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LYAPUNOV-TYPE INEQUALITIES OF MULTI-LAYER
FRACTIONAL HALF-LINEAR ∇-DIFFERENCE BOUNDARY

VALUE PROBLEMS

YOUSEF GHOLAMI

Abstract. The main problem of interest in this paper is to investigate the
nontrivial solutions of 3-leyer nested half-linear higher-order fractional ∇-
difference equations subject to the fully left-sided boundary conditions. In
our investigation the discrete Holder inequality and integration by parts play
fundamental roles. Thanks to these discrete mathematical tools, Lyapunov-
type inequalities of the related boundary value problems are obtained. Relying
on the obtained Lyapunov-type inequalities, we can study three classes of im-
portant qualitative dynamics of related fractional-order difference boundary
value problems. The first class is investigating on the nontrivial solutions of
the corresponding multi-layer half-linear fractional ∇-difference problems and
the second class is devoted to study on the eigenvalue regions of related eigen-
value problems. At the third step, making use of the obtained Lyapunov-type
inequalities some nonexistence results are presented.

1. Introduction

Nowadays fractional calculus has gained a prominant place within the advanced
dynamical systems. As it is known, the main aim of the dynamical systems is
to design and study models inspired by the real life phenomena and propose rele-
vant practical methods to engineerize them. In this way the most precious models
are those who cantain more and more details of the phenomenon under investiga-
tion. Keeping this point in mind and make concentration on this fact that since
fractional-order operators are memory preserving mathematical tools, this is rea-
sonable that why we are interested to consider these operators to make accurate
dynamical systems models involving mush more details in comparison with the
classic integer-order models.
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On the other hand, in order to reach an engineering chracteristic of a continuous
fractional-order dynamical system, it can be proposed to study its corresponding
discrete model, and consequently it is justified that why we have to organize con-
tinued investigation on discrete fractional-order dynamical systems. An interested
follower can find valuable details on the discrete fractional calculus and its applica-
tions in dynamical systems in the monographs and research papers [2]-[6], [11]-[13],
[18], [19], [21], [27], [28], [29] and cited bibliography therein.
Here is worthy place to have a little review on the discrete Lyapunov-type inequali-
ties prior to finalize this section. The history of the Lyapunov-type inequalities has
begun at the late ninteenth century, when the stability of motion was being inves-
tigated by the A. M. Lyapunov. In 1892, Lyapunov considered the second-order
Hill type differential equation

x
′′
+ q(t)x = 0, −∞ < t < ∞,

for which q(t) stands for a T -periodic coefficient. As an instability criterion, it has
proven that if q(t) ̸≡ 0 and q(t) ≥ 0 for all t ∈ R, then the following inequality is
satisfied: ∫ T

0

q(t)dt >
4

T
.

For almost past half century this inequality has known as the Lyapunov inequal-
ity. For more details we refer to the [20], [23]. Since we are not dealt with the
continuous Lyapunov-type inequalities in this paper, so we just suggest the follow-
ing motivating research papers on the continuous Lyapunov-type inequalities for
interested followers and jump directly into the discrete Lyapunov-type inequalities,
[14]-[17], [24], [25] and cited bibliography therein.
The first class of the discrete Lyapunov-type inequalities has presented in 1983 by
Cheng, [7] where he considered the second-order difference equation

∆2x(k − 1) + p(k)x(k) = 0, (1)

where, p(k) is a real-valued function defined on consequtive integers. Cheng, proved
that if p(k) be a non-negative function defined on Nb

a, and x(k) be a non-trivial
solution such that x(a−1) = 0 and x(b+1) = 0, then the following sharp Lyapunov-
type inequality is satisfied

b∑
i=a

p(i) ≥ µ(b− a+ 1), (2)

for which µ stands for a particular strictly increasing function on N. By the use of
the Lyapunov-type inequality (2), the author presented some exitence and nonex-
istence criteria for nontrivial solutions of the difference equation (1).
One of the most interesting branches of the discrete fractional calculus turns to the
fractional ∇-difference operators and related researches. Considering the dsicrete
fractional Lyapunov-type inequalities of ∇-difference type, the author in [24] stud-
ied the following two-point left and right focal fractional ∇-difference boundary
value problems  (∇α

au) (t) + h(t) = 0, t ∈ Nb
a+2,(

∇α−1
a u

)
(a+ 1) = 0, u(b) = 0,

(3)
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and  (∇α
au) (t) + h(t) = 0, t ∈ Nb

