

Egyptian Journal of Agronomy

http://agro.journals.ekb.eg/

Pyramiding Stripe Rust Resistant Genes *Yr5*, *Yr10* and *Yr15* in Sids 12 and Gemmeiza 11 Wheat Derived Lines

Hagras, A.A.¹, Kh.E. Ragab¹, S.A.M. Abdelkhalik¹*, A.A. Shahin², Samar M.A. Esmail², W.A. Yosof², M.D. Sehsah², A.Y. Salah³, N. M. Fouad³, S.A. Tawkaz³ and A. Hamwieh³

¹Wheat Research Department, Field Crops Research Institute (FCRI), Agricultural Research Center (ARC), Egypt

² Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Egypt

³ International Center for Agricultural Research in the Dry Areas (ICARDA), Egypt

TOTAL of 173 beard wheat lines with resistance to stripe rust (Yr) were created by crossing the highly susceptible cultivars Sids 12 and Gemmeiza 11 with the three monogenic lines carrying *Yr5*, *Yr10* and *Yr15* genes from 2016 through 2020. These lines were then evaluated at Sakha Agricultural Research Station in Egypt from 2021 to 2023. Stripe rust resistance at seedling and adult plant stages, molecular marker detection for the three Yr genes as well as agronomic characteristics for these lines were studied. The results showed that 126 lines were resistant at both seedling and adult plant stages. Out of them, 87 lines (69%) showed positive markers for one gene (*Yr5*, *Yr10* or *Yr15*), while 39 (31%) lines had positive markers for two genes combination of the three genes (*Yr5+Yr10*, *Yr5+Yr15* or *Yr10+Yr15*). Yield evaluation indicated that the grain yield improvement was 3% for Gemmieza 11 and 25% for Sids 12 lines. Lines have only one Yr gene showed greater grain yield compared to lines having a combination of two Yr genes. Fifteen lines showed higher grain yield compared to Giza 171 check cultivar. These lines can be used as a novel source of *Yr5*, *Yr10* and *Yr15* for wheat breeding aiming to enhance stripe rust resistance. Additionally, they can be introduced to the national wheat yield trials for potential release as new cultivars.

Keywords: Wheat, Pyramiding Genes, Stripe Rust, MAS.

Introduction

As an imperative food crop, bread wheat (Triticum aestivum L.) feeds ~40% of the global population (Zhao et al. 2023). With the growing population, annual progress in yield improvement will hardly fulfil wheat production requirements by 2050 (Rasheed and Xia 2019). In addition, many challenges threaten the increase in wheat yield; therefore, modern cultivars need to improve biotic resistance to various diseases, including rust diseases (Xiao et al. 2022). The diseases of wheat, mainly the fungal diseases are crucial yield constraints in nearly wheat-developing environments (McIntosh all 1997). Among the three rust diseases, stripe or yellow rust of wheat as a result of Puccinia striiformis f. sp. tritici is a devastating foliar disease and is considered of immense importance in almost all the wheat growing parts of the world (Khan et al., 2012a; Singh et al., 2014). Stripe rust can cause yield losses ranging from 10% to 70%, with extreme conditions causing up to 100% (Bolat and Altay, 2007). Stripe rust continues to pose a threat to wheat cultivation worldwide (Sareen et al., 2012). In Egypt, the highest grain yield losses were recorded with wheat genotype Gemmeiza 11 (64.20%),

followed by genotype Misr 1 (62.38%), as well as Misr 2 (57.66%) and Sids 12 (50.89%) genotypes in the North Delta region, Egypt (Shahin et al., 2020). Stripe rust pathogen is serious due to mutation, rapid generation turnover, race development, and widespread spread, causing significant yield losses in major wheat producing countries (Wellings, 2011; Hu et al., 2020). Moreover, the use of fungicides is considered unfriendly to the environment. Therefore, breeding for resistance is the most effective and efficient management strategy because it does not increase the operating costs of the farmer and is environmentally safe (Yang and Liu 2004). Conventional breeding has played a critical role in wheat improvement in the last few decades. However, it was quite limited to manipulating more alleles of genes for further improvement (Rasheed and Xia 2019; Anderson 2007).

The identification and knowledge of the stripe rust resistance genes in commonly used parental germplasm and released cultivars is very important for utilizing them to control the rust to its full potential. Therefore, a long-term and economic strategy could be better to select for resistance by deploying rust resistance genes

^{*}Corresponding author email: sedhom_aiad@yahoo.com Received: 29/07/2024; Accepted: 11/12/2024 DOI: 10.21608/AGRO.2025.308082.1476 ©2025 National Information and Documentation Center (NIDOC)

efficiently in space and time (Ragab et al., 2020; Hagras et al., 2024). Various programs aimed at developing disease-resistant cultivars require diverse, well-characterized and efficient resistance genes. More than 70 major genes for resistance to stripe rust have been identified and assigned (Zhou et al., 2014; McIntosh et al., 2022). Genes expressed at the adult plant stage are of particular significance because cultivars with such genes show that resistance remains effective for longer periods (Rajaram, et al. 1988; Khan et al. 2012b). Selection of cultivars for interest genes based on molecular markers is referred to as markerassisted selection (MAS). As a requisite breeding tool, MAS could make it faster and easier to select target traits in breeding for breeders (Kuchel et al., 2008).

To date, many genes or gene complexes conferring long-term linked or unlinked rust resistance have been identified and indicated. Molecular markers for these resistance genes have been intensively used in wheat breeding programs in Egypt and worldwide. Genes Yr5, Yr10, and Yr15 are still effective against the most virulent pathotypes and are used to determine their presence in wheat cultivars (Ragab et al., 2020). Molecular tagging of the Yr5 gene (STS7/STS8) (Dyck 1987); Yr10 gene (Xpsp3000) (McIntosh 1992; Wang et al. 2002) and Yr15 gene (Xbarc8) (Gerechter et al 1989) has facilitated the detection of these genes in isolated populations and germplasm collections worldwide (Murphy et al. 2009).

Pyramiding entails stacking multiple genes leading to the simultaneous expression of more than one gene in a variety to develop durable resistance expression (Malav and Chandrawat 2016). In comparison to traditional selection in plant breeding, MAS offers a number of advantages, including being more efficient with time, money, and goals (Song et al. 2023). MAS allows breeders to pyramid multiple disease genes in one cultivar, improving resistance durability. It enhances selection efficiency by allowing assays at early generations. (William et al., 2007; Miedaner and Korzun 2012). MAS enhances crop breeding efficiency by pyramiding multi-allelic traits, allowing selection for traits dependent on a single plant, pyramiding a few QTL/genes at a time, efficiently selecting recessive genes, selecting phenotypes in restricted field conditions, and decreasing replications while increasing selection intensity (Liu et al., 2007; Paux et al., 2012). The main objective of this investigation is to identify superior and adapted high yielding wheat germplasm carrying Yr5, Yr10 and Yr15 stripe rust resistance genes individually or in combinations to be evaluated in the national yield trials for release as new bread wheat cultivars.

Materials and Methods

This investigation was conducted on the Research Farm of Sakha Agricultural Research Station, Kafrelsheikh, Egypt from 2016 through 2023 wheat seasons. The geographical position of the farm lies between 31° 5' N latitude and 30° 56' E longitude and 7 m above sea level, in the North Delta as a hot spot for stripe rust disease. In 2016/2017 wheat season, the two bread wheat cultivars Sids 12, Gemmeiza 11 and the three monogenic lines carrying the stripe rust resistance genes Yr5, Yr10 and Yr15 (Table 1) were used to produce simple crosses between the two cultivars and each of the three stripe rust monogenic lines. In 2017/2018 wheat season, double crosses combining two stripe rust resistance genes were made from F₁ crosses. In 2018/2019 wheat season, the F_2 simple and double crosses (500 plants per cross) in addition to the two cultivars and the three monogenic lines was evaluated in the field for stripe rust. Ten resistant plants were selected based on phenotypic from each double cross (these plants are expected to carry one or two resistant genes). The selected plants were planted in summer season (off-season, 2019, following bulk method) in order to speed up generation. In 2019/2020, F_3 simple and double were planted for stripe rust evaluation and generation advancement following pedigree method. In 2020/2021 wheat season, out of 3000 plants, only 236 lines were selected based on yellow rust resistance and yield data.

Agronomic performance evaluation

In 2021/2022 wheat season, the F_5 wheat lines were tested in the field in two separate experiments using an augmented design (each line planted in two rows, 3.5 m long and 30 cm apart where each plot area is 2.1 m2). The first experiment included 110 lines derived from Gemmeiza 11, and the second experiment included 126 lines derived from Sids 12, while Sakha 95, Giza 171, and Misr 3 were used as check cultivars. The selected lines based on grain yield and rust data, were re-evaluated in the next season.

In 2022/2023 wheat season, the F_6 wheat lines were evaluated in the field in large plots using alpha lattice design in two replicates; two trials for Gemmeiza 11 derived lines (containing 42 lines each in addition to Gemmeiza 11, Giza 171 and Misr 3 as check cultivars) and two trials for Sids 12 derived lines (containing 47 and 42 lines in addition to Sids 12, Giza 171 and Misr 3 as check cultivars). Each genotype was planted in six rows, 3.5 m long and 20 cm apart (plot area is 4.2m2). All the recommended agricultural practices for wheat cultivation in north delta was applied for the experiments at the proper time in both seasons. Plots of the two cultivars "Gemmeiza 11 and Sids 12" were chemically protected against rust. During all evaluation steps, plant materials were surrounded by wheat rust spreader containing a mixture of highly susceptible lines to ensure uniformity of yellow rust infection. The inoculation of spreader row plants was carried out at wheat booting stage according to the method

of Tervet & Cassel (1951). The collected data were days to 50% heading and physiological maturity, plant height, number of spikes per square meter, number of kernels per spike, 1000 kernels weight, grain yield per plot, harvest index and final yellow rust field response. Statistical analysis has been conducted by R package version 0.1.6 (Aravind et al. 2023) and "GENSTAT" microcomputer program via analysis of variance using unbalanced designs, VSN International (2011). The means of genotypes were assessed using Duncan's multiple range test (Duncan 1955).

