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Abstract 

Colorimetric chemosensors and fluorescent probes have gained popularity in recent years as a quick, cost-effective, and simple method for 

detecting and monitoring toxic species such as metal cations, anions, and toxic gases. This approach offers a more straightforward alternative 

to complex and time-consuming analytical techniques. Heavy metal ions pose a significant environmental threat due to their potential risks to 

ecosystems and human health. This review focuses on the latest advancements in colorimetric chemosensors using rhodamine derivatives for 

the detection of metal cations. The review discusses the synthesis, detection limit, sensitivity, and binding mechanism of rhodamine-based 

chemosensors with metal ions from 2010 to 2025. While these sensors have shown promise, there is still room for improvement in terms of 

repeatability and sensitivity. The goal of this review is to inspire researchers to explore new possibilities for enhancing rhodamine-based 

chemosensors in the future. 
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1. Introduction 

Metal ions play a vital role in various essential biological processes within the human body [1-7]. They are involved in 

regulating osmotic control, metabolism, biomineralization, and signaling. Elevated concentrations of specific metal ions such 

as Hg2+ and Pb2+ can have detrimental effects on health. Conversely, maintaining appropriate levels of essential metal ions 

like Cu2+, Ca2+, Fe3+, and Zn2+ is crucial for normal metabolic activities. Figure 1 illustrates the influence of variations in 

metal ion levels on various physiological functions in the body. [6, 8]. Thus, a major research question emerged: how to 

monitor and quantify these metal ions in a quick, simple, and inexpensive way even at ultra-low concentrations [9-18]. 

Colorimetric (or chromogenic) chemosensors are materials that change color or fluorescence when they bind to a specific 

chemical. This color change provides a visual indication that can be used in sensing systems. Colorimetric chemosensors are 

particularly useful for detecting the presence of anions, cations, and changes in pH, making them of great interest in various 

applications [15, 19-27]. Colorimetric chemosensors generally work according to one of two main principles [28, 29]. As 

shown at the top mechanism in Figure 2, the chemosensor molecule consists of a receptor subunit and another indicator 

(signalling) subunit that is modified after a binding occurs at the receptor component. The two subunits in this method are 

joined by a covalent bond, and the binding of the gust molecule causes the electronic structure of the created molecule to 

change, giving it new color characteristics.    

The chemosensors receptor is connected to an indicator that changes color or fluorescence when specific stimuli are 

detected. This change occurs when the targeted guest interacts with the receptor, as shown in the mechanism at the bottom of 

Figure 2. This interaction involves molecular assemblies binding at specific sites on the molecule, resulting in the release of 

the indicator and a visible alteration in its optical characteristics. 

Lately, various techniques have been used for the detection of toxic species, including physical, chemical and biological 

methods. Complicated instruments such as spectroscopic apparatus (mass spectrometry, atomic absorption, and atomic 

emission spectroscopy), high-performance liquid chroma-tography (HPLC), and electrochemical sensors are used for 

detecting heavy metals in solutions.  

Also pH changes can be detected by microelectrodes, acid-base indicator titration, and potentiometric titration. 

Nevertheless, most of these methods are characterized by complicated procedure and sometimes high cost process. Thus, 

improve of susceptibility, fast and low cost method for detection of toxic species is a major challenge nowadays. Therefore, 

colorimetric chemosensor and fluorescence probes provide a reliable alternative with a simple application in monitoring the 

analytes by naked eyes instead of using complicated instruments with high sensitivity levels and low coast [13, 28, 30-37]. 

Many studies being conducted today focus on developing novel colorimetric chemosensors and fluorescence probes that are 

sensitive, selective, and work at very low concentrations to monitor dangerous species. This obvious priority is anticipated 

given its important role in environmental preservation and health care,  [28] which has been demonstrated in several beneficial 

applications and prevented danger in various fields [13, 38-41]. There are a wide variety of chromophores and fluorophores 

used in sensors to detect different analytes. These include coumarin, Schiff base, triphenylamines, indolo- quinoxaline, 1,8-

naphthalamide, phenothiazine, xanthene derivatives, and many more [42-53],  Thus this review presents the recent advances 
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of the colorimetric chemosensor based on rhodamine moiety as a spiroring-opening system for detection of metal cations 

concerning with the synthesis and binding mechanism with metal cations and detection limit . 

 

 

 
 

Figure 1: Effect of metal ions on essential life processes [8]. 

 

 
Figure 2: Mechanisms of colorimetric chemosensor operation [29]. 

 

2. Chemistry of Rhodamine  

   Rhodamine is a fluorophore that belongs to the xanthene family, along with fluorescein. The general structures of xanthene 

chromophore and rhodamine dyes are shown in Figure 3. Rhodamine has a distinct structural identity and finds wide 

applications in designing fluorescent sensors. In aqueous solutions, these dyes exist in two forms in equilibrium, a non-

fluorescent ring-closed lactone form and a fluorescent ring-opened zwitterion form. The equilibrium between these two forms 

enables fluorescence to be switched on and off by analytes with high sensitivity [54, 55]. To create various rhodamine 

conjugates, a typical approach involves reacting a nucleophilic group in the target molecule with a 4'- or 5'-activated 

rhodamine derivative (shown in Figure 3B where G = activated ester, acyl chloride, sulfonyl chloride, or isothiocyanate). 