a+2,

u(a+ 1) = 0,
(
∇α−1

a u
)
(b) = 0,

(4)

respectively, where, 1 < α ⩽ 2 and h : Nb
a+2 −→ R. The author, making use

of the Green function techique obtained corresponding Lyapunov-type inequalities
for each of the ∇-difference boundary value problems 3 and 4, and in the light
of these inequalities qualitative dynamics of these boundary value problems have
investigated. In continuation, the same author in [25], investigated the Lyapunov-
type inequality of the two-point fractional ∇-difference boundary value problem

 (∇α
au) (t) + h(t) = 0, t ∈ Nb

a+2,

u(a) = 0,
(
∇β

au
)
(b) = 0,

(5)

in which, 1 < α ⩽ 2, 0 ⩽ β ⩽ 1 and h : Nb
a+2 −→ R. In all of the fractional

∇-difference boundary value problems 3-5, ∇γ
t0 denotes the fractional ∇-difference

of order γ and lower terminal t0, that will be defined exactly in the next section.
Motivated by the aforementioned works on the fractional ∇-difference boundary
value problems, the multi-layer half-linear fractional ∇-difference boundary value
problems of higher order have chosen to be investigated in the same way of [24]
and [25], that will be introduced in the next section. Many researchers in this
community are interested in the extending of the application domain related to the
Lyapunov-type inequalities. Some instances can be cited here as [8], [12], [14], [15],
[17]. Also, as an interesting colloection of the discrete fractional-order Lyapunov-
type inequalities we suggest the reseach works [12], [24], [25] for more consultation
on topic.
Disregarding the pure beauty of the analysis of dynamical systems involving the
half-linear operators, these class of dynamical problems have wide potential to
express some important applied phenomena such as investigation on the porous
media and related topics. So, thanks to the half-linear dynamical systems we are
able to study for instance the fully applicable science of the porous mediums and
all of related topics. For more details we refer to [8], [9], [10], [22] and the cited
bibliography therein.
At the end of this section we are going to state the organization of the rest of this
investigation. Section 2, includes formulation of multilayer half-linear boundary
value problems of the fractional ∇-differences. Besides, all of necessary technical
background related to this investigation are given here. Next, we have Section 3
in which making use of detailed and beautiful technical analysis of the discrete
fractional calculus, Lyapunov-type inequalities of the half-linear boundary value
problems under investigation are obtained. Going ahead, we have Section 4 where
some interesting applications of the obtained Lyapunov-type inequalities are given
to demonstrate the importance of the Lyapunov-type inequalities in dynamical
systems. This artice will be finalized by Section 5 as a little space that allows us
to summarize findings of this investigation as well as discussion on the structure of
appeared boundary conditions.
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2. Formulation of the Main Problems and Related Background

This section essentially is a bi-devision environment. The first part is devoted
to introduce the main problems to be investigated and second one contains all of
technical requirements that will enable us to reach the claimed results. So, we begin
this section with formulation of the following half-linear ∇-difference boundary
value problems:

BVP. 1



∇α
a+

(
Θβ2

{
∇α

b−

(
Θβ1

{
∇α

a+u
})})

(t) = q(t)(Θβ1β2
u)(t),

n− 1 < α ≤ n, n ∈ N,

∇α+k−n
a+

(
Θβ2

{
∇α

b−

(
Θβ1

{
∇α

a+u
})})

(a) = 0, ∇α+k−n
a+ u(a) = 0,

k = 0, 1, 2, ..., n− 1,
(6)

and

BVP. 2



∇α
a+

(
p2Θβ2

{
∇α

b−

(
p1Θβ1

{
∇α

a+u
})})

(t) = q(t)(Θβ1β2u)(t),

n− 1 < α ≤ n, n ∈ N,

∇α+k−n
a+

(
p2Θβ2

{
∇α

b−

(
p1Θβ1

{
∇α

a+u
})})

(a) = 0, ∇α+k−n
a+ u(a) = 0,

k = 0, 1, 2, ..., n− 1.
(7)

The elements of the fractional difference boundary value problems (6) and (7) are
described as follows:

(i) The notation ∇α
a+ and ∇α

b−
stand for the left and right sided fractional

∇-differences of order α, respectively.
(ii) Θµu denotes the half-linear signed-power operator

Θµu = |u|µ−1u, µ ∈ (0,+∞).