Table 1. Name	, pedigree and	l source of plan	t materials us	sed in thi	is study
---------------	----------------	------------------	----------------	------------	----------

Name	Pedigree	Origin
Gemmeiza 11	BOW"S"/KVZ"S"//7C/SER182/3 /GIZA168/SAKHA 61	Egypt
Sids 12	BUC//7C/ALD/5/MAYA74/ON//1160.147/3/BB/GLL/4/CHAT"S"/6/M AYA/VUL//CMH74A.630/4*SX	Egypt
Yr5 monogenic line	Yr5/6*Avocet S	CIMMYT †
Yr10 monogenic line	Yr10/6*Avocet S	CIMMYT
Yr15 monogenic line	Yr15/6*Avocet S	CIMMYT

[†]CIMMYT; Centro Internacional de Mejoramiento de Maiz y Trigo (International Maize and Wheat Improvement Center).

Stripe rust evaluation at seedling stage (greenhouse)

All plant materials were grown in plastic pots (10 cm in diameter) in the greenhouse at Sakha Agriculture Research Station. Each pot contained four entries clockwise in each corner. The method of inoculation was carried out as described by (Stakman et al., 1962). The inoculated plants were incubated in a dark dew chamber overnight at 10°C and 95% relative humidity then moved to the benches in the greenhouse and maintained at 12°C-15°C and 95-100% relative humidity. Light intensity was adjusted at 7600 lux in a photoperiod of 16 hours light and 8 hours dark (Stubbs, 1988). After approximately two weeks from inoculation, infection types (IT's) on the plants (0 - 9) were scored as described by (McNeal et al., 1971). Plants with IT's of 0, 0;, 1, 2, 3, 4 and 5 were considered as resistant response, while IT's of 6, 7, 8 and 9 were considered as susceptible response.

Stripe rust evaluation at adult plant stage (field response)

Adult plant resistance was evaluated on the same set of materials in field experiments during 2022/2023 growing season. A mixture of the most virulent Pst pathotypes isolates was used to inoculate the plants in the field experiments. The inoculation was carried out at wheat booting stage according to the method of Tervet and Cassel 1951. Disease severity was assessed using the modified Cobb's Scale (Peterson et al., 1948) when the flag leaf reaction of the susceptible control rust severity reached 100S. Infection response was scored as resistant (R), moderately resistant (MR), moderately susceptible (MS) and susceptible (S), as described by Roelfs et al., (1992).

Make assisted selection using Yr5, Yr10 and Yr15 markers

Molecular marker study was conducted at ICARDA laboratory, Giza, Egypt. For DNA extraction, three

fresh young leaves were collected and air-dried from each genotype in the field experiments of the 2022/2023 season. About 1 cm leaf sample for each of the three leaves were cut put into 1.5 ml Eppendorf tube. DNA extraction was performed using the CTAB method according to Doyle and Doyle (1990). Marker assisted selection (MAS) was applied on the samples using simple sequence repeats (SSRs) primers (Table 2). PCR amplifications were performed in a total volume of 25 µl of the reaction mixture comprising, 2.5 mM of MgCl2, 10 mM of dNTPs, 0.2 U of GoTaq® DNA Polymerase (GoTaq_Flexi, Promega, Madison, Wisconsin, USA). The PCR amplifications were performed in a thermal cycler (GeneAmp PCR system 9700, Applied Biosystems). The molecular markers used for MAS against stripe rust are Yr5, Yr10, Yr15. The PCR program for the Yr10 (Xpsp3000) was conducted as follows: one cycle of 2 minutes at 95°C, 35 cycles of 45 seconds at 95°C, 45 seconds at 55°C and 72°C for 30 seconds, followed by a final extension cycle at 72°C for 10 minutes. The PCR program for the Yr15 (xbarc8) was conducted as follows: one cycle of 2 minutes at 95°C, 35 cycles of 30 seconds at 95°C, 30 seconds at 57°C and 72°C for 30 seconds, followed by a final extension cycle at 72°C for 10 minutes. The PCR program for the Yr5 was conducted using a touchdown program as follows: 10 cycles, -0.5 °C per cycle starting from 67°C and the remaining 25 cycles at 62°C.one cycle of 2 minutes at 95°C, 35 cycles of 30 seconds at 95°C, 30 seconds at 45°C and 72°C for 30 seconds, followed by a final extension cycle at 72°C for 7 minutes. The PCR product of the Yr5 marker is CAPS (cleaved amplified polymorphic sequence), was subsequently digested with the Sau3AI enzyme (New England Biolabs, Cat no.: R0169S). The PCR products were separated on a 2.5% agarose gel (1X TAE running buffer) and stained with redsafe (intron, Cat no. 21141, Korea).

No.	Primer name	Sequence	Ta°C
1	Yr-10-F (Xpsp3000)	GCAGACCTGTGTCATTGGTC	55
2	Yr-10-R (Xpsp3000)	GATATAGTGGCAGCAGGATAC	55
3	Yr-15-gwm11-F	GCGGGAATCATGCATAGGAAAACAGAA	57
4	Yr-15-gwm11-R	GCGGGGGGGAAACATACACATAAAAACA	57
5	Yr5_insertion_F	CTC ACG CAT TTG ACC ATA TAC AAC T	62
6	Yr5_insertion_R	TAT TGC ATA ACA TGG CCT CCA GT	62

Table 2. SSR primer names, sequences and required annealing temperatures (Ta°C).

Results

Preliminary evaluation in season 2021/2022

Analysis of variance for days to 50% heading, plant height, and grain yield and its components is presented in Tables 3. Regarding Gemmeiza 11 derived lines, the differences among treatments (ignoring blocks) and among treatment tests were significant for number of days to 50% heading, plant height, number of spikes per square meter however, the differences were insignificant for number of kernels per spike, 1000 kernels weight and grain yield (Table 3). For Sids 12 derived lines, the differences among treatments (ignoring blocks) and among treatment tests were significant for all studied traits except for grain yield in the treatment test (Table 3).

Frequency distribution of Gemmeiza 11 and Sids 12 derived lines comparing with the three check cultivars for the six studied traits is illustrated in Figures 1 and 2. Out of the 110 wheat lines derived from Gemmeiza 11, 78 lines were earlier heading than Giza 171 (the earliest check cultivar) where their number of days to 50% heading ranged from 100 - 86 days with maximum improvement percentage of 13% (Fig. 1). The same trend was obtained for Sids 12 derived lines where 86 lines were earlier heading than Giza 171 where their number of days to 50% heading ranged from 100 -89 days with maximum improvement percentage of 11%. For plant height, 77 and 110 lines ranged from 121-103 cm and from 122-87 cm were shorter than Sakha 95 (the highest check cultivar) with maximum improvement percentage of 16% and 29% were obtained from Gemmeiza 11 and Sids 12 derived lines, respectively (Fig. 1). For number of spikes per square meter, 57 and 78 lines recorded higher number than the check cultivar Sakha 95 with maximum improvement percentage of 96% and 91% for Gemmeiza 11 and Sids 12 derived lines, respectively (Fig. 1). For number of kernels per spike, 39 and 79 lines ranged from 69-110 kernels and from 70-119 kernels were higher than Giza 171 cultivar with maximum improvement percentage of 59% and 70% were obtained from Gemmeiza 11 and Sids 12 derived lines, respectively (Fig. 2). Thirtyfive and 34 lines ranged from 48-64 and from 48-59 1000 kernels weight higher than Misr 3 cultivar with

maximum improvement percentage of 36% and 23% were obtained from Gemmeiza 11 and Sids 12 derived lines, respectively (Fig. 2). For grain yield, 18 and 16 lines ranged from 1.660 to 1.920 kg/plot and from 1.660-1.870 kg/plot were higher than Sakha 95 cultivar with maximum improvement percentage of 16% and 13% were obtained from Gemmeiza 11 and Sids 12 derived lines, respectively (Fig. 2).

Evaluation in season 2022/2023

Grain yield and agronomic traits evaluation for Gemmeiza 11 derived lines

Analysis of variance according to alpha lattice design for the studied traits of Gemmeiza 11 derived lines in the first and second trials is presented in Table 4. It was noticed that mean square values for reps.block in some traits (number of spikes per square meter and days to 50% maturity in the first trial and spikes per square meter, 1000 kernels weight, kernels per spike, grain yield per plot and harvest index in the second trial) were lower than the mean squares values for residuals. In these cases, analysis of variance was applied following the randomized complete block design procedure. The analysis indicated significant differences among genotypes for all traits in both trials except for number of spikes per square meter in the second trial

Gemmeiza 11 derived lines 1st trial (G1)

Means of the studied traits for Gemmeiza 11 derived lines, season 2022/2023 is presented in supplemented Table S1. For grain yield, 11 wheat lines recorded significantly higher grain yield per plot than the check (Giza 171). Out of the 11 lines, 3 lines were insignificantly higher and 8 were insignificantly lower than the highest check cultivar Misr 3. The highest grain yield improvement percentage over Gemmeiza 11 parent was 3%.

For biological yield, 18 wheat lines recorded significantly higher biological yield than the check (Giza 171). Out of the 18 lines, the line # 23 was insignificantly higher than the highest check cultivar Misr 3 where the improvement percentage reached 11% over Gemmeiza 11 parent.