There are numerous activated rhodamine dyes available commercially, but they may contain a mix of isomers or be too costly 

if pure. 

 
Figure 3:  Molecular structures of xanthene (A) and rhodamine dyes (B). 
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2.1. Synthesis of Rhodamine 

   Noelting and Dziewonsky were the first group synthesized rhodamine in 1905  [56] as shown in Scheme 1. It was carried 

out by direct condensation of phthalic anhydride with 3-(diethylamino) phenol in concentrated sulphuric acid and the mixture 

was heated for 48 hours at high temperature (165 °C).   

 

 
 

Scheme 1:  Synthesis of rhodamine B. 

 

However, the discovery of the rhodamine spirolactam ring opening mechanism was only mentioned in 1997 by Dujols. It was 

used for the first time as a chemosensor for copper detection, making it an interesting compound for researchers [57]. The 

closed rhodamine spirolactam structure does not exhibit any emission spectra and is colorless. Upon opening of the 

spirolactam ring, the emission spectra of the opened ring significantly increases and a pink color appears, as shown in Scheme 

2. Rhodamine B spirolactam/ spirolactone rings can be reconfigured and opened by various external factors. For example, in 

acidic conditions, the spirolactam ring of rhodamine B can be opened, resulting in a red color. Additionally, heavy metal ions 

can coordinate with carbonyl and amide groups, leading to an amplification of emission and a color change. 

 

 
Scheme 2: Ring-opening of spirocyclic rhodamine B. 

 

2.2. Rhodamine as Colorimetric Chemosensor  

    Rhodamine's sensitivity, selectivity, and quick signalling make it an attractive chemosensor for a variety of metal ions. 

Rhodamine-based chemosensors undergo structural changes upon ion binding, leading to detectable color or fluorescence 

signals that can be quantified for sensitive detection and monitoring of metal cations even in nano-scale concentration [58-60]. 

The concept behind rhodamine-based chemosensors for cations is to add metal chelating groups to rhodamine by changing its 

structure. The rhodamine dye acts as a fluorescence indicator by releasing light, and these metal-binding components function 

as receptors that attach selectively to the desired metal ion. The chemosensor modifies the fluorescence intensity or 

wavelength by causing a structural change in the rhodamine unit such as opening the spirolactam ring after connecting with 

the metal ion. Spectroscopic methods such as fluorescence and time-resolved fluorescence spectroscopy, along with 

fluorescence microscopy for intracellular monitoring, can be used to identify and quantify the change in emission. 

Rhodamine-based chemosensors have become important instruments in chemical sensing applications, providing advantages 
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for diagnostics, environmental monitoring, and biological research. Due to its unique optical characteristics, which include 

significant Stokes shift, strong photostability, and tunable fluorescence, rhodamine dyes are a good choice for developing 

sensitive and specific chemosensors. Recent advances in synthetic chemistry and molecular design have increased the variety 

of rhodamine-based chemosensors that can identify different materials, such as organic molecules, metal ions, and 

biomolecules. These chemosensors can be used with various analytical platforms, like wearable sensors, paper-based sensors, 

and microfluidic devices, to satisfy particular sensing requirements. Rhodamine-based chemosensors are promising 

instruments for future sensing technologies because of their adaptability and versatility, which allow them to solve a variety of 

issues in various areas. Figure 4 (I-A) presents the first report of a rhodamine-based chemosensor, [57] while (I-B) show 

cases an early sensor with two rhodamine units in the scaffold [61]. Figure 4 (I-C) represents one of the earliest Schiff base 

type sensors[62]. Among the several rhodamine moieties, rhodamine 6G or B are frequently utilized (Figure 4-II). Figure 4-

III depicts the typical sensing mechanism, where the presence of metal ions can cause the spirolactam ring to open. Ring 

opening is not always seen, however; some observations have indicated that the spirolactam ring does not open even after 

being exposed to metal ions. For monitoring the potential of the mitochondrial membrane, rhodamine 123 is one of the 

additional rhodamine sensors [63] and rhodamine 101 for DNA binding (Figure 4-IV) [64]. The sulforhodamine assay is used 

to determine cell density by measuring cellular protein content [65, 66]. Si-rhodamine is used for brain imaging and 

monitoring hydrogen sulfide (H2S) levels in brain cells [67]. 

 

 
 

Figure 4: Rhodamine based chemosensor and its ring opening mechanism. 

 

3. Colorimetric Chemosensors Based on Rhodamine moiety and related derivatives for metal cation recognition 

3.1. Rhodamine based colorimetric chemosensor for Copper ion (Cu2+) 

Cu2+ ion is one of the most fundamental heavy metal which became after iron and zinc [68], Cu2+ is a fundamental 

trace element that is involved in several biological processes [69, 70]. Many proteins and metalloenzymes, including 

dopamine-hydroxylase, tyrosinase, cytochrome c oxidase, lysyl oxidase, and superoxide dismutase, can contain copper ions as 

catalytic cofactors [71]. Copper is essential for various biological functions, such as electron transfer, oxygen metabolism, and 
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iron metabolism through ceruloplasmin which oxidizes iron before it is transported in the blood to tissues [72]. Copper plays a 

crucial role in enzymes that scavenge free radicals and is essential for hormone biosynthesis. It is also involved in the 

biosynthesis of collagen and elastin, which are vital structural components of the skin, tendons, and extracellular matrix [73]. 

