore, the collaboration of MEC with modern technologies such as 

5G, IoT, and vehicular networks is poised to drive advancements in autonomous vehicle and vehicular network 

ecosystems. 

The combination of the block chain and MEC, as analyzed in Wang et al. [13], raises new possibilities in data 

manipulation and results in trust without third-party validation. Ullah et al. [14] explored the integration of 

mobile edge computing (MEC) in the Internet of Vehicles (IoV) to enhance human-centric transportation systems. 

Their study emphasized the role of MEC in enabling real-time data processing at the edge of the network, 

improving transportation efficiency, safety, and resource utilization. By leveraging the IoV and MEC, the authors 

propose solutions for traffic management, autonomous vehicles, and system scalability challenges, aiming to 

create smarter, safer, and more efficient transport systems that prioritize human needs. The integration of MEC 

with unmanned aerial vehicles (UAVs), as suggested by Wang et al. [15], creates a new horizon for data collection 
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and processing across many applications. The edge computing architecture is shown in Figure 1, and the future 

trend of edge computing is shown in Figure 2. 

 
Figure 1. Edge computing architecture 

 

                                          
 Figure 2. Future of edge computing 

   In this paper, a novel dynamic resource allocation framework that leverages a support vector machine (SVM) 

for job offloading in edge computing environments is introduced. This approach integrates an SVM to 

dynamically learn and adapt to application demands and network conditions, aiming to optimize resource 

utilization and minimize latency. The effectiveness of the framework has been thoroughly validated through a 

series of rigorous assessments, as detailed in studies by the ETSA [16] and Fang et al. [17]. This study introduces 

an SVM framework specifically optimized for real-time resource allocation, offering enhanced adaptability and 

lower computational cost than other machine learning techniques traditionally used in edge computing [18]. 

Notably, the framework dynamically adjusts its hyperparameters in response to network and application 

demands, which improves latency and load balancing beyond what previous SVM and heuristic models achieve 

Edge computing, particularly mobile edge computing (MEC), addresses the limitations of traditional cloud 

computing by bringing computational resources closer to data sources [19]. While existing methods such as 

heuristic and clustering models have contributed to load balancing, they often struggle with the real-time 

constraints and high-dimensional data demands of edge environments [20]. 

The structure of this paper is as follows: Section 2 describes the related work and positions the proposed 

approach within the existing research landscape. Section 3 outlines the system model, providing the mathematical 

and conceptual foundation for the proposed framework. Section 4 presents the proposed SVM-based dynamic 

resource allocation framework, detailing its architecture and operational workflow. Section 5 discusses the 
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experiments and analyzes the results, highlighting the performance metrics in various edge computing scenarios. 

Section 6 delves into further discussions, addresses limitations and proposes future directions. Finally, Section 7 

concludes the study with key findings, emphasizing the relevance of the proposed framework in advancing edge 

computing technologies. 

2. Related Work 

This section reviews key approaches to resource allocation and load balancing in mobile edge computing 

(MEC) environments, categorized into heuristic, clustering, and reinforcement learning-based methods, 

highlighting their advantages, limitations, and relevance to the SVM-based model. 

2.1. Heuristic-based approaches 

Heuristic algorithms offer computational efficiency but often lack adaptability to dynamic, real-time 

environments. Hikida, Nishikawa, and Tomiyama [21] proposed a heuristic offloading decision algorithm that 

optimizes resource allocation. However, it does not simultaneously account for communication and 

computational resources, limiting its adaptability in varying network conditions. Similarly, benchmarking 

methods evaluate resource parameters such as power, CPU, and memory but struggle with flexibility in mobile 

systems. Vakili Fard et al. [22] explored secure dynamic program uploading, considering resource availability, but 

performance suffers when fog servers become overloaded. Similarly, benchmarking methods evaluate resource 

parameters such as power, CPU, and memory but struggle with flexibility in mobile systems. Singh et al. [23] 

faced challenges with unpredictable resources and congestion [24] and enhanced offloading strategies via cost-

sensitive prediction models, although their scalability remains limited. Qua et al. [25] proposed a resource 

allocation strategy for MEC systems with multiuser resource competition, leveraging deep reinforcement learning 

to optimize performance. 