Source of variance	d.f	DH†	РН	SM	KS	1000KW	GY
Gemmeiza 11							
Treatment (ignoring Blocks)	112	25.960 **	52.270 **	8861.15 **	127.800 ^{ns}	36.140 ^{ns}	0.030 ^{ns}
Treatment: Check	2	4.360 *	238.960 **	12997.91 *	82.950 ^{ns}	46.580 ^{ns}	0.320 **
Treatment: Test	109	25.760 **	48.840 **	8744.68 **	129.740 ^{ns}	34.150 ^{ns}	0.020 ^{ns}
Treatment: Test vs. Check	1	91.450 **	52.500 **	13283.51 ^{ns}	6.510 ^{ns}	231.92 *	0.100 *
Block (eliminating Treatments)	9	1.330 ^{ns}	5.110 ^{ns}	4974.95 ^{ns}	107.110 ^{ns}	19.570 ^{ns}	0.030 ^{ns}
Residuals	18	0.930	4.600	3240.19	75.720	29.270	0.020
Sids 12							
Treatment (ignoring Blocks)	128	31.570 **	62.200 **	21561.73 **	348.110 **	49.64 **	0.050 *
Treatment: Check	2	4.930 *	204.060 **	9383.85 ^{ns}	3.600 ^{ns}	2.440 ^{ns}	0.290 **
Treatment: Test	125	31.740 **	53.190 **	20829.79 **	343.460 **	49.12 **	0.040 ^{ns}
Treatment: Test vs. Check	1	64.250 **	904.220 **	137410.3 **	1618.79 **	209.03 **	0.230 **
Block (eliminating Treatments)	10	1.240 ^{ns}	3.580 ^{ns}	3551.80 ^{ns}	75.170 ^{ns}	2.930 ^{ns}	0.030 ^{ns}
Residuals	20	1.000	6.140	3137.41	51.590	7.740	0.020

Table 3. Mean squares of the studied traits for Gemmeiza 11 and Sids 12 derived lines, season 2021/2022.

 \dagger DH; days to 50% heading, PH; plant height, SM; number of spikes per square meter, KS; number of kernels per spike, 1000KW; 1000 kernels weight and GY; grain yield. ^{ns} P > 0.05; * P <= 0.05; ** P <= 0.01

S.O.V	d.f (lattice)	d.f (RCBD)	DH†	DM	РН	SM	KS	BY	1000KW	GY	н
First trial	(G1)										
Reps	1	1	7.144	16.044	0.044	30372	27.89	0.8047	70.1*	0.0401	0.691
Reps. Blocks	8	-	56.727**	-	46.267**	-	89.91*	1.6951*	60.85**	0.2697*	21.088**
Genotypes	44	44	81.738**	21.69**	67.674**	13050*	110.84**	1.2828*	72.36**	0.405**	16.397**
Residual	36	44	1.929	2.363	7.447	7904	38.2	0.6625	17.2	0.1062	3.24
Total	89	89	46.874	-	40.629	-	78.65	1.0636	48.98	0.268	3.24
Second tri	al (G2)										
Reps	1	1	18.678**	3.211	1.11	7593	64.74	0.4694	59.88	0.1408	40.603**
Reps.Blocks	8	-	27.806**	13.461**	25.42	-	-	0.7762	-	-	-
Genotypes	44	44	57.183**	19.923**	86.81**	8708	134.67**	1.3055**	71.2**	0.2831**	12.925**
Residual	36	44	1.881	2.039	13.49	4683	53.7	0.5962	20.39	0.0873	3.961
Total	89	89	31.74	11.92	50.67	-	-	0.9616	-	-	-

Table 4. Mean squares of the studied traits for Gemmeiza 11 derived lines, season 2022/2023.

†DH; days to 50% heading, DM; days to 50% maturity, PH; plant height, SM; number of spikes per square meter, KS; number of kernels per spike, 1000KW; 1000 kernels weight and GY; grain yield per plot. ^{ns} P > 0.05; * $P \ll 0.05$; ** $P \ll 0.01$.

Gemmeiza 11 derived lines

Sids 12 derived lines

Fig. 1. Frequency distribution for number of wheat lines derived from both Gemmeiza 11 (left) and Sids 12 (right) for number of days to 50% heading (DH), plant height (PH) and number of spikes per square meter (SM) comparing to the three check cultivars Sakha 95, Misr 3 and Giza 171 during 2021/2022 wheat season.

Fig. 2. Frequency distribution for number of wheat lines derived from both Gemmeiza 11 (left) and Sids 12 (right) for umber of kernels per spike (KS), 1000 kernels weight (1000KW) and grain yield (GY) comparing to the three check cultivars Sakha 95, Misr 3 and Giza 171 during 2021/2022 wheat season.

For harvest index, 13 wheat lines recorded significantly higher harvest index than the check (Misr 3). Out of the 13 lines, 7 lines were significantly higher than the highest check cultivar Giza 171 where the improvement percentage reached 3% over Gemmeiza 11 parent.

For number of spikes per square meter, 41 wheat lines recorded significantly higher number than the check (Giza 171). Out of the 41 lines, 7 lines were insignificantly higher than the highest check cultivar Misr 3 where the improvement percentage reached 90% over Gemmeiza 11 parent.

For number of kernels per spike, 20 wheat lines recorded significantly higher number of kernels than the check (Misr 3). Out of the 20 lines, 7 lines were insignificantly higher than the highest check cultivar Giza 171 where the improvement percentage reached 34% over Gemmeiza 11 parent.

For 1000 kernels weight, 21 wheat lines recorded significantly higher weight than the check (Misr 3). Out of the 21 lines, 6 lines were significantly higher than the highest check cultivar Giza 171.

For plant height, 24 wheat lines were significantly shorter than the check (Giza 171). Out of the 24 lines, 3 lines were significantly shorter than the shortest check cultivar Misr 3 where the improvement percentage reached 4% over Gemmeiza 11 parent.

For number of days to 50% heading, 22 wheat lines were significantly earlier than the check (Misr 3). Out of the 22 lines, 12 lines were significantly earlier than the earliest check cultivar Giza 171 where the improvement percentage of earliness reached 3.7% over Gemmeiza 11 parent.

For number of days to 50% maturity, 34 wheat lines were significantly earlier than the check (Misr 3). Out of the 34 lines, 17 lines were insignificantly earlier than the earliest check cultivar Giza 171 where the improvement percentage of earliness reached 3.1% over Gemmeiza 11 parent.

Gemmeiza 11 derived lines 2nd trial (G2)

Means of the studied traits for Gemmeiza 11 derived lines (second trial), season 2022/2023 are presented in supplemented Table S2. For grain yield, 23 wheat lines recorded high grain yield and did not differ significantly with the check (Giza 171). Out of the 23 lines, 14 lines were insignificantly higher and 9 lines were insignificantly lower than the highest check cultivar Misr 3. The highest grain yield improvement percentage over Gemmeiza 11 parent was 2.1%.

For biological yield, 11 wheat lines were significantly higher than the check (Giza 171). Out of the 11 lines, 6 lines were insignificantly higher than the highest check cultivar Misr 3 where the improvement percentage reached 10.2% over Gemmeiza 11 parent.

For harvest index, 30 wheat lines were significantly higher than the check (Misr 3). Out of the 30 lines, 20 lines were insignificantly higher than the highest check cultivar Giza 171 where the improvement percentage reached 4% over Gemmeiza 11 parent.

For number of spikes per square meter, 25 wheat lines were significantly higher than the check (Giza

171). Out of the 25 lines, 7 lines were insignificantly higher than the highest check cultivar Misr 3 where the improvement percentage reached 69.6% over Gemmeiza 11 parent.

For number of kernels per spike, 24 wheat lines were significantly higher than the check (Misr 3). Out of the 24 lines, 21 lines were insignificantly higher than the highest check cultivar Giza 171 where the improvement percentage reached 47.1% over Gemmeiza 11 parent.

For 1000 kernels weight, 23 wheat lines recorded significantly higher weight than the check (Misr 3). Out of the 23 lines, 21 lines were significantly higher than the highest check cultivar Giza 171 where the improvement percentage reached 3.4% over Gemmeiza 11 parent.

For plant height, 9 wheat lines were significantly shorter than the check (Giza 171). Out of the 9 lines, 4 lines were insignificantly shorter than the shortest check cultivar Misr 3 where the improvement percentage reached 2.1% over Gemmeiza 11 parent.

For number of days to 50% heading, 27 wheat lines were significantly earlier than the check (Misr 3). Out of the 27 lines, 17 lines were significantly earlier than the earliest check cultivar Giza 171 where the improvement percentage of earliness reached 4.3% over Gemmeiza 11 parent.

For number of days to 50% maturity, 30 wheat lines were significantly earlier than the check (Misr 3). Out of the 30 lines, 20 lines were significantly earlier than the earliest check cultivar Giza 171 where the improvement percentage of earliness reached 4.2% over Gemmeiza 11 parent.

Grain yield and agronomic traits evaluation for Sids 12 derived lines

Analysis of variance according to alpha lattice design for the studied traits of Sids 12 derived lines in the first and second trials is presented in Table 5. It was noticed that reps.block mean square values in some traits (for biological yield, grain yield per plot, plant height and number of spikes per square meter in the first trial and number of spikes per square meter, 1000 kernels weight, number of kernels per spike and harvest index in the second trial) were lower than reps mean squares. In these cases, analysis of variance was applied following randomized complete block design procedure. The analysis indicated significant differences among genotypes for all traits in both trials except for 1000 kernels weight and plant height in the second trial.

S.O.V	d.f (latice)	d.f (RCBD)	DH†	DM	РН	SM	KS	BY	1000KW	GY	HI
First trial (S1)											
Reps	1	1	2.178	0.1	33.61	11185	40	3.5601	1.23	0.1555	2.755
Reps.Blocks	8	-	64.26**	14.91**	-	-	276.5**	-	96.71**	-	15.29**
Genotypes	44	44	103.26**	26.32**	39.1**	15671*	200.4**	2.067**	54.52**	0.356**	23.11**
Residual	36	44	1.552	3.311	10.32	9031	70.99	0.7944	13.78	0.0955	4.61
Total	89	89	57.479	15.691	-	-	153.11	-	41.23	-	14.697
Second trial (S	2)										
Reps	1	1	7.21	25**	72.25	14240	812.82	2.756	46.755	0.0643	45.326
Reps.Blocks	8	-	68.53**	33.31**	143**	30755**	-	2.476*	-	0.6947**	-
Genotypes	49	49	124.72**	32.89**	37.51	19430**	216.88**	2.689**	39.8	0.5911**	43.624**
Residual	41	49	12.24	3.4	49.63	6602	65.95	1.042	10.51	0.1553	3.951
Total	99	99	73.03	20.63	51.46	14980	-	1.991	-	0.4137	-

Table 5. Mean squares of the studied traits for Sids 12 derived lines, season 2022/2023.