(iii) p1(t), p2(t) are positive real valued functions with p2(t) increasing.
(iv) q(t) is an appropriate real valued function.
(v) The lower and upper terminals a and b, obey the following property:

a < b, a ≥ 1, b ≥ 3, b− a ≥ 2, a, b ∈ Z.

Here we are at the beginning of the second devision of this section, in which all of
technical equipments needed in the next two sections are provided.

Definition 2.1. [[18], Chap. 3] Assume m ∈ Z+. Then, the rising function of t is
given by

tm =

m−1∏
i=0

(t+ i), t0 = 1.

In the case that the positive integer m is generalized by the real number α, such
generalization is called as the fractional rising function defined by

tα =
Γ(t+ α)

Γ(t)
, t ∈ R− Z≤0. (8)
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As special cases of the fractional rising functions one may mention the followings:
0α = 0,

∇
(
tα
)
= αtα−1.

(9)

In the following Figure 1, one can observe spacial cases of the fractional riding
functions.

Figure 1. Illustration of fractional rising function tα for t, α ∈
(0, 1) (left) and t ∈ (1, 2), α ∈ (0, 1) (right)

In order to clarify the meaning of some notation that will be used widely in the
future, for each a, b ∈ R, one has

Na = {a, a+ 1, a+ 2, ...}, bN = {b, b− 1, b− 2, ...}, Nb
a = {a, a+ 1, ..., b− 1, b}.

Thanks to the aforementioned information, we now are ready to define the fractional
∇-sum operators in what follows.

Definition 2.2. [2], [[18], Chap. 3] The left and right sided ∇-sums of fractional
order α > 0 are defined as

∇−α
a+ f(t) =

1

Γ(α)

t∑
s=a

(t− δ(s))α−1f(s), (10)

∇−α
b−

f(t) =
1

Γ(α)

b∑
s=t

(s− δ(t)α−1f(s), (11)

where δ(s) = s− 1.

Next, we have some basic properties of fractional ∇-sum operators as below.

Remark 1. [2],[[18], Chap. 3] Fractional left and right sided ∇-sums of order
α > 0, given by (10) and (11) satisfy the following properties:

(i) ∇−α
a+ maps functions defined on Na to functions defined on Na.

(ii) ∇−α
b−

maps functions defined on bN to functions defined on bN.

Now, in the light of fractional ∇-sum operators, we are ready to define the left
and right sided fractional ∇-difference operators as follows.
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Definition 2.3. [2],[[18], Chap. 3] Fractional left and right sided ∇-differences of
order 0 ≤ n− 1 < α ≤ n for n ∈ N are defined by

∇α
a+f(t) =

1

Γ(n− α)
∇n

t

(
t∑

s=a

(t− δ(s))n−α−1f(s)

)
, (12)

∇α
b−f(t) =

(−1)n

Γ(n− α)
∆n

t

(
b∑

s=t

(s− δ(t)n−α−1f(s)

)
, (13)

for which α > 0, n = [α] + 1 and ∆t stands for the forward difference operator on
the variable t.

Similar to the fractional ∇-sum operators, here we are going to present the
following basic properties for the fractional ∇-difference operators.

Remark 2. [2],[[18], Chap. 3] Fractional left and right sided ∇-difference operators
of order α > 0, given by (12) and (13) admit the following properties:

(i) ∇α
a+ maps functions defined on Na to functions defined on Na+n,

(ii) ∇α
b−

maps functions defined on bN to functions defined on b−nN,
in which n = [α] + 1.

Technical requirements is continued by the following composition and power rules
for the fractional ∇-discrete operators.

Lemma 2.1. [2],[[18], Chap. 3] Suppose f denotes a real valued function and
α > 0, 0 ≤ n− 1 < β ≤ n. In this case, the following rules are satisfied:
(N1) ∇−α

a+ ∇−β
a+ f(t) = ∇−(α+β)

a+ f(t) = ∇−β
a+ ∇−α

a+ f(t),

(N2) ∇−β
a+ ∇β

a+f(t) = f(t) + c1(t − a)β−1 + c2(t − a)β−2 + ... + cn(t − a)β−n ,
ci ∈ R, i = 1, 2, ..., n.

(N3) ∇β
a+ ∇−β

a+ f(t) = f(t).