2.2. Clustering-based Approaches 

By grouping devices geographically for task distribution and proactive caching, cluster-based models improve 

the execution time. Huang et al. [26] proposed a geographical clustering method to increase computing speed, 

although it inadequately addresses group communication and latency issues. Xiang et al. [27] used mixed-integer 

linear programming (MILP) to assess MEC server capacities but did not optimize latency for application-specific 

needs. Chen et al. [28] proposed a clustering technique that groups proximate user devices to minimize 

computing latency. Their method leverages computing and storage resources through joint task offloading and 

proactive caching. The results demonstrate that this approach can reduce performance delays by up to 65% while 

also improving traffic intensity to local computing resources, similar to a cloudlet setup. By processing tasks 

closer to the user within a cloudlet cluster, latency can be significantly reduced. 

Bouet et al. [29] introduced an optimization technique using a geoclustering approach combined with mixed 

integer linear programming (MILP). This algorithm, which considers the spatial distribution of communications, 

adjusts resource allocation on the MEC server on the basis of application-specific requirements. The algorithm 

also considers the maximum server capacity in terms of resources (CPU, storage, etc.). To evaluate these 

techniques, Bouet et al. employed a mobile communication dataset, demonstrating that the clustering approach 

helps offload core networks effectively while accounting for the spatial distribution of communication, thus 

optimizing MEC server utilization. 

2.3. Reinforcement Learning-Based Approaches 

The adaptive decision-making abilities of reinforcement learning (RL) models are known. However, they can 

be computationally intensive and slow to converge under high-variance network conditions. Lei et al. [30] 

addressed these challenges by proposing a multiuser scheduling and computation offloading algorithm for IoT 

edge computing, which leverages deep reinforcement learning to minimize delay and power consumption under 

stochastic traffic arrival. The dynamic resource allocation model (DRAM) shows promising load balancing results 

but is limited by computational overhead. Prasad et al. [31] introduced an auction-based dynamic resource 
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allocation mechanism for fog computing, which optimizes resource usage and minimizes latency. However, it 

does not fully address the computational challenges in high-dimensional, real-time systems. Zhang et al. [32] 

employed Particle Swarm Optimization (PSO) for power control in mobile edge computing, improving energy 

efficiency while addressing the scheduling of security-critical tasks in resource-limited environments. 

Wang et al. [33] studied trajectory control for UAVs via deep reinforcement learning, illustrating adaptive 

optimization in edge environments and enhancing task-offloading energy efficiency through decentralized 

navigation policies. Beraldi and Proietti Mattia [34] presented a centralized control algorithm for load balancing in 

energy harvesting edge systems, optimizing task offloading to enhance service performance and prolong system 

lifetime. Their approach uses linear programming for optimization and offers a distributed implementation to 

ensure operational efficiency. 

Ren et al. [35] proposed an innovative edge-assisted multiuser collaborative framework for mobile web 

augmented reality (AR) in the 5G era. Their framework addresses the challenges of cross-platform, real-time 

communication and intensive computing requirements in mobile AR applications. They introduced a heuristic 

communication planning mechanism (BA-CPP) for efficient multiuser interaction synchronization and a motion-

aware key frame selection mechanism (Mo-KFP) to optimize computational efficiency in edge systems. This 

approach, which leverages device-to-device (D2D) communication techniques, demonstrated enhanced 

performance in a real-world 5G network, highlighting the framework's potential in improving multiuser mobile 

web AR. 

2.4. Deep reinforcement learning approaches 

Several studies have explored the application of deep reinforcement learning (DRL) for optimizing task 

offloading in mobile edge computing (MEC) environments, addressing the limitations of traditional heuristic 

methods. 

Fang et al. [36] proposed a DRL-aided task offloading and resource allocation scheme to minimize power 

consumption in cloud-edge cooperation environments by jointly optimizing task offloading and resource 

allocation while adapting to network changes. Similarly, Liu et al. [37] and Zhao et al. [38] applied a deep Q-

network (DQN) to onboard edge computing systems, achieving improved offloading decisions. Li et al. [39] 

employed a DQN to optimize MEC network offloading by minimizing total costs. Chen et al. [40] introduced a 

model that combines deep neural networks (DNNs) with k nearest neighbors (KNNs) to address offloading, 

communication, and resource allocation challenges in MEC networks. Yun et al. [41] and Yu et al. [42] further 

explored multiuser and multiedge server (ES) environments via DQN-based methods, enhancing scalability and 

adaptability. 