The increasing of the concentration limit of copper could be a serious risk for human body [74]. Overconsumption of copper 

can cause a number of health problems, including dyslexia, headaches, nausea, dizziness, vomiting, diarrhea, and irritation of 

the mouth, nose, and eyes. It can also lessen water systems' capacity to purify themselves and interfere with the body's normal 

detoxification processes. On the other hand, low copper levels can cause illnesses like Menkes disease, anemia, hypothermia, 

impaired immune system, and reduced organ function [75-77]. Thus the easy, fast and accurate detection and monitoring of 

copper cation in aqueous media for environmental and biological samples is a preferable to avoid its toxicity problems [78]. 

   Jeong et al. developed and prepared three water-soluble colorimetric fluorescent sensors based on 1, 3, 5-triazine core and 

rhodamine B hydrazine as presented in Scheme 3 [79]. The most successful sensor for detecting Cu+ in aqueous solutions that 

change from colorless to pink in daylight and emit a strong yellow fluorescence was sensor 1, which had an octyl chain and a 

branched maltose group. These sensors were modified with a hydrophobic alkyl chain, a hydrophilic maltose, and a 

rhodamine B hydrazine fluorophore. The prepared sensor 1 had a limit of detection of 20 nM and a dissociation constant of 

1.1 × 10−12 M. 

 

 
Scheme 3: Synthesis scheme of probes 1–3. Reagents and conditions: i) K2CO3, alkyl thiol, THF, RT or  

0 ℃, 2 hr; ii) rhodamine B hydrazide, THF, reflux, overnight; iii) DIPEA, propargyl or dipropargyl amine, THF, reflux, 

overnight; iv) perbenzoylated maltosyl azide, Cu(SO4)2·5H2O, sodium ascorbate, THF, water, RT, overnight; NaOMe, DCM, 

MeOH, RT [79]. 

Sensor 1 was utilized to differentiate the intracellular Cu+ levels in cancer cells compared to normal cells. This indicates the 

potential of the probe for Cu+ bioimaging and disease detection, as shown in Figure 5 [79]. 

 

 

 
Figure 5: Binding mechanism of the prepared rhodamine based sensor (sensor1) and its selectivity with metal cations in 

aqueous media and the bio-image application [79]. 



 Mervat El-Sedik  and Tarek Aysha. 

_____________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. 68, No. 10 (2025) 

 

 

206 

Mulimani et al. prepared rhodamine-based Schiff base P1[2-((4-(diethyl amino)-2-hydroxybenzylidene) amino)-3′, 

6′-bis (ethyl amino)-2′, 7′ dimethyl Spiro [isoindoline-1, 9′-xanthen]-3-one] by a condensation reaction of 4 (diethylamino) 

salicylaldehyde with rhodamine 6G hydrazide as presented in Scheme 4 [80]. 

 

 
Scheme 4: Synthetic rout of synthesized sensor P1 [80]. 

 

P1 has shown impressive ability to detect Fe3+ and Cu2+ ions and the color of solution changed from colorless to pink for Fe3+ 

and orange for Cu2+ ions as shown in Figure 6. This color change occurred due to a charge transfer mechanism with a 1:1 

stoichiometry between the metal ions and P1. The limit of detection for P1 with Fe3+ and Cu2+ ions was found to be 1.09μM 

(0.06 ppm) and 7.7μM (0.48 ppm), respectively [80].  

 

 
Figure 6: (A) UV–visible titration spectral changes of P1 with Fe3+ions (B) Job’s plot for P1 with Fe3+ ions, (C) UV–visible 

titration spectral changes of P1 with Cu2+ ions, and (D) Job’s plot for P1 with Cu2+ ions [80]. 

 

 The high sensitivity of P1 in detecting metal ions at low concentrations has led to the creation of  

a straightforward, selective, and affordable paper strip device and swab kit, as shown in Figure 7 [80]. 

 

 
Figure 7: Change in the color of P1 coated (A) test paper, (B) swab sticks, after the addition of Cu2+ ions, and (C) Change in 

the color of P1 coated with test paper after addition of (a) Blank P1, (b) Cu industrial effluent  [80]. 
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Segura et al. reported colorimetric and fluorescence probe(E)-3′,6′-bis(diethylamino)-2-((2,5-dimethoxy 

benzylidene)amino)spiro[isoindoline-1,9′-xanthen]-3-one (WGB) for copper cation detection based on rhodamine derivative 

which prepared by a two-step reaction of rhodamine B (I) with hydrazine hydrate in methanol as shown in Scheme 5 [81]. 

 

 
Scheme 5: Synthetic route for Rhodamine derivative (WGB). Reagents and conditions: a) hydrazine hydrate, MeOH, reflux; 

b) 2, 4-dimethoxy benzaldehyde, r.t. 24 h.  [81]. 