(N4) ∇β
a+(t− a)α =

Γ(α+ 1)

Γ(α− β + 1)
(t− a)α−β , α− β + 1 ̸∈ Z≤0.

This section is finalized by presenting discrete versions of the integration by parts
rule and the Holder inequality.

Lemma 2.2. Suppose α ∈ R+ and a, b ∈ R with a < b, b ≡ a (mod 1). In this
case,

b∑
a

f(t)∇α
a+g(t) =

b∑
a

g(t)∇α
b−f(t), (14)

where, f(t) is defined on Na and g(t) is defined on bN.

Lemma 2.3. Assume a, b ∈ R with a < b, b ≡ a (mod 1). For any real valued
functions f(t) and g(t), the discrete Hoder inequality

b∑
a

|f(t)g(t)| ≤

(
b∑
a

|f(t)|p
)1

p
(

b∑
a

|g(t)|q
)1

q
, (15)

holds, in which, p, q ∈ R, p > 1 and 1
p + 1

q = 1.
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3. Main Results

As described above, in this section we make use of the discrete fractional calculus
techniques to chracterise the Lyapunov-type inequalities of both of the half-linear
fractional ∇-differece boundary value problems (6) and (7). To this aim, we first
consider the 3-layer nested ∇-difference boundary value problem (6) to be investi-
gated.

Theorem 3.1. Suppose that u(t) is a nontrivial solution for the fractional half-
linear ∇-difference boundary value problem (6). Then, the following Lyapunov-type
inequality is satisfied:

b∑
a

|q(t)| > 1{
max

{
1,

(b− a+ 1)α−1

Γ(α)

}}β2(β1+1)+1

.(b− a+ 1)β2(β1+1)

. (16)

Proof. The first attempt in the use of assumptions, turns to the boundary condi-
tions

∇α+k−n
a+ u(a) = 0, k = 0, 1, 2, ..., n− 1. (17)

To this aim, without loss of generality and just for the convenience we suppose that
u(t) ba a positive solution of fractional ∇-difference boundary value problem (6),
and is defined on Nb

a. In this case, clearly there is a t0 ∈ Nb
a such that

m = u(t0) = max
{
u(t)| t ∈ Nb

a

}
.

In this case, the boundary conditions (17) yields the following

m = ∇−α
a+ ∇α

a+u(t0) =
1

Γ(α)

t0∑
a

(t0 − s+ 1)α−1∇α
a+u(s). (18)

Next, we need to consider the following monotonicity results.

∆t(t− s+ 1)α−1 < 0, 0 < α < 1, s ≤ t, (19)

∆s(t− s+ 1)α−1 > 0, 0 < α < 1, s ≤ t, (20)

∆t(t− s+ 1)α−1 ≥ 0, α > 1, a ≤ s ≤ t ≤ b, (21)

∆s(t− s+ 1)α−1 ≤ 0, α > 1, a ≤ s ≤ t ≤ b. (22)
Relying on the recent monotonicity results, one can derive

max
t,s∈Nb

a

(t− s+ 1)α−1 =


Γ(α); 0 < α < 1, s ≤ t,

(b− a+ 1)α−1; α ≥ 1, s ≤ t.

(23)

Now, relying on (18) and (23), we come to the conclusion that

m < max

{
1,

(b− a+ 1)α−1

Γ(α)

}
b∑
a

|∇α
a+u(t)| (24)

It is time to use the discrete Holder inequality (15). To this aim, we need the
following setting:

f(t) = ∇α
a+u(t), g(t) = 1, p = β1 + 1, q = 1 +

1

β1
. (25)
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Having the seeting (25) in hand and thanks to the inequality (24), the Hoder
inequality (15) helps us to arrive at the following inequality

m

max

{
1,

(b− a+ 1)α−1

Γ(α)

} < (b− a+ 1)

β1

β1 + 1

(
b∑
a

|∇α
a+u(t)|β1+1

) 1

β1 + 1
. (26)

Some direct manipulation on the inequality (26), gives us

1

(b− a+ 1)β1

 m

max

{
1,

(b− a+ 1)α−1

Γ(α)

}


β1+1

<

b∑
a

|∇α
a+u(t)|β1+1

. (27)

In continuation we are preparing ourselves to use the fractional ∇-difference summa-
tion by parts formula (14). To this aim, we need to use the signed-power operators
Θν(z) = |z|ν−1z, ν ∈ (0,+∞) as follows:

|∇α
a+u(t)|β1+1

= ∇α
a+u(t)Θβ1

(∇α
a+u(t)) (t). (28)

This strategy leads us to reach the following inequality

1

(b− a+ 1)β1

 m

max

{
1,

(b− a+ 1)α−1

Γ(α)

}


β1+1

<

b∑
a

{
∇α

a+u(t)Θβ1
(∇α

a+(t)) (t)

}
.