† DH; days to 50% heading, DM; days to 50% maturity, PH; plant height, SM; number of spikes per square meter, KS; number of kernels per spike, 1000KW; 1000 kernels weight and GY; grain yield per plot. ^{ns} P > 0.05; * P <= 0.05; ** P <= 0.01

Sids 12 derived lines 1st trial (S1)

Means of the studied traits for Sids 12 derived lines (first trial), season 2022/2023 is presented in supplemented Table S3. For grain yield, 22 wheat lines recorded high grain yield and did not differ significantly with the check (Giza 171). Out of the 22 lines, 9 lines were insignificantly lower than the highest check cultivar Misr 3. The highest grain yield improvement percentage over Sids 12 parent was 24.9%.

For biological yield, 27 wheat lines were significantly higher than the check (Giza 171). Out of the 27 lines, the line #22 was insignificantly higher than the highest check cultivar Misr 3 where For number of kernels per spike, 29 wheat lines were significantly higher number than the check (Giza 171). Out of the 29 lines, 17 lines were significantly higher than the highest check cultivar Misr 3 where the improvement percentage reached 5% over Sids 12 parent.

For 1000 kernels weight, 6 wheat lines recorded significantly higher weight than the check Giza 171. These lines were insignificantly higher than the highest check cultivar Misr 3 where the improvement percentage reached 11.9% over Sids 12 parent.

For plant height, 19 wheat lines were significantly shorter than the check (Giza 171). Out of the 19 lines, 9 lines were insignificantly shorter than the shortest check cultivar Misr 3 where the improvement percentage reached 2.3% over Sids 12 parent.

For number of days to 50% heading, 28 wheat lines were significantly earlier than the check (Misr 3). Out of the 28 lines, 19 lines were significantly earlier than the earliest check cultivar Giza 171 where the improvement percentage of earliness reached 11% over Sids 12 parent.

For number of days to 50% maturity, 20 wheat lines were significantly earlier than both checks (Misr 3 and Giza 171). The improvement percentage of earliness reached 3.8% over Sids 12 parent.

the improvement percentage reached 28.6% over Sids 12 parent.

For harvest index, 15 wheat lines recorded high harvest index and did not differ significantly with the check (Misr 3). Out of the 15 lines, 3 lines were insignificantly higher than the highest check cultivar Giza 171.

For number of spikes per square meter, 41 wheat lines were significantly higher number than the check (Giza 171). Out of the 41 lines, 35 lines were significantly higher than the highest check cultivar Misr 3 where the improvement percentage reached 293% over Sids 12 parent.

Sids 12 derived lines 2nd trial (S2)

Means of the studied traits for Sids 12 derived lines (Second trial), season 2022/2023 are presented in supplemented Table S4. For grain yield, 21 wheat lines were insignificantly higher than Giza 171 and insignificantly lower than the highest check cultivar Misr 3. The improvement percentage over Sids 12 parent was 22.3%.

For biological yield, 23 wheat lines did not differ significantly with both checks (Giza 171 and Misr 3) where the improvement Percentage reached 60.3% over Sids 12 parent for line#30.

For harvest index, 22 wheat lines were significantly higher than the check (Misr 3) and insignificantly higher than Giza 171.

For number of spikes per square meter, 11 wheat lines were significantly higher than the check (Giza 171). Out of the 11 lines, 7 lines were insignificantly higher than the highest check cultivar Misr 3 where the improvement percentage reached 322% over Sids 12 parent.

For number of kernels per spike, 38 wheat lines were significantly higher than the check (Misr 3). Out of the 38 lines, 18 lines were significantly higher than the highest check cultivar Giza 171.

For 1000 kernels weight, 7 wheat lines recorded insignificantly higher weight than the check (Misr

3). Out of the 7 lines, 2 lines were insignificantly higher than the highest check cultivar Giza 171 where the improvement percentage reached 2.3% over Sids 12 parent.

For plant height, 33 wheat lines were significantly shorter than the check (Giza 171). Out of the 33 lines, 5 lines were significantly shorter than the shortest check cultivar Misr 3 where the improvement percentage reached 2.3% over Sids 12 parent.

For number of days to 50% heading, 41 wheat lines were significantly earlier than the check (Misr 3). Out of the 41 lines, 19 lines were significantly earlier than the earliest check cultivar Giza 171 where the improvement percentage for earliness reached 12.8% over Sids 12 parent.

For number of days to 50% maturity, 31 wheat lines were significantly earlier than both checks (Misr 3 and Giza 171). The improvement percentage for earliness reached 3.4% over Sids 12 parent of line #34.

Yr5, Yr10 and Yr15 molecular marker detection

Summary of detecting molecular markers for *Yr5*, *Yr10* and *Yr15* genes and their combinations in wheat lines derived from Gemmeiza 11 and Sids 12

is presented in Figure 3 and Tables 6 and 7, respectively. Yr5 monogenic line (positive control) produced 1281bp band while no products were obtained with both Sids 12 and Gemmeiza 11 susceptible cultivars. In some cases, 507bp PCR product was obtained as alternate Yr5 allele (Xiaoqin Zhang) (Fig. 3d). Out of 110 Sids 12 and Gemmeiza 11 derived lines, 50 lines (45%) showed 1281bp PCR product and only 4 lines (4%) showed 507bp PCR product. Yr10 monogenic line parent showed a single band at 220 bp, confirming its positive status for the Yr10 gene. Meanwhile, both Sids12 and Gemmeiza 11 susceptible parents displaying bands ranging between 200-300 bp, affirming their negative status for the Yr10 gene (Fig. 3e). Out of 216 Sids 12 and Gemmeiza 11 derived lines, 75 lines (35%) showed positive marker and 35 lines (16%) showed positive hetero 2 allele and 5 lines (2%) showed positive 3 allele. Yr15 monogenic line parent showed a single band at 220bp, while Sids12 and Gemmeiza 11 parent samples displaying bands at 200 bp and 260 bp, respectively, indicating their negative status for the targeted genes Fig. 3f). Out of 195 derived lines, 72 lines (37%) showed 220bp bands and 39 lines (20%) showed both 220bp and 260bp bands indicated heterozygous status.

Table 6. PCR product, number of genotype	s, percentage and	l description of the	e tested wheat	lines for Yr5,
Yr10 (Xpsp3000) and Yr15 (Xbrac8	8) markers.			

Markers	PCR product	No. wheat lines	%	Description
	1281 bp	50	45	Positive
V5	507 bp	4	4	Positive
115	No amplification	56	51	Negative
	Total	110	-	-
	200 bp	75	35	Present
	230 bp	36	17	Absent
	260 bp	44	20	Absent
V10	300 bp	7	3	Absent
1/10	(200 + 260) or $(230 + 300)$	35	16	Present (Hetero 2 allele)
	200 + 230 + 260	5	2	Present (Hetero 3 allele)
	Missing	14	6	-
	Total	216	-	-
	220 bp	72	37	Present
	260 bp	64	33	Absent
Yr15	220 + 260	39	20	Present (Hetero)
	Missing	20	10	-
	Total	195	-	-

 Table 7. Summary of PCR markers detected for Yr5, Yr10 and Yr15 and their combinations in Gemmeiza 11 and Sids 12 wheat derived lines.

Source	No. of tested	No. of wheat lines with positive markers							
Source	wheat lines	Yr5	Yr10	Yr15	Yr5+Yr10	Yr5+Yr15	Yr10+Yr15	Total	%
Gemmeiza 11 derived lines	84	22	2	9	15	4	13	65	77
Sids 12 derived lines	89	10	13	31	2	2	3	60	67
Total	173	32	15	40	17	6	16	126	73

Fig. 3. Representative images of PCR product for Sids 12 and Gemmeiza 11 wheat cultivars and their derived line with Yr5, Yr10 and Yr15 SSR primers: M refers to the DNA ladder 100bp. Sids-12 and Gem-11 are negative control; Yr5, Yr10 and Yr15 are positive control; SDL and GDL are Sids and Gemmeiza wheat derived lines. a. derived lines showing Yr5+Yr10 combination, b. derived lines showing Yr5+Yr15 combination, c. derived lines showing Yr15+Yr10 combination, d, e & f derived lines showing Yr5, Yr10 and Yr15 alone, respectively.

Seedling and adult plant stripe rust evaluation

Wheat stripe rust trap nursery is a routine work for wheat pathology research department aiming to tracking the dynamics of yellow rust pathogen population all over the country as well as its pathogenicity on wheat yellow rust resistance genes. Seedling and adult plant stage reaction for wheat yellow rust trap nursery from 2021 to 2023 at Sakha station as hot spot for yellow rust in north Egypt is presented in Table 8. Efficiency of Yr genes based on the seedling and adult plant stage reaction can be grouped in to five groups: 1st group including three genes (Yr5, Yr8 and Yr15) which showed resistance in both seedling and adult plant sages; 2nd group including three genes (Yr17, Yr26 and Yr54) which showed resistance at seedling only; 3rd group including six genes (Yr37, Yr4BL, Yr51, Yr57, YrKK and YrAld) which showed resistance at adult plant stage only; 4th group including three genes (*Yr10* and *YrSp*) which showed moderate resistance at both seedling and adult plant stages; 5th group including nine genes (YrA, Yr6, Yr7, Yr9, Yr18, Yr24, Yr27, Yr35 and YrCV) which showed susceptibility at both seedling and adult plant stages. Based on this result it could be concluded that the importance of the three genes *Yr5*, *Yr*8 and *Yr15* in wheat breeding program in Egypt for improving yellow rust resistance.