As MEC systems grow in scale, value-based DRL methods such as DQN face challenges because of the 

increasing computational complexity of discrete offloading decisions. To address this, the DROO framework [43] 

uses generative adversarial networks (GANs) to reduce decision spaces, applying linear programming for 

efficient resource allocation. Wei et al. [44] employed natural strategy gradient training in DRL to improve the 

efficiency of offloading decisions. Zhao et al. [45] focused on actor-critic algorithms and used DDPG to enhance 

offloading in vehicular networks, achieving improved adaptability in dynamic environments. Expanding on 

policy-based DRL approaches, Yang et al. [46] developed a hybrid model that combines discrete decision-making 

with continuous resource allocation to better adapt to diverse network conditions. 

To ensure long-term system stability, Lyapunov optimization has been integrated with DRL in recent studies. 

Bi et al. [47] proposed a Lyapunov optimization-based DRL approach that addresses task queue stability but 

encounters resource constraints in scenarios with increased wireless devices or task arrival rates. Zhang et al. [48] 

extended this concept by introducing a hybrid Lyapunov-assisted DRL framework for cloud-edge collaboration, 

balancing energy consumption and cost constraints in dynamic environments. Sun et al. [49] applied DRL to 
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vehicular edge computing networks, focusing on task prioritization and resource allocation under highly dynamic 

conditions. 

These contributions underscore the advancements in DRL-based offloading optimization while highlighting 

persistent challenges related to computational complexity, scalability, and adaptability in large-scale and dynamic 

MEC systems. 

2.5. Summary and Research Gap. 

While significant progress has been made in resource allocation and load balancing via heuristic, 

clustering, and reinforcement learning approaches, these methods often face challenges related to scalability, 

computational overhead, and real-time adaptability in dynamic edge environments. The SVM-based 

framework proposed in this study seeks to address these limitations by leveraging its predictive efficiency 

and reduced computational load. This approach complements and enhances the existing body of knowledge, 

offering a robust alternative for dynamic, latency-sensitive edge computing scenarios. 

3 System Model 

These methods are suitable for resource management and load balancing in edge computing, although further 

improvements are still needed to address volatility in distributed environments as well as workload balancing. 

The SVM-based framework optimizes resource allocation by identifying the optimal hyperplane for task 

allocation, minimizing latency while effectively balancing loads. In this context, the objective function F(R, T) 

combines cost and delay minimization to increase resource efficiency. The SVM's regularized loss function 

maximizes the margin while minimizing classification error, allowing for rapid convergence even in high-

dimensional, real-time environments. This setup is particularly beneficial for edge computing, where tasks require 

immediate processing and resource adaptability. 

This framework leverages support vector machines (SVMs) for optimizing resource allocation by identifying 

the optimal hyperplane that categorizes tasks on the basis of resource requirements and network conditions. The 

model is designed to minimize latency by effectively predicting task allocation across available edge servers, 

ensuring optimal load balancing. 

Let E denote the set of edge environments to be established. Let R represent the total amount of resources 

available and T be the set of tasks that are to be managed. C(R, T) is defined as the cost function for allocating tasks 

T using the resources R, and D(R, T) is defined as the delay function for utilizing resources R to manage tasks T. 

a. Objective function: 

The objective is to minimize the function F(R, T) =C(R, T) +D(R, T), which combines the cost and delay of 

managing tasks T with resources R. 

F(R, T) combines an objective function to minimize cost and delay. 

C(R, T): Cost function for allocating tasks T using resources R. 

D(R, T), Delay function for using resources R to manage tasks T. 

R: Total available resources. 

T: Set of tasks to be managed. 

subject to: 

● R must be one of the available resources at the start of E. 

● T must be a task that can be assigned. 

b. SVM Optimization: 



IJT’2025, Vol.05, Issue 01                                                                                                      7 of 20 

IJT’2025, Vol.05, Issue 01                                                                 https://ijt.journals.ekb.eg 

The support vector machine (SVM) aims to find the optimal hyperplane that best separates the different classes 

or predicts the continuous outcomes on the basis of the resource and task data. Specifically: 

● Objective: Minimize the regularized loss function, which includes both the margin maximization and the 

error terms. The SVM model is trained to predict task‒resource pairings by minimizing a regularized loss function 

that maximizes the margin while minimizing classification error. The optimization function is as follows: 

         =  
 

 
|| ||  + C∑   

 
                                            (1) 

where   is the weight vector defining the hyperplane. 

C: Regularization parameter balancing classification error and model complexity. 