(29)
Here we apply the summation by parts rule on the right hand side of the inequality
(29). In this case, one has

1

(b− a+ 1)β1

 m

max

{
1,

(b− a+ 1)α−1

Γ(α)

}


β1+1

<

b∑
a

{
u(t)∇α

b−

(
Θβ1

(
∇α

a+u
))

(t)

}
.

(30)

In this position we turn to the fractional nested ∇-difference equation

∇α
a+

(
Θβ2

{
∇α

b− (Θβ1 {∇α
a+u})

})
(t) = q(t)(Θβ1β2u)(t). (31)

Appying fractional ∇-summation ∇−α
a+ on both sides of (31), and consequently

making use of the boundary conditions

∇α+k−n
a+

(
Θβ2

{
∇α

b− (Θβ1
{∇α

a+u})
})

(a) = 0, k = 0, 1, 2, ..., n− 1, (32)
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we arrive at the following half-linear fractional ∇-difference equations

Θβ2

{
∇α

b− (Θβ1 {∇α
a+u})

}
(t) =

1

Γ(α)

t∑
a

(t− s+ 1)α−1∇α
a+q(s)(Θβ1β2u)(s).

To preceed one more step, first of all we consider the following inversion of the
signed-power operators

Θ−1
ν = Θν−1 , ν ∈ (0,+∞). (33)

Now, combination of (18), (24) and (33) yields the following inequality

∇α
b− (Θβ1

{∇α
a+u})(t)

<

{
max

{
1,

(b− a+ 1)α−1

Γ(α)

}} 1

β2
Θβ−1

2

(
b∑
a

q(s) (Θβ1β2
u) (s)

)

≤ mβ1

{
max

{
1,

(b− a+ 1)α−1

Γ(α)

}} 1

β2
Θβ−1

2

(
b∑
a

|q(s)|

)
.

(34)

We are approaching the desired conclusion. Indeed, substituting (34) into (30) we
get the following

1

(b− a+ 1)β1

 m

max

{
1,

(b− a+ 1)α−1

Γ(α)

}


β1+1

< mβ1

{
max

{
1,

(b− a+ 1)α−1

Γ(α)

}} 1

β2
b∑
a

u(t)Θβ−1
2

(
b∑
a

|q(s)|

)

≤ mβ1+1

{
max

{
1,

(b− a+ 1)α−1

Γ(α)

}} 1

β2
(b− a+ 1)Θβ−1

2

(
b∑
a

|q(s)|

)

≤ mβ1+1

{
max

{
1,

(b− a+ 1)α−1

Γ(α)

}} 1

β2
(b− a+ 1)

(
b∑
a

|q(s)|

) 1

β2
.

(35)

Some direct manipulation on the recent inequality (35), gives us
b∑
a

|q(t)| > 1{
max

{
1,

(b− a+ 1)α−1

Γ(α)

}}β2(β1+1)+1

.(b− a+ 1)β2(β1+1)

.

So, the proof is completed. □
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Having the Lyapunov-type inequality (16) in hand, it is time to find Lyapunov-
type inequality of the more generalized fractional half-linear ∇-difference boundary
value problem (7). To this aim we have the following theorem.

Theorem 3.2. Suppose that u(t) is a nontrivial solution for the fractional half-
linear ∇-difference boundary value problem (7). Then, the following Lyapunov-type
inequality is satisfied:

b∑
a

|q(t)|

>
1{

max

{
1,

(b− a+ 1)α−1

Γ(α)

}}β2(β1+1)+1
 b∑

a

p1(t)
−

1

β1


β1β2

 b∑
a

p2(t)
−

1

β2


β2

.