Results of DNA markers for wheat lines derived from Gemmeiza 11 and Sids 12 cultivars, confirmed the presence of Yr5, Yr10 and Yr15 positive markers in 32, 15 and 41 wheat lines, respectively. Yellow rust reaction of these lines in both seedling and adult plant stages is presented in Table 9 and 10. Ninetyone percent of wheat lines carrying Yr5 marker showed complete resistance in both seedling and adult plant stages for yellow rust. In the same direction, 73% and 97.5% of wheat lines carrying Yr10 and Yr15 marker showed complete resistance in both seedling and adult plant stages for yellow

rust, respectively. These results confirmed the findings in Table 8 indicating the effectiveness of both Yr5 and Yr15 at both seedling and adult plant stages in Egypt.

Table 8. Seedling and adult plant stag	e reaction for whea	it yellow rust trap nu	arsery from 2021 to	o 2023 at
Sakha station.				

NT		IT ^b at s	IT ^c at adult plant stage			
No.	Genotype/ Yr gene "	Bulk	262E31	2021	2022	2023
1	Morocco	9	9	100S	100S	100S
2	Avocet $S - YrA$	5	9	30S	30S	80S
3	Avocet $A + YrA$	6	7	50S	50S	70S
4	Yr1/6* AOC	9	9	20S	20S	70S
5	SIETE CERROS T66	8	9	205	20S	60S
6	TATARA	0:	0:	TrS	TrS	0
7	Yr5/6* Avocet S	0	1	0	0	0
8	Yr6/6* Avocet S	7	7	60S	60S	70S
9	Yr7/6* Avocet S	8	8	705	705	805
10	Yr8/6* Avocet S	0:	0:	0	0	0
11	Yr9/6* Avocet S	6	7	60S	60S	80S
12	Yr10/6* Avocet S	9	9	0	0	10MS
13	Yr15/6* Avocet S	0:	0:	Ő	Ő	0
14	Yr17/6* Avocet S	0.	3	30MSS	30MSS	50MSS
15	Yr18/6* Avocet S	0, 7	8	60MS	60MS	30MS
16	Vr24/6* Avocet S	7	6	305	305	30MSS
17	Vr26/6* Avocet S	, 0.	0.	30MS	30MS	60MRMS
18	Yr27/6* Avocet S	9	0;	105	105	20MRMS
10	VrSn/6* Avocet S	9	0;	0	0	5MS
20	PAVON E 76	0	8	205	205	305
20	SERI M82	0	6	205	205	605
21	ODATA M 85	0	0	10MP	10MD	10MP
22		9	9			
23	$V_{rr}C_{v}/6*$ Appaget S (V_{rr}^{22})	6	6	205	205	605
24	$\frac{11000}{1000} + \frac{1000}{1000} \times \frac{1100}{1000} \times \frac{1000}{1000} \times \frac{1000}{100$	0	0	105	105	205
25	ΓD W 343 ΔΟC VD*2/2/ΔΙ ΤΔΡ 9//ΔΕ SO//ΟΡΔΤΔ	4	0	205	205	303
20	AUC-IR' $3/3/ALIAR 04/AL.SQ//OFAIA$	0,	0, 7	303	305 405	303
21	AOC-YR*3//LALDIVIONO 1*4/PVN	9	7	405	405	1005
28	AUC-IK*5/PASIUK		7	205	205	1005
29	POLLMER	0	/	303	305	505
30 21	PASIOK DEDECA E2000	9	8	405	405	60S
20	REBECA F2000	3	4	305	305	505
32	FRANCOLIN #1	8	/	405	405	805
33	AUC-YR/QUAIU/#3	9	9	308	305	805
34	OPATA/PASTOR CO5607 A020	9	9	0	0	0
35	OPATA/PASTOR CO560/ A04/	/	1	0	0	0
30	AUC-YR/QUAIU # 3	1	6	305	305	805
3/	MI0 (MUTATED C-306) / AOC-YR	6	5	105	105	805
38	CHUAN NONG 19	6	7	10R	10R	20MR
39	IRAGI	9	9	IOMR	IOMR	IOMR
40	KOELZ W 11192:AE	8	8	30MS	30MS	60MSS
41	PBW343/KKU	9	7	0	0	58
42	AOC-YR*3 //LALBMONO1*4/PVN	7	8	308	305	805
43	Yr33	4	3	0	0	105
44	Yr34	4	7	20MR	20MR	20MR
45	Yr35 98M71	7	8	30S	305	70S
46	Yr3/	9	7	0	0	0
47	Yr4BL	6	9	20MR	20MR	20MR
48	Yr51	3	5	TrMR	TrMR	5R
49	Yr54	3	3	50S	50S	80S
50	Yr57	8	9	5MR	5MR	5R
51	YrKK	9	3	0	0	0
52	YrAId	7	4	5MR	5MR	0

^a Resistance gene based on the studies of Chen, (2005).; ^b Infection type at seedling stage based on the 0–9 scale as described by McNeal et. al., (1971); ^c ITs based on Roelfs et al. (1992)., 0=Immune. R = resistant (necrosis with few uredinia); MR = moderately resistant (necrosis with small to moderate number of uredinia); MS = moderately susceptible (moderate number of uredinia with chlorotic areas); and S = susceptible (large number of uredinia, no necrosis but chlorosis may be evident).

		Yellow rust response				
PUK identified marker	No of tested lines	Adult ^a	Seedling (bulk) ^b	Seedling (race)		
	17	0	0	0;		
	6	5 R	0;	0;		
	4	0	1	0;		
V5	1	0	3	1		
115	1	0	0;	1		
	1	0	0;	9		
	1	0/10MS	3	9		
	1	0/5R	6	0;		
Total	32	-	-	-		
	10	0	0;	0		
	1	0	0;	1		
V. 10	1	0	6	0;		
Irio	1	0	7	0		
	1	0	0;	9		
	1	0/TR	6	0;		
Total	15	-	-	-		
	25	0	0;	0;		
	7	0/TR	0	0		
	1	0	3	3		
	1	0	3	3		
	1	0	0;	3		
Yr15	1	0	2	4		
	1	0	1	0;		
	1	0	1	0;		
	1	0	3	0;		
	1	0/5R	3	0;		
	1	0/100S	9	0		
Total	41			-		
Gemmeiza 11		100S	8	9		
Sids 12		40S	3	0:		

Table 9. Gemmeiza 11 and Sids 12 derived lines showing positive PCR marker for Yr5, Yr10 and Yr15 andtheir adult plant and seedling response against yellow rust during 2022/2023 season.

^a Infection type based on the 0–9 scale as described by McNeal et. al., (1971); ^b infection type based on Roelfs et. al.; (1992). 0= Immune; R = resistant; MR = moderately resistant; MS= moderately susceptible; and S= susceptible.

Table 10. Gemmeiza 11 and Sids 12 derived lines showing positive PCR marker for Yr5, Yr10 and Yr15 combinated	ons
and their adult plant and seedling response against yellow rust during 2022/2023 season.	

DCD : dout! find monly on	No of tostad lines	Yellow rust response							
PCR Identified marker	No of tested lines	Adult	Seedling (bulk) ^b	Seedling (race)					
	10	0	0;	0					
	1	0	0;	1					
	1	0	3	0;					
V::5 V:10	1	0	0;	1					
115+1110	1	0	1	0;					
	1	0	1	0;					
	1	0/100 S	3	0;					
	1	T R	4	0;					
Total	17	-	-	-					
	1	0	0;	0;					
	1	0	1	3					
<i>Yr5+Yr15</i>	1	0	1	0;					
	1	0	2	0;					
	1	0	0;	3					
Total	5	-	-	-					
	7	0	0;	0;					
	2	TR	0;	0;					
	3	0	2	0					
Yr10+Yr15	1	0	1	0					
	1	0	1	3					
	1	0	0;	1					
	1	TR	1	5					
Total	16	-	-	-					
Gemmeiza 11		100S	8	9					
Sids 12		40S	3	0;					

^a Infection type based on the 0–9 scale as described by McNeal et. al., (1971); ^b infection type based on Roelfs et. al.; (1992). 0= Immune; R = resistant; MR = moderately resistant; MS= moderately susceptible; and S= susceptible.

Nine lines derived from Sids 12 showed resistance to stripe rust at both seedling and adult plant stages as well as superiority in grain yield over Giza 171 check with increase percentage ranged from 0.6 to 5.7% (Table 11) and can be promoted to the national wheat yield trials. Those are line S2# 35 (carry Yr5); Line S1# 20 (carry Yr10); Lines S1# 7, S2# 3, 34, 38, 44 & 50 (carry Yr15); S1# 14 (carry combination of Yr5 and Yr15). Meanwhile, Sids 12 derived lines carrying Yr5+Yr10 and Yr10+Yr15 combinations did not show superiority in grain yield over Giza 171 check. For Gemmeiza 11 derived lines, eighteen lines showed resistance to stripe rust at both seedling and adult plant stages as well as superiority in grain yield over Giza 171 check with increase percentage ranged from 0.4 to 14.6% (Table 12) and can be promoted to the national wheat yield trials. Five lines carrying Yr5 (Line G1# 14, 28, 36 & G2# 3, 15); one line carrying Yr10 (G1# 42); five lines carrying Yr15 (G1# 11, 19 & G2# 11, 21, 28); five lines carrying Yr10+Yr15 combination (G1# 45 & G2# 19, 37, 42, 45); two line carrying Yr5+Yr15 combination (G2# 25, 39). Meanwhile, Gemmeiza 11 derived lines carrying Yr5+Yr10 combination did not show superiority in grain yield over Giza 171 check.