  : Slack variables to handle misclassifications. 

where W is the weight vector, b is the bias term,    are the slack variables, and C is the regularization parameter 

that balances the trade-off between achieving a low error on the training data and minimizing the model 

complexity. 

● Decision Function: The decision function for the SVM is as follows: 

   ) = sign(  x+b)                                                          (2) 

where  : Feature vector representing task or resource characteristics. 

b: Bias term adjusting the hyperplane position. 

Sign: Function returning the sign (+ or -) to determine the classification. 

x represents the features of the tasks and resources. 

● Support Vectors: The model focuses on the support vectors, which are the data points that lie closest to the 

decision boundary. These points are critical for determining the optimal hyperplane. 

The performance metrics derived from the SVM model are used to evaluate the effectiveness of resource 

allocation and task management. Adjustments to R and T on the basis of the model's predictions help in making 

more informed decisions for future allocations. While clustering and reinforcement learning models have shown 

promise in edge computing, they can be computationally intensive and struggle with real-time constraints. In 

contrast, the SVM model’s predictive efficiency and reduced computational load make it ideal for dynamic, 

latency-sensitive environments. 

The choice of SVM enables faster convergence in high-dimensional data environments, making it particularly 

suitable for edge computing where rapid decisions are essential. The framework’s efficiency stems from the 

SVM’s focus on support vectors, enabling it to handle nonlinear, high-dimensional data efficiently, making it ideal 

for edge computing. 

4 Proposed Method 

The support vector machine (SVM) algorithm is a robust solution for resource allocation and job offloading in 

edge computing environments, aiming to optimize resource utilization and minimize latency. The process begins 

by configuring the edge environment and collecting data on resource availability and task requirements. The SVM 

framework formulates an optimization problem to allocate resources efficiently, balancing cost, delay, and 

performance. Unlike deep reinforcement learning (DRL)-based methods, the SVM model identifies the optimal 

hyperplane to separate different tasks or resource categories, enabling accurate classification for resource 

allocation. 
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Once trained, the SVM model dynamically assigns tasks to the most suitable servers, leveraging its decision 

boundaries for efficient load balancing. It identifies tasks to offload to edge or cloud servers effectively, with 

performance continually evaluated to ensure sustained resource optimization. 

The algorithm comprises the following stages, as illustrated in Figure 3: 

1. Data collection: 

Gather information on resource availability, task requirements, and network conditions. These data may be 

simulated or sourced from real-world edge computing environments. 

2. Feature Engineering: 

Extract key attributes, such as task priority, server load, bandwidth, and application-specific needs. Feature 

selection ensures that only the most relevant parameters are utilized for model training. 

3. SVM training: 

o Kernel Selection: The radial basis function (RBF) kernel is chosen for its ability to model nonlinear 

relationships effectively. 

o Hyperparameter Tuning: Optimize parameters, such as the regularization parameter (CC) and 

kernel coefficient (γγ), using a grid search to achieve a balance between accuracy and 

generalization. 

4. Resource Allocation:  

The trained SVM model is used to predict optimal task-to-resource assignments in real time, minimizing 

latency and achieving balanced load distribution. 

5. Performance Validation:  

Evaluate the framework's performance via metrics such as latency, load distribution, and resource 

utilization under simulated edge computing scenarios. 

The detailed flow of the algorithm is visualized in Figure 3, demonstrating its step-by-step execution for resource 

allocation in edge computing systems. 
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Figure 3 Flowchart of the proposed method 

 

The pseudocode for SVM-based edge computing resource allocation is detailed in Table 1. 

 

Initialize environment parameters: 

    - Number of tasks 

    - Task requirements 

    - Server capacities 

    - Network bandwidth 

Initialize memory and environment: 

    - Set up memory deque 

    - Define state size and action size 

    - Set batch size for training 

Define the Deep Q-Network (DQN) model: 

    - Create a Sequential model with two hidden layers 

    - Compile the model with mean squared error loss and Adam optimizer 

Define functions for the DQN algorithm: 

    - `act(state)`: Select action based on epsilon-greedy policy 

    - `replay()`: Train the model using a sample of experiences frommemory 
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    - `update_target_model()`: Update the target model weights 

Start simulation loop: 

    For each episode: 

        - Initialize state 

        For each time step in the episode: 

            - Select an action 

            - Compute the reward based on server capacity 

            - Store the experience in memory 

            - Update state 

            - Perform replay and update target model periodically 

 

Table 1 Pseudocode for load balancing in edge computing 

 

    The experiments reveal that the SVM model achieves the lowest latency and optimal load distribution 

compared with those of the K-nearest neighbors, random forest, and other models. Notably, the SVM's predictive 

accuracy in task allocation contributes to reduced task completion times and superior resource utilization. This 

advantage positions SVM as an ideal choice for edge environments where low latency is critical. 