(36)

Proof. Prior to begin the proof procedure, we mention this point that since some
parts of the proof are same as presented in the proof of Theroem 3.1. So, these
parts are essentially sketched to avoid unnecessary repeat. Let us begin the proof.
Assume u(t) is a positive solution of the half-linear fractional ∇-difference boundary
value problem (7). Hence, there is a t0 ∈ Nb

a such that

m = u(t0) = max

{
u(t)

∣∣∣∣ t ∈ Nb
a

}
.

Thanks to the composition rule (N2) in Lemma 2.1 in combination with the bound-
ary conditions

∇α+k−n
a+ u(a) = 0, k = 0, 1, 2, ..., n− 1,

we get that

m < max

{
1,

(b− a+ 1)α−1

Γ(α)

}
b∑
a

p1(t)
−

1

β1 + 1

p1(t)

1

β1 + 1
∣∣∇α

a+u(t)
∣∣
 . (37)

The proof procedure goes ahead with the use of the discrete Hoder inequality (15)
and choosing the setting

p = 1 +
1

β1 + 1
, q = β1 + 1.
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In this case, keeping in mind the definition of sigend-power operators we arrive at
the following inequality

 m

max

{
1,

(b− a+ 1)α−1

Γ(α)

}


β1+1

<

 b∑
a

p1(t)
−

1

β1


β1 (

b∑
a

∇α
a+u(t)

{
p1(t)Θβ1

(
∇α

a+u
)
(t)

})
.

(38)

Here is the place that we have to use the fractional ∇-summation by parts rule on
the right hand side of the inequality (38). In this case, we conclude the following
inequality

 m

max

{
1,

(b− a+ 1)α−1

Γ(α)

}


β1+1

1∑b
a p1(t)

−
1

β1


β1

<

b∑
a

u(t)∇α
b−

{
p1(t)Θβ1

(
∇α

a+u
)
(t)

}
.

(39)

In continuation we need to step back into the governing half-linear fractional ∇-
difference boundary value problem (7). Applying ∇−α

a+ on both sides of (7) and
then imposing the boundary conditions

∇α+k−n
a+

(
p2Θβ2

{
∇α

b− (p1Θβ1
{∇α

a+u})
})

(a) = 0, k = 0, 1, 2, ..., n− 1,

thanks to the composition rule (N2) in Lemma 2.1, we get that

∇α
b−

{
p1(t)Θβ1

(
∇α

a+u
)
(t)

}
< mβ1

(
max

{
1,

(b− a+ 1)α−1

Γ(α)

}) 1

β2 ×

× p2(t)
−

1

β2 .Θβ−1
2

(
b∑
a

|q(t)|

)
.

(40)
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Substituting the recent inequality (40) into the right hand side of (39), gives us(
max

{
1,

(b− a+ 1)α−1

Γ(α)

})−(β1+1)

 b∑
a

p1(t)
−

1

β1


β1

<

 b∑
a

p2(t)
−

1

β2

Θβ−1
2

(
b∑
a

|q(t)|

)
. (41)

In order to complete the proof we need to use the following identity. Suppose f
and g both are real valued functions on Nb

a. In this case,

1

2

b∑
s=a

b∑
t=a

(f(t)− f(s))(g(t)− g(s)) = (b− a+ 1)

b∑
a

f(t)g(t)−
b∑
a

f(t)

b∑
a

g(t).

Now, let f and g be decreasing and increasing functions on Nb
a, respectively. Then,

one has

(b− a+ 1)

b∑
a

f(t)g(t) ≤
b∑
a

f(t)

b∑
a

g(t). (42)

Since p2 and Θν , ν ∈ (0,+∞) both are increasing functions, so, p
− 1

β2
2 and Θν , ν ∈

(0,+∞) are decreasing and increasing functions, respectively. In this case, applying
the inequality (42) on (41), we arrive at the following inequality(

max

{
1,

(b− a+ 1)α−1

Γ(α)

})−(β1+1)

 b∑
a

p1(t)
−

1

β1


β1

<

 b∑
a

p2(t)
−

1

β2

( b∑
a

|q(t)|

) 1

β2
. (43)

Taking the power of β2 on both sides of (43) and some manipulation, gives us the
conclusion

b∑
a

|q(t)|

>
1{

max

{
1,

(b− a+ 1)α−1

Γ(α)

}}β2(β1+1)+1
 b∑

a

p1(t)
−

1

β1


β1β2

 b∑
a

p2(t)
−

1

β2


β2

.