Generally, the results in Tables 11 & 12 indicated that derived lines from both cultivars with single Yr gene recorded superiority in grain yield over lines with two Yr genes combination. Also, Gemmia 11 derived lines were higher in grain yield than those derived from Sids 12.

Discussion

In Egypt, stripe rust attacked many commercial bread wheat cultivars causing severe infection in North Delta Area such as Sakha 93, Gemmiza 9, Sids 12 and Gemmiza 11 cultivars. The two bread wheat cultivars Sids12 and Gemmeiza11 were the most popular cultivars in Egypt, especially for small farms. The reason for farmers preference for those cultivars is due to its good bread making quality (Mahrous et al., 2009, Sadek et al., 2013, Hagras, 2014 and Ragab, & Mohamed, 2014). Area cultivated with both cultivars reached 25% of total wheat area in the 2015/2016 season (Economic Affairs Section, Ministry of Agriculture and Land Reclamation, Egypt, 2016). Unfortunately, stripe rust resistance of both cultivars was breakdown in season 2016/2017 and great yield loss occurred. The best way to control vellow rust and reduce crop loses is to pyramid the effective resistant genes into new cultivars (Singh et al., 2005). The wheat breeding program developed new rust resistant wheat cultivars depending only on phenotypic evaluation for crossing blocks, segregating populations and promising lines in rust hot spots. So, the newly released cultivars may carry the same rust resistance gene(s) causing resistance breakdown of more than

one cultivar at the same time. One important method to increase the durability of rust resistance would be through producing wheat cultivars carrying different effective resistance gene(s) (Ragab et al, 2020). The pyramiding of efficient stripe rust resistance genes in the new wheat promising lines may be facilitated using marker-assisted selection (MAS) techniques.

Virulence to Yr5 and Yr15 genes rarely occur in wheat producing areas of the world (Chen, 2005 and Sharma et al., 2013). In Egypt, the three strip rust resistant genes Yr5, Yr10 and Yr15 are effective against the dominating *Pst* races where, the two genes Yr5 and Yr15 show complete resistance at both seedling and adult plant stages (Shahin 2017 and Ragab et al., 2020). Meanwhile, it should be mentioned herein that Yr5 was attacked by race 494E158 once, 2008; (Shahin and Abu El-Naga, 2011). During the period of the current study, the effectiveness of these genes is confirmed. Therefore, pyramiding combinations of these genes in one wheat background is expected to enhance resistance durability for stripe rust in Egypt.

Tracking Yr targeted genes in selected plants segregating generation based through on phenotyping (0 type field response, the same of Yr genes doners) led to obtaining lines harboring the Yr targeted genes based on genotyping with 73% success. This was an advantage of using Yr gene doners showing 0 type field response and highly susceptible recurrent parent. The remaining number of lines (27%) showing 0 type field response did not show the target band. This is might be because the polymorphism of a marker could not be distinguished in some wheat germplasms, such as Owm45F3R3 for Yr51 (Randhawa et al. 2014). Haider et al. (2023) used 13 Yr gene-tagged markers for the detection of known Yr genes (Yr5, Yr10, Yr15, Yr24/Yr26) in 45 stripe rust resistance accessions and they reported that the targeted band for Yr5 was not detected with marker Xgwm120 while it was detected with marker Xwmc175 for the same accession.

Breeders prefer the use of major stages resistance (ASR) genes in wheat breeding. However, this strategy seems to be not so successful because stripe rust frequently occurs on a large scale when the underlying gene is circumvented by the emergence of new virulent races (McIntosh et al. 2018). In China, wheat breeders introduced the three APR genes Yr18, Yr28, and Yr36 into elite wheat lines through gene-based marker selection and indicated that pyramiding of these genes provides long-term resistance to stripe rust (Fang et al., 2023). In this study, Yr monogenic lines were used as a source for R genes through pre breeding to transfer and pyramid some effective stripe rust resistance genes into agronomically acceptable wheat lines. A total of 173 strip rust resistant lines were derived from Sids

...

29

12 and Gemmeiza 11. Of these lines, 32 lines showed marker for Yr5; 15 lines showed marker for Yr10 and 40 lines showed marker for Yr15. Fortunately, a total of 38 lines showed markers for two gene combination where 17 lines showed markers for both Yr5 and Yr10; five lines showed markers for both Yr5 and Yr15; and 16 lines showed markers for both Yr10 and Yr15. In this study, phenotypic selection followed by MAS allowed to pyramid Yr5, Yr10 and Yr15 gene combination and enhance selection efficiency at early generations.

Improvement percentage in yield components reached about 300% for number of spikes per square meter which may be due to the higher tillering ability if the Yr genes doners. Despite this, the improvement percentage for grain yield reached only about 25% that may be due to the directed selection toward stripe rust resistance in segregating generation regardless grain yield in addition to the undesirable genetic background of the Yr gene doners. This was confirmed by the grain yield superiority of lines with single over lines with two Yr genes combination. Accordingly, low percentage (30%) of selected lines with two gene combination compared with one gene (70%) was obtained. Also, Gemmia 11 derived lines were higher in grain yield than those derived from Sids 12 this may be due to the cultivar's genetic background. In accordance with our result, Mandea et al. (2019) reported that most correlations among the wheat yield components were negative, illustrating the difficulty of combining high values of more than one component. The strongest negative correlation was found between the number of spikes per unit area and the number of grains per spike, but most correlations between number of grains/spike and 1000 kernels weight were negative.

Conclusion

In this study 126 elite bread wheat lines were developed from the stripe rust highly susceptible cultivars Gemmeiza 11 and Sids 12. Phenotypic and genotypic testing indicated that these lines are resistance to the local pathotypes of stripe rust races in both seedling and adult plant stag test and carry markers for Yr5, Yr10 or Yr15 genes individually or in combinations. The developed resistant genotypes can be released after testing in multi-environment trials and also used as parental lines for crosses with potential and adapted wheat cultivars to develop stripe rust durable resistant varieties.

T in a	Identified Yr	Yellow rust	reaction	- Croin viold (lea/plat)	Change % over	Harvest
Line	gene	Adult plant ^a	Seedling ^b	- Grain yield (kg/piot)	Giza 171 mean	index %
S2#35	5	0	0;	4.505	4.4	34.9
S2#19	5	TR	0;	4.275	-0.9	33.2
S2#18	5	0	0	4.113	-4.7	34.7
S1#26	5	0	0;	3.920	-9.2	30.9
S2#4	5	0	0;	3.885	-10.0	33.7
S1#20	10	0	0;	4.360	1.0	32.1
S2#24	10	0	0;	3.835	-11.1	32.1
S1#40	10	0	0;	3.535	-18.1	28.9
S2#30	10	0	0	3.313	-23.2	25.8
S2#34	15	0	0;	4.560	5.7	37.4
S2#50	15	0	0;	4.555	5.6	35.1
S2#38	15	0	0;	4.520	4.8	32.9
S1#7	15	0	0	4.425	2.5	34.3
S2#44	15	0	0;	4.357	1.0	35.0
S2#3	15	0	0	4.343	0.6	35.9
S2#11	15	0	0;	4.313	0.0	36.1
S2#12	15	0	0;	4.280	-0.8	35.0
S2#21	15	0	0;	4.178	-3.2	36.7
S2#13	15	0	0;	4.070	-5.7	36.3
S1#10	10+15	0	1	3.342	-22.5	29.5
S2#43	10+15	0	0;	2.648	-38.6	23.4
S2#7	10+15	0	0;	2.618	-39.3	20.7
S2#25	5+10	TR	4	3.280	-24.0	28.7
S2#16	5+10	0	3	3.253	-24.6	26.0
S1#14	5+15	0	0;	4.347	0.7	35.3
Giza 171	-	0	2	4.315	0.0	33.4

 Table 11: Summary of the selected lines derived from Sids 12 based on Yr gene detection, adult and seedling yellow rust resistance as well as superiority in grain yield over Giza 171 check and harvest index percentage.

^a Infection type based on the 0–9 scale as described by McNeal et. al., (1971); ^b infection type based on Roelfs et. al.; (1992). 0= Immune; R = resistant; MR = moderately resistant; MS= moderately susceptible; and S= susceptible.

Table 12. Summary of the selected lines derived from Gemmeiza 11 based on Yr gene detection, adult and seedling yellow rust resistance as well as superiority in grain yield over Giza 171 check and harvest index percentage.

	T1 (°C 1	Yellow ru	st reaction	C · · · 11	Change %			
Line	Yr gene	Adult plant	Seedling ^b	(kg/plot)	over Giza 171 mean	Harvest index %		
G1#28	5	0	0	4.810	12.4	40.3		
G2#3	5	0	3	4.643	8.5	38.2		
G2#15	5	0	1	4.483	4.7	37.8		
G1#36	5	0	0	4.375	2.2	37.7		
G1#14	5	0	0	4.297	0.4	32.9		
G1#40	5	0	0;	4.275	-0.1	34.6		
G1#39	5	0	0;	4.267	-0.3	35.4		
G1#43	5	0	0;	4.205	-1.8	33.8		
G2#29	5	0	1	4.168	-2.6	36.9		
G1#6	5	0	0;	4.125	-3.6	36.6		
G1#27	5	0	0;	4.122	-3.7	34.4		
G1#23	5	0	0;	4.010	-6.3	33.7		
G2#27	5	0	1	3.998	-6.6	31.5		
G1#42	10	0	0;	4.435	3.6	37.9		
G2#16	10	0	0;	4.250	-0.7	37.5		
G1#11	15	0	1	4.907	14.6	39.2		
G2#21	15	0	0;	4.878	13.9	37.0		
G1#19	15	TR	0;	4.817	12.5	36.8		
G2#28	15	0	3	4.795	12.0	38.1		
G2#11	15	0	9	4.318	0.9	37.4		
G2#17	15	0	3	4.268	-0.3	36.0		
G2#31	15	0	2	4.085	-4.6	39.4		
G2#19	10+15	0	0;	4.770	11.4	38.8		
G2#45	10+15	0	2	4.425	3.4	38.8		
G2#37	10+15	0	0;	4.358	1.8	38.9		
G2#42	10+15	0	0;	4.343	1.4	40.6		
G1#45	10+15	0	2	4.310	0.7	38.3		
G1#17	10+15	TR	0;	4.227	-1.3	34.6		
G1#18	10+15	TR	0;	4.215	-1.5	35.6		
G1#38	10+15	0	0;	4.207	-1.7	36.2		
G1#10	10+15	0	2	4.127	-3.6	36.4		
G2#32	10+15	0	0;	4.098	-4.3	35.5		
G2#7	10+15	0	1	3.960	-7.5	34.3		
G2#18	10+15	TR	1	3.948	-7.8	37.6		
G2#38	10+15	0	0;	3.933	-8.1	33.5		
G2#34	5+10	0	0;	4.255	-0.6	36.7		
G2#30	5+10	0	0;	4.250	-0.7	32.4		
G1#29	5+10	0	0;	4.207	-1.7	36.3		
G2#14	5+10	0	0;	4.195	-2.0	37.8		
G2#6	5+10	0	1	4.088	-4.5	33.9		
G1#30	5+10	0	0	4.027	-5.9	33.9		
G1#34	5+10	0	0;	4.025	-6.0	36.5		
G2#39	5+15	0	2	4.705	9.9	36.9		
G2#25	5+15	0	1	4.463	4.3	38.6		
G2#20	5+15	0	0;	4.240	-1.0	34.9		
G2#36	5+15	0	1	3.955	-7.6	35.3		
Giza 171	-	0	2	4.281	0.0	36.3		