 

The prepared sensor WGB shows very high sensitivity towards copper cation detection forming 1: 2 complex which record 

detection limit 6.76 × 10-8 M as well as high selectivity without any significant interference with other metals and the color 

changed from yellow to pink, with a significant increase in fluorescence due to the ring opening of the rhodamine spirolactam 

with charge transfer to one of the ethylamino groups of rhodamine. Furthermore, WGB was applied in bioimaging for 

monitoring SH-SY5Y cells as in Figure 8 [81].  

 

 

 
Figure 8: The colorimetric change and fluorescen for the rhodamine derivative (WGB) in the presence of Cu2+ and different 

metal cations as well as the bioimaging application for SH-SY5Y cell [81]. 

 

  Hu et al. have reported a near-infrared (NIR) fluorescence chemosensor EtRh-N-NH2 for the detection of Cu (II). 

EtRh-N-NH2 was prepared through a three steps benzoic acid. Firstly, the reaction of compound 1 and cyclohexanone 

generates the three-membered ring intermediate 2 in the presence of concentrated sulfuric acid as shown in Scheme 6 [82]. 

Then compound starting with 2-(5-(diethylamino)-2-hydroxyl) 2 was condensed with 4-diethylamin obenzaldehyde to form 

fluorophores EtRh-COOH. Finally, a ring-closure action was done on the carboxyl moiety of the fluorophore to produce the 

aminohydrazide probe EtRh-N-NH2. 
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Scheme 6: synthesis of EtRh-N-NH2 sensor [82]. 

 

Scheme 7 illustrates how Cu2+ interacts with the sensor EtRh-N-NH2 by forming a link and chelating with its carbonyl and 

amino groups. This interaction leads to the hydrolysis of the hydrazide, producing the highly fluorescent EtRh-COOH. The 

sensor has a high detection limit of 6 nM. The resulting product, EtRh-COOH, emits light at a wavelength of 762 nm in the 

near-infrared (NIR) region, with a Stokes shift of up to 75 nm [82]. 

 
Scheme 7: Proposed mechanism of EtRh-N-NH2 sensor for binding and fluorescent turning-on process [82]. 

 

 Abebe et al. designed and synthesized a novel sensor (RD) bearing rhodamine B and 4-tert-butyl phenol unit using 

microwave irradiation as shown in Scheme 8. The sensor shows high selective detection of Cu2+ by forming 1: 2 complex and 

the color changed from colorless to pink which was observed with naked eye due to ring-opening of spirolactam as in Scheme 

8. As well as the prepared sensor (RD) showed high sensitivity toward copper cation detection which record detection limit 

0.26µM [83]. 

 
Scheme 8: Synthetic routs and proposed binding mechanism for rhodamine derivative sensor RD [83]. 
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Scheme 9: Synthesis of RBP sensor [55]. 

 

Wechakorn et al. synthesized a colorimetric and fluorescent sensor, selective for Cu2+ ion based on rhodamine 

semicarbazide conjugated picolyl- amine (RBP) as presented in Scheme 9 [55]. The synthesized sensor RBP shows high 

selectivity for Cu2+ ions compared to other metal ions. This selectivity is confirmed by the color change from colorless to pink 

and significant fluorescence emission. RBP also demonstrates high sensitivity to Cu2+ ions, with a rapid reaction time of one 

minute and a low detection limit of 5.8 nM. In the presence of Cu2+ ions, the ring-opening mechanism of RBP triggers the 

fluorescence response, which is subsequently followed by a hydrolysis reaction.  

 

 
Figure 9: Emission spectra (A), DFT study (B) and bioimaging (C) of the prepared RBP sensor [55]. 

 

The photophysical properties of RBP were investigated in MeCN/HEPES buffer, including UV–Vis absorption and 

fluorescence emission. Additionally, the RBP sensor was successfully utilized for detecting Cu2+ ions in real water samples 

(A) and fluorescence imaging in HepG2 cells (C) as presented in Figure 9. The binding mechanisum with copper was 

investigated by Job's plot and DFT study (B) which confirming the formation of 1:1 complex between the semicarbazide-

picolylamine moiety of RBP and copper ion.  

3.2. Rhodamine based colorimetric chemosensor for Mercury ion (Hg2+)  

Mercury and its ionic form are highly toxic to the environment and human health [84, 85]. The dangerous effect of 

mercury, even at very low concentrations, is caused by its easy conversion into highly toxic organo-mercury compounds by 

bacteria in the environment. These compounds then bio-accumulate through the food chain [86, 87]. Mercury, even at very 

low concentrations of over 2 ppb in the human body, can cause serious diseases and problems. It has the ability to easily and 

quickly penetrate the outer skin, lungs, and cell membranes, resulting in DNA damage, impairment of mitosis, and permanent 

damage to the central nervous system [88, 89]. 

         Li et al. designed and synthesized a tetraphenyl ethylene functionalized rhodamine chemosensor (TRP) as shown in 

Scheme 10 [90]. The synthesized TRP was showing a ratiometric sensing performance for detection of Hg2+ which showing a 

significant colorimetric change from colorless to purple-red color while no significant effect was observed with other metal 

cations. 