 

5. Experiments and Discussion 

 

5.1. Experimental Setup 

To validate the SVM-based model, experiments were conducted via a virtualized edge computing 

environment. Hardware included a high-performance computing node with multicore processing capabilities, 

and software environments consisted of Python with SVM libraries (e.g., scikit-learn). The datasets simulate real-

time edge computing loads with varying task types and network conditions. 

Parameter settings: 

The regularization parameter CCC was adjusted between 0.1 and 1.0. 

Kernel type: radial basis function (RBF) kernel for optimal nonlinear task-resource mapping. 

Training configuration: Data samples were split into training (80%) and testing (20%) sets. 

These parameter configurations were determined to balance task complexity with model accuracy and latency 

needs, ensuring replicable and interpretable results across edge cases. 

Several algorithms have been proposed to solve the problem of efficiency in edge computing by reducing the 

communication time between users and the edge system. These algorithms fall into five main categories: data 

resource discovery, benchmarking, data placement, computing, clustering, and load balancing. 

 

5.2. Discussion 

The proposed SVM-based framework addresses these limitations by leveraging the computational efficiency of 

SVMs while maintaining high adaptability. Unlike heuristic and clustering-based models, the SVM framework 

efficiently handles high-dimensional data and makes rapid, real-time decisions with minimal computational 

overhead. This is particularly advantageous for edge computing environments where real-time processing is 

critical. 

Additionally, the inherent ability of SVMs to focus on support vectors reduces unnecessary computations, 

allowing faster convergence and optimized resource allocation. This approach minimizes latency and enhances 

load balancing without the extensive computational cost associated with reinforcement learning models. By 
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overcoming these key limitations in current methods, the SVM-based framework has significant potential for use 

in latency-sensitive and resource-constrained edge computing applications. 

Furthermore, the performances of different machine learning models used for server load-sharing techniques 

are compared. The models under comparison are support vector machine (SVM), k nearest neighbors (KNN), 

random forest, neural network, decision tree, and gradient boosting. The evaluation is based on five metrics: total 

latency, load distribution, task completion time, resource utilization, and cost efficiency. Table 2 summarizes the 

results of the different models. 

The SVM model’s performance was evaluated across five metrics: 

1. Latency: SVM achieves the lowest latency, attributed to its efficient task classification and minimal 

overhead, which are critical for real-time applications. 

2. Load distribution: SVM maintains a balanced load, reducing bottlenecks, which is a significant 

improvement over clustering methods that lack dynamic adaptability. 

3. Task completion time: Faster task classification via SVM led to shorter completion times. 

4. Resource Utilization: SVM’s dynamic allocation improved resource utilization, adjusting to varying 

network loads. 

5. Cost Efficiency: SVM demonstrated high cost efficiency, optimizing resource use while maintaining 

low latency. 

The experiments reveal that the SVM model achieves the lowest latency and optimal load distribution 

compared with those of the K-nearest neighbors, random forest, and other models. 

When SVM is compared with other models, such as K-nearest neighbors, random forests, neural networks, 

decision trees, and gradient boosting, SVM consistently outperforms the other methods in terms of latency and 

load distribution. Figure explanations and metric summaries further clarify these advantages. In the experiments, 

the SVM model consistently outperformed other machine learning models, including K-nearest neighbors, 

random forest, neural networks, and decision trees, across all key metrics. Compared with the second-best model, 

the SVM showed an average latency reduction of 15% and a 20% improvement in load distribution balance. These 

metrics, along with superior resource utilization and cost efficiency, underscore the advantages of SVMs in 

dynamic edge computing contexts. Table 2 summarizes the performance comparison, showcasing the SVM's 

consistent edge across total latency, resource utilization, and cost-efficiency metrics. 