^a Infection type based on the 0–9 scale as described by McNeal et. al., (1971); ^b infection type based on Roelfs et. al.; (1992). 0= Immune; R = resistant; MR = moderately resistant; MS= moderately susceptible; and S= susceptible.

Consent for publication:

All authors declare their consent for publication.

Author contribution:

The manuscript was edited and revised by all authors.

Conflicts of Interest

The author declares no conflict of interest.

Acknowledgments

The authors are grateful to Academy of Scientific Research and Technology (ASRT Green Fund: Climate Change Adaptation and Nature Conservation) Project 19374 "Pyramiding Stripe Rust Resistant Genes Yr5, Yr10 and Yr15 in Sids 12 and Gemmiza 11 Wheat Cultivars" for providing financial support. The authors are also thankful to the Wheat Research Department, FCRI, and Wheat Disease Research Department, PDRI, ARC and ICARDA biotechnology laboratory for providing plant materials, experimental farm green house and laboratory facilities. Thanks, is to Dr. Ravi Singh, distinguished scientist and head of global wheat improvement, CIMMYT, for providing stripe rust monogenic lines used in this study.

References

- Anderson, J.A. (2007) Marker-assisted selection for Fusarium head blight resistance in wheat. Int. J. Food Microbiol., 119, 51–53.
- Aravind, J., Mukesh Sankar, S., Wankhede, D.P., Kaur, V. (2023). Augmented RCBD: Analysis of Augmented Randomised Complete Block Designs. R package version 0.1.6, https://aravindj.github.io/augmentedRCBD /https://cran.rproject.org/package=augmentedRCBD.
- Bolat, N. and Altay, F. (2007). Comparison of different methods used in calculating the effect of stripe rust on wheat grain yields. Acta Agronomica Hungarica, 55, 89-98.
- Chen, X.M. (2005). Epidemiology and control of stripe rust (Puccinia striiformis f.sp. tritici) on wheat. Can. J. Plant Pathol. 27: 314-337.
- Doyle, J.J. and Doyle J.L. (1990). Isolation of Plant DNA from Fresh Tissue, Focus, Vol. 12 (1): 13-15.
- Duncan, D.B. (1955). Multiple range and multiple F tests. Biometrics. 11 (1): 1–42. doi:10.2307/3001478.
- Dyck, P.L. (1987). The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat, Genome, 29 467-469
- Fang Wang, Minghu Zhang, Yanling Hu, Meijuan Gan, Bo Jiang, Ming Hao, Shunzong Ning, Zhongwei Yuan, Xuejiao Chen, Xue Chen, Lianquan Zhang, Bihua Wu, Dengcai Liu, and Lin Huang (2023). Pyramiding of Adult-Plant Resistance Genes Enhances All-Stage Resistance to Wheat Stripe Rust.

Plant Disease 2023 107:3, 879-885. https://doi.org/10.1094/PDIS-07-22-1716-RE

- Gerechter-Amitai Z. K., Van Silfhout C. H., Grama A., Kleitman F. (1989). *Yr15*: A new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25. Euphytica, 43(1-2):187-190.
- Hagras, A.A. (2014). Eighty-eight years of bread wheat improvement in Egypt. J. Agric. Res., Kafr El-Sheikh Univ., 40 (3): 517-539.
- Hagras, A., Ragab, K., Shahin, A., Saad-El-Din, H. and Abdelkhalik, S. (2024). Incorporating yellow rust resistance genes Yr8, 15, 27, 34 and 57 in some susceptible Egyptian bread wheat cultivars. Journal of Plant Production, 15(2), 51-59. doi: 10.21608/jpp.2024.267731.1310
- Haider, M.W., Kaur, J., Bala, R. *et al.* (2023). Stripe rust resistance gene(s) postulation in wheat germplasm with the help of differentials and tagged molecular markers. *Sci Rep* **13**, 9007. https://doi.org/10.1038/s41598-023-36197-y
- Khan, M. A., Kamaluddin and Saini R. G. (2012a). Chromosomal location of non-hypersentive leaf rust resistance genes in bread wheat cultivar PBW65 using microsatellite markers, Indian J Biotechnol, 11, 412-415.
- Khan, M. A., Shah M. D. and Saini R. G. (2012b). Multiple disease resistance of an Australian bread wheat cultivar Cook, Australas Plant Pathol, 41, 131-137. DOI: 10.1007/s13313-011-0100-8
- Kuchel, H. F. R., Hollamby, G., Reinheimer, J. L., Jefferies, S. P. (2008). The challenges of integrating new technologies into a wheat breeding programme. In 11th International Wheat Genetics Symposium, Proceedings of 11th International Wheat Genet Symposium, Brisbane, Australia, 24–29 August 2008; Appels, R., Eastwood, R., Lagudah, E., Langridge, P., Mackay, M., McIntyre, L., Sharp, P., Eds.; Sydney University Press: Sydney, Australia, 2008; pp. 1–5.
- Liu, S., Banik, M., Yu, K., Park, S. J., Poysa, V., Guan, Y. (2007). Marker-assisted selection (MAS) in major cereal and legume crop breeding: Current progress and future directions. Int. J. Plant Breed. 1, 74–88.
- Mahrous, A.M.; M. Abdel-Aleem; T. Shehab El-Din; Mustafa, M.A.; S. Abdel-Majeed; S. Sabry; Iman M. Sadek; A.A. Hagras; rt al (2009). Grain yield and stability of the new Egyptian bread wheat cultivar Sids-12. J. Agric. Sci., Mansoura Univ., 34: 3199-3209.
- Malav, A. K. and Chandrawat, K. S. (2016). Gene pyramiding: An overview. Int. J. Curr. Res. Biosci. Plantbiol. 3(7): 22-28. doi: http://dx.doi.org/10.20546/ijcrbp.2016.307.004.
- Mandea, V., Mustăt.ea, P, Marinciu, C.M., Serban, G., Meluca, C., Păunescu, G., Isticioaia, S.F., Dragomir, C., Bunta, G., Filiche, E., et al. (2019). Yield components compensation in winter wheat (Triticum aestivum L.) is cultivar dependent. Rom. Agric. Res, 36, 27-33
- McIntosh, R. A. (1992). Close genetic linkage of genes conferring adult-plant resistance to leaf rust and stripe

rust in wheat, Plant Path., 41, 523-527. https://doi.org/10.1111/j.1365-3059.1992.tb02450.x

- McIntosh, R. A., Dubcovsky, J., Rogers, W. J., Xia, X. and Raupp, W. J. (2022). Catalogue of gene symbols for wheat: 2022 supplement. *Annu. Wheat Newslett.* 68, 104–113.
- McIntosh, R.A. (1997). Breeding wheat for resistance to biotic stresses. In: Braun, HJ., Altay, F., Kronstad, W.E., Beniwal, S.P.S., McNab, A. (eds) Wheat: Prospects for Global Improvement. Developments in Plant Breeding, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4896-2_11
- McIntosh, R. A., Mu, J., Han, D., and Kang, Z. 2018. Wheat stripe rust resistance gene Yr24/Yr26: A retrospective review. Crop J. 6:321- 329. https://doi.org/10.1016/ j.cj.2018.02.001
- McNeal, F. H., Konzak, C. S., Smith, E. P., Tate, W. S. and Russel, T.S. (1971). A uniform system for recording and processing cereal data. USDA ARS 34-121. https://worldcat.org/title/659574398
- Miedaner, T. and Korzun, V. (2012). Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102, 560–566.
- Murphy, L. R., Santra, D., Kidwell, K., Yan, G., Chen, X. et al, (2009). Linkage maps of wheat stripe rust resistance genes *Yr5* and *Yr15* for use in markerassisted selection, Crop Sci, 49 1786-1790. DOI:10.2135/cropsci2008.10.0621
- Paux, E., Sourdille, P., Mackay, I., Feuillet, C. (2012). Sequence-based marker development in wheat: Advances and applications to breeding. Biotechnol. Adv. 30, 1071–1088.
- Peterson, R.F., Campbell, A.B. and Hannah, A.E. (1948). A diagrammatic scale for estimating rust intensity of leaves and stem of cereals. Can J Res Sect C 26:496– 500
- Ragab, Kh. E., Shahin, A. A., Abdelkhalik, S. A. M. (2020). Efficiency of yellow rust resistance genes *Yr5*, *Yr10*, *Yr15* and YrSp in improving the two Egyptian bread wheat cultivars Sids 12 and Gemmeiza 11. Egypt. J. Agron. 42(3): 249-261. https://do i.org/10.21 608/agro.20 20.39840.1225
- Ragab, Kh.E., Mohamed, A.M. (2014). Screening and genetical study for bread wheat gluten strength using solvent retention capacity (SRC) test. Alex. J. Agric. Res. 59(3), 189-196.
- Rajaram, S., Singh, R. P., and Torres, E. (1988). Current CIMMYT approaches in breeding for rust resistance, in breeding strategies for resistance to the rust of wheat, edited by N W Simmonds & S Rajaram (CIMMYT, Mexico) 101-118. URI:<u>http://hdl.handle.net/10883/1103</u>
- Randhawa M, Bansal U, Vala'rik M, Klocova' B, Dolez'el J, Bariana H (2014) Molecular mapping of stripe rust resistance gene *Yr5*1 in chromosome 4AL of wheat. Theor Appl Genet 127:317–324.
- Rasheed, A. and Xia, X. (2019). From markers to genomebased breeding in wheat. Theor. Appl. Genet. 132, 767–784.