 
Scheme 10:  Synthetic procedure for the synthesis TRP chemosensor [90]. 
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The synthesized TRP was showing a ratiometric sensing performance for detection of Hg2+ which showing  

a significant colorimetric change from colorless to purple-red color while no significant effect was observed with other metal 

cations. Additionally a ratiometric emission was turned on and a significant emission was recorded at 463, 649 nm as 

presented in Figure 10. 

 
Figure 10: Emission spectra of the prepared TRP after binding with Hg2+ [90]. 

 

 

 

Scheme 11: The binding mechanism of TRP with Hg2+ [90]. 

 

The prepared sensor showing high sensitivity to mercury which record 10 nM as limit of detection (LOD). The binding 

mechanism was elucidated as shown in Scheme 11. It demonstrated that a mercury-promoted desulfurization reaction, 

followed by cyclization, produced the 1, 3, 4-oxadiazole molecule TRO. TRO has a much larger conjugate system compared 

to TRP. This example of sensor was applied for bioimaging of HeLa cells using laser confocal microscope. 

         Hussein et al. described and synthesized a new rhodamine based sensor for mercury detection which synthesized by the 

reaction of rhodamine B with ethylenediamine by reflux in ethanol forming N-ethylamine rhodamine derivative (Rh-NH2) 

which formed in excellent yield (99%).  The prepared Rh-NH2 was refluxed with 5,5'-(3-oxo-1,3-dihydro isobenzofuran-

1,1diyl)bis(2-hydroxybenzaldehyde) PP-CHO forming the target sensor Rh-PP-Rh as two rhodamine moiety connected by 

phenolphthalein link as presented in Scheme 12 [91].  

 

 

 

 
Scheme 12:Synthetic procedure for Rh-PP-Rh [91]. 
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       The prepared sensor has a good selectivity for Hg2+ cation with high sensitivity (LOD) 334 nM in aqueous medium. The 

binding mechanism with Hg2+ was described in Scheme 13 which showing the formation of 1:2 complex with ring opening of 

both rhodamine moieties.  

  

 
Scheme 13: The binding mechanism for suggested interaction between Hg2+ and Rh-PP-Rh [91]. 

 

        The colorimetric study was showing a color change from colorless to pink color and new absorption band at 558 nm 

corresponding to the formed complex and turn on fluorescence with emission band at 582 nm. A solid-state colorimetric study 

was evaluated for Rh-PP-Rh as optical probe for detecting Hg2+ using colorimetric solvents and pre-treated filter paper which 

showing the color change to orange color on filter paper and the emission was also observed under UV lamp as presented in 

Figure 11. 

 

 

 
 

Figure 11: The colorimetric change under visible light (A) and fluorescence change of Rh-PP-Rh (B) the color change under 

visible and UV light  

 on filter paper (C) [91].                                      

         Naphthalimide based rhodamine colorimetric and fluorescence probe sensor (NR-HG) was synthesized by Mishra et al. 

[92]. The presented NR-HG was developed by incorporating a modified 1, 8-naphthalimide moiety with rhodamine B using a 

suitable ethylenediamine spacer. The NR-HG sensor was prepared through multi step reaction as presented in Scheme 14 

which starts by the reaction of naphthalic anhydride derivative with an alkyl amine to form a naphthalimide derivative (1) this 

was followed by the Suzuki-Miyaura cross-coupling reaction to produce compound (4). The prepared N-ethylene- diamine 

derivative of rhodamine (3) was then condensed with  4-salicylaldehyde naphthalamide derivative (4) forming NR-HG.   
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Scheme 14: The synthetic rout for NR-HG, Reagent and conditions: (i) n-butylamine, AcOH, 90 ◦C, 5 h; (ii) B2P in 2, 

Pd(PPh3)2Cl2, NaOAc, PEG-600, 80 ◦C, 3 h; (iii) ethylenediamine, reflux, 6 h; (iv)Pd(OAc)2, Cs2CO3, xantphos, toluene, 90 

◦C, 5 h; (v) cat AcOH, NaBH(OAc)3, DCE (dichlo- roethane), rt, 5 h [92]. 

 

 

The NR-HG sensor showing a high selectivity characters for Hg2+ and detection limit was calculated 491 nM as presented in 

Figure 12. The sensing performance of NR-HG is demonstrated by a color change from colorless to pink due to ring opening 

and chelation with Hg2+, forming a 1:1 complex. The fluorescence of the complex is detected through a chelation-assisted 

FRET process. FRET is a phenomenon where excitation energy is transferred from a donor fluorophore to an acceptor 

fluorophore without emitting a photon. In order For FRET-based chemosensors to work there must be an overlap between the 

emission of the donor and the absorption of the acceptor [93-95]. 

 
Figure 12: The colorimetric change (A) and emission (B) for the detection of Hg2+ by NR-HG [92]. 

 

The binding mode of the NR-HG sensor with Hg2+ is illustrated in Scheme 15. It shows that both the carbonyl oxygen "O" 

and the -NH- nitrogen "N" of the rhodamine amine moiety, as well as the "O" from the -OH group of the naphthalimide-

salicylaldehyde moiety, are involved in the interaction with Hg2+, resulting in the formation of a 1:1 complex. This interaction 

leads to a color change and turn-on emission [92]. 
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Scheme 15: Sensing mechanism by FRET for NR-HG sensor [92].  