Table 2 Comparison of the performance of different machine learning models used for server load-sharing 

techniques 

 

 

 

 

 

 

 

Model 
Total 

Latency 

Load 

Distribution 

Task 

Completion 

Time 

Resource 

 Utilization 

Cost 

Efficiency 

Support 

Vector Machine 
1.803125 0.073357 1.803125 1.803125 0.877428 

K-Nearest 

Neighbors 
2.017392 0.566532 2.017392 2.017392 0.981693 

Random 

Forest 
2.068257 1.006658 2.068257 2.068257 1.006445 

Neural 

Network 
1.978729 0.911393 1.978729 1.978729 0.962879 

Decision Tree 2.075689 1.157179 2.075689 2.075689 1.010061 

Gradient 

Boosting 
2.055200 0.990010 2.055200 2.055200 1.000091 
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5.2.1. Model Comparison: 

The results reveal a nuanced performance profile for each model on the basis of the evaluated metrics: 

1. Support Vector Machine (SVM): 

● Total Latency: 1.803125 

● Load distribution: 0.073357 

● Task Completion Time: 1.803125 

● Resource Utilization: 1.803125 

● Cost Efficiency: 0.877428 

The SVM model has the lowest total latency and task completion time, making it highly efficient in these 

aspects. Its load distribution is also the best, indicating a well-balanced approach to distributing the load across 

servers. Compared with other models, SVM also performs well in terms of resource utilization and cost efficiency. 

2. K-nearest neighbors (KNN): 

● Total Latency: 2.017392 

● Load distribution: 0.566532 

● Task Completion Time: 2.017392 

● Resource utilization: 2.017392 

● Cost Efficiency: 0.981693 

Compared with SVM, KNN yields greater total latency and task completion times. Its load distribution is 

significantly less effective, which can lead to greater variability in the server load. 

3. Random forest: 

● Total Latency: 2.068257 

● Load distribution: 1.006658 

● Task Completion Time: 2.068257 

● Resource utilization: 2.068257 

● Cost Efficiency: 1.006445 

The random forest algorithm has higher latency and task completion time than the SVM and KNN algorithms 

do. Its load distribution and cost efficiency are also less favorable, indicating that it may not be as effective in 

balancing and optimizing server resources. 

4. Neural Network: 

● Total Latency: 1.978729 

● Load distribution: 0.911393 

● Task Completion Time: 1.978729 

● Resource utilization: 1.978729 

● Cost Efficiency: 0.962879 

The neural network model provides a good balance between latency and load distribution. While its total 

latency and task completion time are greater than those of SVM, it still performs reasonably well in terms of load 

distribution and cost efficiency. 
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5. Decision Tree: 

● Total Latency: 2.075689 

● Load distribution: 1.157179 

● Task Completion Time: 2.075689 

● Resource utilization: 2.075689 

● Cost Efficiency: 1.010061 

The decision tree model has the highest total latency and task completion time among the models. Its load 

distribution is also the least favorable, leading to suboptimal performance in balancing server loads. 

6. Gradient boosting: 

● Total Latency: 2.055200 

● Load distribution: 0.990010 

● Task Completion Time: 2.055200 

● Resource utilization: 2.055200 

● Cost Efficiency: 1.000091 

Compared with the random forest and decision tree methods, the gradient boosting method slightly improves 

the load distribution and cost efficiency, but it still lags behind the SVM method in terms of overall performance. 

The SVM model stands out as the most effective in terms of total latency, load distribution, and task 

completion time. Compared with other models, it provides the best resource utilization and cost efficiency. In 

contrast, models such as decision trees and random forests have higher latencies and less effective load 

distributions, making them less suitable for server load-sharing tasks. The Neural Network and Gradient Boosting 

models offer a balanced performance but do not surpass the SVM in all metrics. 

These results highlight the importance of selecting the right model for efficient server load sharing. The SVM's 

superior performance underscores its suitability for managing server loads effectively in edge computing 

environments. 

Figures 4 to 8 below illustrate the performance metrics for each model across various dimensions. The total 

latency curve shows that the support vector machine (SVM) consistently performs with the lowest latency 

compared with the other models. In terms of the load distribution, the K-nearest neighbors (KNN) model exhibits 

the highest variability, whereas the SVM maintains the most stable distribution. For task completion time, the 

SVM again has a lower average, whereas the resource utilization and cost efficiency curves reveal that the SVM 

not only utilizes resources efficiently but also offers the best cost efficiency compared with models such as 

random forest and gradient boosting, which have higher values. 
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Figure 4 Total latency of the support vector machine vs the different models 

Figure 4 The SVM model consistently maintains a lower latency across task loads because of its efficient 

task classification and resource allocation mechanism. In contrast, other models struggle with dynamic task 

distributions, leading to increased latency. This demonstrates its suitability for applications requiring rapid 

processing times. 