So, the proof is completed. □

Remark 3. Let us consider the generalized half-linear fractional ∇-difference
boundary value problem (7) and its Lyapunov-type inequality, namely, (36). We
note that if we choose the setting p1(t) = p2(t) = 1, in this case, the half-linear
fractional ∇-difference boundary value problem (7) coincides into the fractional
∇-difference boundary value problem (6), and consequently, the Lyapunov-type in-
equality (36) coincides into the Lyapunov-type inequality (16).
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We finalize this section with following two interesting corollaries. Let us consider
the case when the lower terminal a+ is replaced with the upper terminal b− in the
half-linear fractional ∇-difference boundary value problems (6) and (7), and vice
versa. In this case, relying on the monotonicity properties

∆t(t− s+ 1)α−1 > 0, 0 < α < 1, s ≤ t, (44)

∆s(t− s+ 1)α−1 < 0, 0 < α < 1, s ≤ t, (45)

∆t(t− s+ 1)α−1 ≤ 0, α > 1, a ≤ s ≤ t ≤ b, (46)

∆s(t− s+ 1)α−1 ≥ 0, α > 1, a ≤ s ≤ t ≤ b, (47)

it can be proved that both of the Lyapunov-type inequalities (16) and (36) are
also valid for the new terminal setting, respectively. If we choose the special case
0 < α ≤ 1, then, the Lyapunov-type inequalities (16) and (36) are reduced to the
following Lyapunov-type inequalities:

b∑
a

|q(t)| >
(

1

b− a+ 1

)β2(β1+1)

, (48)

b∑
a

|q(t)| >


1 b∑

a

p1(t)
−

1

β1


β1
 b∑

a

p2(t)
−

1

β2





β2

, (49)

respectively. Let us consider the case when 0 < α ≤ 1, and βk = 1, k = 1, 2. In
this case, Corollary 3 gives us the following simpler Lyapunov-type inequalities:

b∑
a

|q(t)| >
(

1

b− a+ 1

)2

, (50)

b∑
a

|q(t)| > 1
b∑
a

p1(t)

b∑
a

p2(t)

, (51)

We have to notice this fact that in the case βk = 0, k = 1, 2, both of the bound-
ary value problems (6) and (7) lose their half-linearity and therefore we are just
dealt with two classes of the 3-layer nabla-difference boundary value problems of
fractional-order.

4. Applications

In this section the applicability of the Lyapunov-type inequalities (16) and (36)
will be examined. In this way, two applications for these Lyapunov-type inequalities
is presented. The first application turns to the key role of Lyapunov-type inequal-
ities to identify the eigenvalue region of the corresponding eigenvalue problems.
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Consider the half-linear fractional ∇-difference eigenvalue problem

∇α
a+

(
Θβ2

{
∇α

b−

(
Θβ1

{
∇α

a+u
})})

(t)− λ(Θβ1β2
u)(t) = 0,

n− 1 < α ≤ n, n ∈ N,

∇α+k−n
a+

(
Θβ2

{
∇α

b−

(
Θβ1

{
∇α

a+u
})})

(a) = 0, ∇α+k−n
a+ u(a) = 0,

k = 0, 1, 2, ..., n− 1.

(52)

Making use of the Lyapunov-type inequality (16), the eigenvalues of this fractional
eigenvalue problem are distributed within the infinite interval R− [−Λ,Λ], where

Λ =
1{

max

{
1,

(b− a+ 1)α−1

Γ(α)

}}β2(β1+1)+1

.(b− a+ 1)β2(β1+1)

. (53)

Similarly, the eigenvalue region of the half-linear fractional ∇-difference eigenvalue
problem

∇α
a+

(
p2Θβ2

{
∇α

b−

(
p1Θβ1

{
∇α

a+u
})})

(t)− λ(Θβ1β2
u)(t) = 0,

n− 1 < α ≤ n, n ∈ N,

∇α+k−n
a+

(
p2Θβ2

{
∇α

b−

(
p1Θβ1

{
∇α

a+u
})})

(a) = 0, ∇α+k−n
a+ u(a) = 0,

k = 0, 1, 2, ..., n− 1,

(54)

is identified as R− [−Ξ,Ξ], where
Ξ

=
1{

max

{
1,

(b− a+ 1)α−1

Γ(α)

}}β2(β1+1)+1
 b∑

a

p1(t)
−

1

β1


β1β2

 b∑
a

p2(t)
−

1

β2


β2

.