 

FRET-based sensors produce signals both in the absence and presence of the guest analyte to minimize interference and 

accurately detect the probe. The designed probe initially has weak emission due to the PET process. When Hg2+ binds to the 

probe, it inhibits the PET process, triggering CHEF and subsequently initiating FRET. Therefore, the presented sensor probe 

operates through the CHEF-assisted FRET pathway as shown in Scheme 15. The NR-HG sensor was used for bio-image 

application for SiHa cells as shown in Figure 13.  

 

 
 

Figure 13: The bio-image of SiHa cell using NR-HG. NR-HG in bright field (a), fluorescence field (b) and merge image (c), 

NR-HG in presence of Hg2+ in bright field (d), florescence (e), and merged image (f) [92]. 

 

Bai et al. prepared and designed fluorescent and colorimetric chemosensor by two steps reaction based on 

rhodamine 6G. The target sensor (L) was prepared by the reaction of rhodamine 6G (A) with ethylenediamine to form N-

ethylamine rhodamine derivative (B) followed by reaction with Lawesson's reagent to form rhodamine derivative (C) which 

react by condensation reaction with 2-hydroxy-1-naphthaldehyde to obtain the sensor (L) as shown in Scheme 16 [96]. The 

colorimetric chemosensor L was found to effectively detect Hg2+ ions. The interaction between the chemosensor and Hg2+ 

was confirmed using various analytical techniques such as ultraviolet-visible spectrophotometry, fluorescence spectroscopy, 

electrospray ionization-mass spectrometry, Fourier-transform infrared spectroscopy, and frontier molecular orbital 

calculations. Furthermore, the chemosensor L was successfully incorporated into test strips and silica gel plates, 

demonstrating outstanding selectivity and high sensitivity in detecting Hg2+ ions. 
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Scheme 16: The synthetic procedure of sensor L [96]. 

 

The binding mechanism with the sensor showed interesting results. When the ratio of Hg2+ to sensor was 1:1, no color 

change was detected due to desulfurization and no ring opening was observed. However, when the ratio of Hg2+ increased 

than 1, a pink color change and significant emission were observed. Additionally, new absorption and emission bands at 526 

nm and 550 nm, respectively, were recorded, indicating the formation of the LO-Hg2+ complex, [96] as shown in Figure 14. 

 
Figure 14: The binding mechanism(A) and the colorimetric change (B)as well as the turn on emission(C) of the prepared 

sensor L [96]. 

 

3.3. Rhodamine based colorimetric chemosensor for zinc ion (Zn2+)  

Zinc is one of the important transition element which its abundance fall in the second position after iron. Zinc ions 

is essential as microelements for human life, zinc is one of the basic element for many biological activities such as gene code, 

DNA recombination or recognition, neural signal transmission and cellular metabolism [97-100]. The abnormal change of the 

zinc concentration in the human body can be the reason of seriously problem for the human health and may cause 

physiological diseases [101-103]. Therefore, the monitoring of zinc ion especially in aqueous media which have a great value. 

Colorimetric and fluorescent probe for Zn2+ monitoring have been created and improved as a widely used technique because 

of the advantage such as convenience, sensitivity and celerity [97, 104-107]. 

Phenothiazine based rhodamine derivative sensor (PTRH) for recognition of zinc cation was synthesized by 

Karmegam et al. The synthetic procedure was described in Scheme 17 which started by alkylation of phenothiazine followed 

by formylation reaction (Vilsmeier-Haack formylation reaction). The carboxaldehyde derivative of alkylated phenothiazine  

reacted with rhodamine B hydrazine forming the sensor PTRH [108]. 



 RHODAMINE-BASED COLORIMETRIC CHEMOSENSOR FOR METAL CATION DETECTION.. 
__________________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. 68, No. 10 (2025) 

 

 

215 

 
Scheme 17: Synthetic pathway for the preparation of PTRH sensor [108]. 

The remarkable selectivity for Zn2+ ions exhibited by the PTRH probe was confirmed by emission spectrum and electronic 

studies. When the Zn2+ ion bound to PTRH, the emission wavelength gets shift to 608 nm was accompanied by  color change 

from a pale yellow to pink color (under visible light) and green to pinkish red fluorescence emission (under UV light) as 

presented in Figure 15. 

 

 
 

Figure 15: The selectivity study of PTRH sensor in visible and under UV spectra [108]. 

 

The colorimetric and fluorescence change caused by the ring opening of the spirolactam moiety in the PTRH ligand. The 

emission band of the PTRH probe at 528 nm confirmed the ring-closed form of PTRH as a result of the 1:1 complex 

formation, as shown in Scheme 18. The LOD for zinc ion recognition was recorded 28.9 nM. This sensor was applied in bio-

image application for HeLa cell [108]. 

 

Scheme 18: The mechanism for interaction of Zinc ion with PTRH sensor [108]. 