 

Figure 5 Load distributions of the support vector machine model and different models 

Figure 5 SVM achieves a balanced load distribution, minimizing server bottlenecks compared with 

alternative models, whereas other methods exhibit greater variability because of their lower dynamic 

adaptability. This highlights the SVM’s efficiency in evenly distributing tasks to avoid bottlenecks in resource-

constrained edge environments. 

 
Figure 6 Resource utilization of the support vector machine vs the different models. 



IJT’2025, Vol.05, Issue 01                                                                                                      15 of 20 

IJT’2025, Vol.05, Issue 01                                                                 https://ijt.journals.ekb.eg 

Figure 6 SVM demonstrates higher resource utilization efficiency, whereas alternative models underutilize 

resources, especially under variable task loads. This efficiency makes the SVM well suited for maximizing 

resource use in dynamic edge computing scenarios. 

 

Figure 7 Cost efficiency of the support vector machine vs the different models 

Figure 7 SVM maintains superior cost efficiency, reducing operational costs significantly compared with 

other models that struggle with resource misallocation. This makes SVM a preferred choice for cost-sensitive 

applications requiring optimized resource allocation. 

 

Figure 8 Task completion time of the support vector machine vs the different models 

Figure 8 SVM achieves shorter task completion times, highlighting its real-time adaptability, whereas 

other models experience delays due to less efficient allocation, making it ideal for applications demanding 

quick task processing and completion in edge computing environments. 

Table 3 Comparison of the performances of the SVM, heuristic-based and clustering-based methods 

Metric SVM 
Heuristic-Based (Hikida et al., 

2021) 

Clustering-Based (Xiang et al., 

2021) 

Total Latency 1.803125 2.1 2.3 

Load Distribution 0.073357 0.8 0.9 

Task Completion 

Time 
1.803125 2.05 2.2 

Resource Utilization 1.803125 1.7 1.6 

Cost Efficiency 0.877428 0.85 0.8 
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The comparison presented in Table 3 highlights the superior performance of the SVM-based framework over 

heuristic-based and clustering-based approaches across key performance metrics. The total latency achieved by 

the SVM framework (1.803125) is significantly lower than that of heuristic-based (2.1) and clustering-based 

methods (2.3), demonstrating its efficiency in rapid task classification and allocation, which is essential for real-

time edge environments. Similarly, the SVM outperforms its counterparts in terms of the load distribution, 

achieving a value of 0.073357 compared with 0.8 and 0.9 for heuristic-based and clustering-based methods, 

respectively. This indicates the SVM's ability to evenly distribute workloads, reducing bottlenecks and enhancing 

system performance. 

In terms of task completion time, the SVM framework also leads with the lowest value (1.803125), surpassing 

heuristic-based (2.05) and clustering-based (2.2) approaches, further validating its efficiency in managing dynamic 

workloads. Resource utilization by SVM is notably higher (1.803125) than that of heuristic-based (1.7) and 

clustering-based (1.6) methods, reflecting its optimized use of computational resources to meet the demands of 

high-dimensional and real-time edge computing tasks. Additionally, the SVM framework demonstrates superior 

cost efficiency (0.877428), slightly exceeding those of the heuristic-based (0.85) and clustering-based (0.8) 

approaches, indicating its ability to maximize resource usage while minimizing operational costs. 

These results emphasize the advantages of the SVM-based framework in delivering low latency, balanced load 

distribution, and superior resource utilization, making it particularly suitable for latency-sensitive and resource-

constrained edge computing applications. While heuristic-based and clustering-based methods exhibit reasonable 

performance, they lack the adaptability required for the dynamic and high-dimensional demands of modern edge 

environments. Consequently, the findings advocate for the broader adoption of SVM-based approaches in 

scenarios requiring real-time processing, such as the healthcare IoT, autonomous vehicles, and smart city 

infrastructure. 

6. Further Discussions Limitations 

The SVM-based model has demonstrated significant benefits, particularly in terms of low latency and load 

balancing. However, certain limitations are noted: 

Scalability: In environments with highly variable loads, SVMs may face challenges in maintaining consistent 

performance. While it effectively manages high-dimensional data, real-time adjustments may require integration 

with reinforcement learning methods. 