(55)

Let us consider the special case 0 < α ≤ 1. In this case, according to the Corollary
3, we have the following eigenvalue regions for the fractional eigenvalue problems
(52) and (54), respectively.

R− [−Λ,Λ], Λ =

(
1

b− a+ 1

)β2(β1+1)

, (56)

R− [−Ξ,Ξ], Ξ =


1 b∑

a

p1(t)
−

1

β1


β1
 b∑

a

p2(t)
−

1

β2





β2

. (57)
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Choosing the numerical setting a = 1, b = 3, β1 = β2 = β ∈ (0, 1) for (56) and
β1, β2 ∈ (0, 1), p1(t) = sin(t), p2(t) = exp(t) for (57), the corresponding eigenvalue
regions are illustrated as Figure 2 below.

Figure 2. Left: eigenvalue distribuation of the eigenvalue prob-
lem (52), Right: eigenvalue distribuation of the eigenvalue prob-
lem (54). The spaces restricted between surfaces do not include
any eigenvalue

As second application of the Lyapunov-type inequalities (16) and (36), one may de-
rive nonexistence criteria for the half-linear fractional ∇-difference boundary value
problems (6) and (7). In this way, we have the following applications. Suppse q(t)
is a real valued function on Nt2

t1 , for which

t1, t2 ∈ R, t2 ≡ t1(mod 1), t1 ≥ 1, t2 ≥ 3, t2 − t1 ≥ 2.

Furthermore, assume tha the following finite sum inequality is satisfied:
t2∑
t1

|q(t)| ≤ 1{
max

{
1,

(t2 − t1 + 1)α−1

Γ(α)

}}β2(β1+1)+1

.(t2 − t1 + 1)β2(β1+1)

. (58)

In this case, the half-linear fractional ∇-difference boundary value problem (6) has
no nontrivial solution on Nt2

t1 .

Proof. The proof is presented based on a contradiction. So, suppose on the contrary
that the half-linear fractional ∇-difference boundary value problem (6) has at least
one nontrivial solution on Nt2

t1 . In this case, according to the above assumptions
and thanks to Theorem 3.1, we have the following Lyapunov-type inequality:

t2∑
t1

|q(t)| > 1{
max

{
1,

(t2 − t1 + 1)α−1

Γ(α)

}}β2(β1+1)+1

.(t2 − t1 + 1)β2(β1+1)

. (59)

Since the recent Lyapunov-type inequality contradicts the assumed inequality (58),
it has proven that the contradictory assumption of existence of at least one nontriv-
ial solution for fractional boundary value problem (6) is invalied and consequently,
under the aforementioned assumption, there is no nontrivial solution for the frac-
tional boundary value problem (6) on Nt2

t1 . □
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If we consider the generalized half-linear fractional ∇-difference boundary value
problem (7) instead of (6), in the similar way one may derive the following nonex-
istence criterion.
Suppse q(t) is a real valued function on Nt2

t1 , for which
t1, t2 ∈ R, t2 ≡ t1(mod 1), t1 ≥ 1, t2 ≥ 3, t2 − t1 ≥ 2.

Furthermore, assume tha the following finite sum inequality is satisfied:
t2∑
t1

|q(t)|

≤ 1{
max

{
1,

(t2 − t1 + 1)α−1

Γ(α)

}}β2(β1+1)+1
 t2∑

t1

p1(t)
−

1

β1


β1β2

 t2∑
t1

p2(t)
−

1

β2


β2

.

(60)

In this case, the half-linear fractional ∇-difference boundary value problem (7) has
no nontrivial solution on Nt2

t1 .

5. Concluding Remarks

Here we are in such a position to summarize the outline of this article. In
this investigation, two classes of half-linear 3-layer fractional ∇-difference equa-
tions with fully left sided boundary conditions have chosen to be investigated.
Thanks to the discrete Holder inequality and fractional ∇-difference summation by
parts, Lyapunov-type inequalities of these boundary value problems have success-
fully been extracted. The obtained Lyapunov-type inequalities enabled us to study
some qualitative behaviour of the under consideration half-linear problems. The
first step turns to the distribution of the eigenvalues for the corresponding half-
linear fractional ∇-difference eigenvalue problems, and second step is to present
nonexistence results for the nontrivial solutions of the half-linear boundary value
problems under investigation.
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