Two rhodamine based chemosensor for Zinc cation (R6S and RBS) were presented by Zhang et al. as shown in 

Scheme 19 [109]. The presented sensors were prepared by the condensation reaction of the corresponding hydrazide form of 



 Mervat El-Sedik  and Tarek Aysha. 

_____________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. 68, No. 10 (2025) 

 

 

216 

rhodamine 6G and rhodamine B with syringaldehyde (4-hydroxy-3, 5- dimethoxybenzaldehyde) in ethanol and catalytic 

amount of acetic acid.  

 

 

Scheme 19: Synthetic procedure of R6S and RBS sensors for zinc cation detection [109]. 

 

The prepared sensors demonstrated a very specific color change from colorless to pink when Zn2+ ions were added. 

Additionally, the fluorescence was turned on due to the interaction of Zn2+ causing a ring-opening. The RBS and R6S have 

the capability to identify zinc ions at very low concentrations of 0.18 and 0.19 nM, respectively. The spiro-ring opening of the 

spirolactam was clearly shown by the affinity of these sensors, RBS and R6S, for Zn2+ ions.  1HNMR titration of the probes 

with Zn2+ ions was investigated for the zinc complex formation. The DFT was used to prove the spirolactame ring opening 

mechanism due to the interaction of zinc with sensor forming 1:1 complex. The two sensors RBS and R6S were applied in 

bio-image applications for HeLa cells as shown in Figure 16. 

 
Figure 16: Bio-image of prepared sensors R6S and RBS for Hela cells [109]. 

3.4. Rhodamine based colorimetric chemosensor for Aluminum ion (Al3+)    

Aluminum (Al3+) is the third most abundant element on Earth. While it is not essential for the human body, high 

levels of aluminum can lead to various diseases in plants and human, such as Alzheimer's, dementia, and encephalopathy. The 

recommended daily intake of aluminum for human is less than 10 mg, with a weekly tolerable intake of less than 7 mg/kg of 

body weight, as suggested by the World Health Organization (WHO) [110, 111]. Aluminum compounds are commonly used 

by pharmaceutical industries in the production of analgesics and antacids. However, exposure to aluminum through sources 
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like acid rain, cooking with aluminum foil, and using aluminum utensils can lead to toxicity in human and soil, posing risks to 

agricultural production and aquatic life. Researchers face challenges in designing aluminum sensors due to the poor solubility 

of organic compounds in water and the strong hydration ability of aluminum in aqueous environments [112]. Therefore, the 

development of chemosensors that can detect aluminum ions in aqueous media is crucial for monitoring and mitigating the 

environmental and health hazards associated with aluminum toxicity [113]. 

Genc et al. prepared a chromo-fluorogenic sensor, based on rhodamine (BESN), for the recognition of Al3+ at 

nanomolar levels [114]. The synthetic procedure is outlined in Scheme 20, involving the reaction of  ring opening of 

rhodamine B with tris(2-aminoethyl)amine (Tren) [115], followed by a condensation reaction with 4-(diethylamino) 

salicylaldehyde to form the BESN sensor in good yield. The binding of BESN with Al3+ was investigated through absorption 

and emission spectra, revealing a noticeable colorimetric and fluorogenic change. Studies on the binding mechanism and 

sensitivity of BESN showed high selectivity for interfering metal ions and a strong sensing performance with a detection limit 

of 130 nM. The binding constant of BESN with Al3+ was determined to be 3.19×10-3 M. Infrared, high-resolution mass, and 

emission spectroscopic studies confirmed the 1:1 binding of Al3+ with BESN, as shown in Scheme 20. 

 

 
 

Scheme 20: The interaction of Al3+ with synthesized sensor BESN [114]. 

 

The BESN was applied for detecting of aluminum in food samples such as vegetables, tuna fish, and water samples. It was 

also utzilied for the development of a test kit and smartphone application for detecting Al3+ ions. Additionally, it was 

employed for monitoring Al3+ ions in living cells ( A549–cells) using a bio-image application, as represented in Figure 17. 

 

Figure 17: Application study for the BESN sensor [114]. 

Ghosh et al have prepared two analog chemosensor for detecting of Al3+ based on the reaction of rhodamine 6G 

with 4-(2-aminoethyl)morpholine  and 4-(3-aminopropyl)morpholine  forming L-Et and L-Pr  respectively as shown in 

Figure 18  [116]. 

 

 
 

Figure 18: The chemical structure of the synthesized L-Et and L-Pr [116].  

 

Among of different metal ions, only Al3+ is detected by both sensors. The detection is achieved through color changes (from 

colorless to pink), an increase in absorption intensity at 530 nm, and fluorescence intensity at 555 nm as illustrated in Figure 

19. These changes are a result of the spirolactam ring opening and complexation with Al3+ by the chemosensors. Both sensors 
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form a 1:1 complex with a high association constant. The limit of detection values for Al3+ with L-Et and L-Pr are 1.7 nM 

and 1.1 nM, respectively, indicating high sensitivity. These sensors have been successfully used in C6 cell imaging studies. 

The introduction of a methylene group does not affect the spectral characteristics of the sensor. Neither of the sensors contains 

an imine bond, so hydrolysis in the presence of Al3+ is not possible.  