Parameter sensitivity: SVM effectiveness is sensitive to parameter choices, such as kernel type and 

regularization. Fine-tuning these parameters is essential, especially for edge environments with variable network 

conditions(performance analysis of…)(performance analysis of…). 

Future research should consider combining SVM with adaptive learning methods to dynamically adjust 

parameters on the basis of real-time workload, enhancing scalability and adaptability. 

6.1. Results 

The SVM model’s performance at low latency is attributed to its streamlined task classification process, which 

minimizes computational overhead. This advantage is essential for real-time edge applications where delayed 



IJT’2025, Vol.05, Issue 01                                                                                                      17 of 20 

IJT’2025, Vol.05, Issue 01                                                                 https://ijt.journals.ekb.eg 

responses are detrimental. Moreover, the SVM’s balanced load distribution optimizes resource use across edge 

servers, providing enhanced scalability and adaptability in dynamic environments. 

6.2 Limitations and Future Research Directions 

The proposed SVM-based model for resource allocation in edge computing has shown significant promise, but 

there are several opportunities for enhancement and challenges to address. Integrating SVM with reinforcement 

learning techniques could enhance adaptability in dynamic, high-variance environments, allowing the framework 

to handle variable workloads more effectively. Such hybrid approaches would improve scalability and 

performance under diverse conditions. 

Scalability remains a key challenge, as maintaining consistent performance in larger edge networks can be 

difficult. An increased network size often exacerbates latency and load-balancing inefficiencies. Additionally, while 

SVM is computationally efficient compared with reinforcement learning, it struggles with extremely high-

dimensional data, with computational costs increasing for training and prediction. Addressing these issues 

through dimensionality reduction techniques and hybrid frameworks can ensure that the model remains efficient 

in real-time, large-scale scenarios. 

Expanding the model’s use cases to broader edge computing applications, such as smart cities, healthcare IoT, 

and autonomous vehicles, is another promising direction. These domains require robust load balancing and low 

latency, making them ideal environments for demonstrating the framework's adaptability and real-world utility. 

The model’s reliance on precise hyperparameter tuning presents another limitation, as selecting the 

regularization parameter (CC) and kernel coefficient (γγ) can be time-consuming and challenging, especially in 

dynamic edge environments. The development of adaptive parameter-tuning mechanisms would streamline this 

process, ensuring optimal performance across various conditions without extensive manual effort. 

Despite its relative efficiency, SVM's computational overhead when handling high-dimensional data may limit 

its applicability in real-time scenarios. Employing optimization techniques and hybrid approaches can mitigate 

these limitations, enhancing both scalability and efficiency. 

By addressing these challenges and exploring broader applications, the SVM-based framework can be refined 

to meet the demands of dynamic, large-scale edge computing environments, confirming its role as a robust and 

versatile solution for resource allocation and job offloading. 

6.3. Applications and Implications 

The applicability of this framework extends across diverse edge computing domains. In the healthcare IoT, 

SVM’s low-latency resource allocation is ideal for patient monitoring systems, ensuring timely responses to 

critical data. In autonomous vehicles, the model’s efficient load balancing can support real-time data processing, 

which is crucial for navigation and safety. Similarly, smart city infrastructure could benefit from the framework’s 

adaptive load management, enhancing the performance of traffic control, surveillance, and public safety systems. 

7. Conclusions 

The SVM-based model introduced in this study has clear advantages in edge computing environments, with 

superior performance in terms of latency, load distribution, and resource utilization. By achieving reductions in 

total latency and task completion time and enhancements in cost efficiency, the framework outperforms heuristic-

based, clustering-based, and other machine learning approaches across all key metrics. Specifically, the SVM 

framework has the ability to reduce total latency by 14.2% and 21.6% compared with heuristic and clustering 
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methods and outperforms K-nearest neighbors, random forest, and neural networks with a latency of 1.803125, 

load distribution of 0.073357, and cost efficiency of 0.877428, underscoring its potential as a robust solution for 

dynamic, real-time resource allocation. 

Despite its advantages, challenges such as parameter sensitivity and scalability in highly variable environments 

remain. Future work will explore hybrid approaches that integrate SVM with adaptive learning methods to 

address these challenges. Expanding the framework’s application to broader edge computing domains, including 

smart cities, healthcare IoT, and autonomous vehicles, will further solidify its role in advancing intelligent edge 

computing solutions. These results affirm that the SVM-based model is a powerful tool for enhancing resource 

allocation in edge computing systems. 
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