 

 
Figure 19: The colorimetric and emission change after binding of Al3+ with L-Et sensor [116].  

 

3.5. Rhodamine based colorimetric chemosensor for iron ion (Fe3+)  

Iron (Fe3+) is crucial for living organisms as it is a key component of haemoglobin, myoglobin, and various 

enzymes that aid in vitamin B metabolism [117, 118]. In cellular biochemical reactions, Fe3+ is essential for biological signal 

transmission and material transportation [119-121]. Both deficiency and excess of Fe3+ can lead to various dysfunctions in 

organisms. A lack of Fe3+ can impact the synthesis of important enzymes and reduce their activities, affecting immunity, 

intelligence, and the body's ability to regulate temperature [122-126]. On the other hand, excessive intake of Fe3+ can cause 

oxidative damage to cells and reduce blood circulation to the heart [127, 128]. Therefore, it is vital to develop a rapid and 

sensitive method to detect the distribution of Fe3+ in living organisms. Using a Schiff base reaction between rhodamine 6G 

hydrazide and benzaldehyde-functionalized polyethylene glycol, Qiu et al. created a water-soluble rhodamine-poly(ethylene 

glycol) conjugate (DRF-PEG) for the detection of Fe3+ with high biocompatibility, as illustrated in Scheme 21 [129].   

 

 
Scheme 21: Synthetic rout for DRF-PEG from rhodamine 6G. 

 

The water solubility of the rhodamine derivatives was significantly improved by adding a PEG segment to DRF-PEG, [129] 

enhancing their biosensing capabilities. Upon the addition of Fe3+, a new absorption peak at 532 nm was observed for Rh and 

DRF-PEG. This peak is due to the ring opening of the spirolactam structure in the rhodamine moieties, causing the solution 

to turn orange as represented in Figure 20. The colorimetric sensor had a detection limit of 3.16 μM for Fe3+ in pure water at 

pH 6.5, while the fluorescent sensor had a detection limit of 1.00 μM. 
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 Figure 20: Absorption spectra of Rh, DF-PEGand DRF-PEG (A), Absorption spectra of Rh,  

DF-PEG and DRF-PEG in presence of Fe3+ [129]. 

 

The unique sensing mechanism of DRF-PEG towards Fe3+ is based on the intramolecular charge transfer (ICT) process [129]. 

This process involves the interaction of O and N atoms in the rhodamine moiety and benzene groups from the benzaldehyde-

modified PEG segment with Fe3+ as presented in Scheme 22. DRF-PEG was used to quantitatively measure Fe3+ levels in 

fetal bovine serum samples and to perform ratiometric imaging of Fe3+ in HeLa cells. 

 

Scheme 22: The binding mechanism and the interaction of DRF-PEG towards Fe3+ [129]. 

 

Shellaiah et al. synthesized a new colorimetric chemosensor and fluorescence probe based on rhodamine B 

derivative for detection of Fe3+ by direct condensation reaction of rhodamine B ethylenediamine and isonicotinaldehyde in 

ethanol forming RhP [130] as shown in Scheme 23. 

 

 

Scheme 23: Synthetic procedure of the RhP sensor for Fe3+ detection [130]. 

 

The RhP exhibited a distinct pale-pink colorimetric and "turn-on" fluorescence response to Fe3+ in aqueous conditions (H2O: 

DMSO), unlike other interfering ions. Absorption (UV–Vis) and photoluminescence (PL) spectrum measurements revealed 

new peaks at 561 and 592 nm, respectively, upon Fe3+ detection Figure 21. The 1:1 stoichiometry and binding sites were 

confirmed through Job's plot, ESI-mass, and 1H NMR titrations. The limit of detection (LOD) and binding constant of the 

RhP + Fe3+ complex were determined to be 102.3 nM and 6.265 × 104 M-1, respectively. The reversibility of the RhP + Fe3+ 

complex by EDTA was represented in Scheme 24 [130]. 
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Figure 21: The colorimetric and fluorescence change of RhP with Fe3+ [130]. 

 

 

 

Scheme 24: The interaction and binding mechanism of Fe3+ with RhP [130]. 

3. Conclusions 

Colorimetric chemosensors based on various chromophores and fluorophores are widely available, but creating 

highly sensitive and selective chemosensors remains a challenge. The increasing research in this field is driven by 

the need for quick and simple detection of harmful substances in biological and environmental samples. However, 

there is a lack of multi-functional chemosensors that can detect different analytes with distinct color changes or 

emissions for each, making the development of such sensors highly desirable. This review focuses on xanthene-

based sensors, specifically rhodamine derivatives, for detecting cations such as Cu2+, Hg2+, Zn2+, Al3+, and Fe3+. The 

modified rhodamine derivatives discussed in the literature demonstrate promising selectivity towards metal ions. 

Creating new rhodamine derivatives linked to different chromophores can improve sensitivity and fluorescence 

quantum yield, enhancing sensor development. In the future, there is a growing interest in the advancement of smart 

materials such as polymeric films, membranes, and textiles for the sensitive and efficient monitoring of toxic 

species in sensor applications. This review highlights the opportunity for creativity in sensor design and material 

development to improve detection capabilities. 
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