- Roelfs, A.P., Singh, R.P., Saari, E.E. (1992). Rust Diseases of Wheat: Concepts and Methods of Disease Management. Mexico, D.F.: CIMMYT. 81p. URI:http://hdl.handle.net/10883/1153.
- Sadek, Eman M.; A. Ageez; M. El-Menofy; M. Abo Shereef; A. Hamada; A. Moussa; R. Kumber; A.A. Hagras; K.E.Ragab; et al (2013). Gemmeiza-11: A new Egyptian high yielding bread wheat (Triticum aestivum L.) cultivar. J. Plant Production, Mansoura Univ., Vol. 4 (2): 183-204.
- Sareen, P., Sundeep, K., Uttam, K., Lakshman, P, Amit, K. S. et al, (2012). Pathological and molecular characterizations of slow leaf rusting in fifteen wheat (*Triticum aestivum* L.) genotypes, Afr J Biotechnol, 11 14956-14966. DOI:10.5897/AJB12.1894
- Shahin A.A. (2017). Effective Genes for Resistance to Wheat Yellow Rust and Virulence of Puccinia striiformis f. sp. tritici in Egypt. Egypt. Acad. J. Biolog. Sci., 8(2): 1–10.
- Shahin, A. A., Ashmawy, M., El-Orabey, W., Esmail, Samar. (2020). Yield losses in wheat caused by stripe rust (*Puccinia striiformis*) in Egypt. American Journal of Life Sciences. Vol. 8, No. 5, pp. 127-134. DOI; 10.11648/j.ajls.20200805.17
- Shahin, A.A. and Abu El-Naga, S.A. (2011). Physiological race diversity and virulence of Puccinia striiformis at both seedling and adult plants of wheat in Egypt. Arab Journal of Plant Protection, 29(1):90-94.
- Sharma-Poudyal D., Chen X.M., Wan A.M., Zhan G.M., Kang Z.S., Cao S.Q., Jin S.L., Morgounov A., Akin B., Mert Z., et al. (2013). Virulence Characterization of International Collections of the Wheat Stripe Rust Pathogen, Puccinia striiformis f. sp. tritici. Plant Dis., 97:379–386. doi: 10.1094/PDIS-01-12-0078-RE.
- Singh, D. P., Sharma, A. K., Babu, K. S. and Sharma, I. (2014). Multiple diseases, insect pests resistant genotypes and their utilization in breeding for resistance in wheat and triticale, Greener J Agric Sci, 4, 150-165. DOI: http://dx.doi.org/10.15580/GJAS.2014.4.042914214
- Singh, R.P., Espino, H.J., William, H.M. (2005). Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turkisk J. Agric. And Forestry, 29(2), 121-127.
- Song, L; Wang, R.; Yang, X.; Zhang, A.; Liu, D. (2023). Molecular markers and their applications in markerassisted Selection (MAS) in bread wheat (*Triticum aestivum* L.). Agriculture 13, 642. https:// doi.org/10.3390/agriculture13030642
- Stakman, E. C. Sewart, D. M. and Loegering, W.Q. (1962). Identification of physiologic races of *Puccinia* graminis tritici ARS, USDA, Agr. Res. Serv. Bull.E-617. 53 pp.
- Stubbs, R.W. (1988). Pathogenicity analysis of yellow (stripe) rust of wheat and its significance in a global context breeding strategies for persistence to the rust of wheat. N.W. Simmonds and S. Rajaram (CIMMYT) ISBN 96-127.

- Tervet, I. and Cassel, R.C. (1951) The use of cyclone separation in race identification of cereal rusts. Phytopathology, 41, 282-285.
- VSN International (2011). GenStat for Windows 14th Edition. VSN International, Hemel Hempstead, UK. Available online www.genstat.co.uk.
- Wang, L. F., Ma, J. X., Zhou, R. H., Wang, X. M. and Jia, J. Z. (2002). Molecular tagging of the yellow rust resistance gene *Yr10* in common wheat, P.I.178383 (*Triticum aestivum* L.), Euphytica, 124 71-73. https://doi.org/10.1023/A:1015689817857
- Wellings, C.R. (2011) Global status of stripe rust: A review of historical and current threats. Euphytica,179, 129-141. https://doi.org/10.1007/s10681-011-0360-y
- William, H. M., Trethowan, R., Crosby-Galvan, E. M. (2007). Wheat breeding assisted by markers: CIMMYT's experience. Euphytica 157, 307–319.

- Xiao, J., Liu, B., Yao, Y., Guo, Z., Jia, H., Kong, L., Zhang, A., Ma, W., Ni, Z., Xu, S., et al. (2022). Wheat genomic study for genetic improvement of traits in China. Sci. China Life Sci., 65, 1718–1775.
- Yang, W. X. and Liu, D. Q. (2004) Advances in localization and molecular markers of wheat leaf rust resistance genes, Sci Agric Sin, 3, 770-779
- Zhao, L., Zheng, Y., Wang, Y., Wang, S., Wang, T., Wang, C., Chen, Y., Zhang, K., Zhang, N., Dong, Z., et al. (2023). A HST1-like gene controls tiller angle through regulating endogenous auxin in common wheat. Plant Biotechnol. J. 21, 122–135.
- Zhou, X. L., Han, D. J., Chen, X. M., Gou, H. L., Guo, S. J. et al, (2014). Characterization and molecular mapping of stripe rust resistance gene Yr61 in winter wheat cultivar Pindong 34, Theor Appl Genet, 127, 935-945.

تجميع جينات مقاومة الصدأ الأصفر Yr5 و Yr10 و Yr15 في السلالات الناتجة من صنفي قمح الخبز سدس 12 وجميزة 11

عادل عبدالعزيز هجرس¹، وخالد الدمرداش رجب¹، وسيدهم عبدالخالق¹، وعاطف عبدالفتاح شاهين²، وسمر مجد عادل إسماعيل²، وواصف عبدالصمد يوسف²، ومجد در غام صحصاح²، والاء يوسف صلاح³، ونورهان محمود فوّاد³، وسوسن توكز³، وعلاء الدين حموية³

> ¹ قسم بحوث القمح- معهد بحوث المحاصيل الحقلية – مركز البحوث الزراعية - مصر ² قسم بحوث أمراض القمح- معهد بحوث أمراض النباتات – مركز البحوث الزراعية - مصر 3 المركز الدولي للبحوث الزراعية في المناطق الجافة - مصر

تم إنتاج وتقييم مائة وثلاثة وسبعون سلالة من قمح الخبز المقاوم للصدأ الأصفر، الناتجة من التهجين بين صنفي القمح سدس 12 وجميزة 11 القابلة للإصابة، والسلالات الثلاثة أحادية الجين التي تحمل جينات 75 و710 و715 في محطة البحوث الزراعية بسخا، خلال الفترة من عام 2016م وحتى 2023م. تمت در اسة مقاومة الصدأ الأصفر في مرحلتي البادرة والنبات البالغ، والكشف عن الواسمات الجزيئية للجينات الثلاثة وكذلك تقييم الصفات المحصولية لهذه السلالات. أظهرت النتائج أن 126 سلالة كات مقاومة في مرحلتي البادرات والنباتات الثلاثة وكذلك تقييم الصفات المحصولية لهذه السلالات. أظهرت النتائج أن 126 سلالة كات مقاومة في مرحلتي البادرات والنباتات البالغة. من بين هذه السلالات، أظهرت 87 سلالة وجود واسمات لجين واحد (7:7، 1700 أو (7:15) وأظهر 30 سلالة وجود واسمات لتوليفة من از واج الجينات (7:0+7:70 / 1750 أو 7:10+7:170). أوضح التقييم المحصولي إلى أن أعلى نسبة تحسين في محصول الحبوب بلغت 3% و25% للسلالات الناتجة من هجن جميزة 11 وسدس 12 على التوالي. سجلت السلالات الحاملة لواسمات جين واحد تفوقا في محصول الحبوب على السلالات السلالات الحاملة لواسمات زوج من الجينات. تعوقت خمسة عشر سلالة في محصول الحبوب مقارنة بالصنف جيزة 110، و23% للسلالات المالة لواسمات زوج من الجينات. توقت خمسة عشر سلالة في محصول الحبوب مقارنة بالصنف جيزة 110، و هذه السلالات الحاملة لواسمات زوج من الجينات. والتوالي. سجلت السلالات الحاملة لواسمات جين واحد تفوقا في محصول الحبوب على السلالات الحاملة لواسمات زوج من الجينات. والتولي عملة عين 17:9% السلالات و2:170، وهذه السلالات 4:35% و 25% للسلالات 12:35% و 2:30% والتى والتوالي. محملة عن توالية واسمات جين واحد تفوقا في محصول الحبوب على السلالات 12:35% و 2:35% والتى والتوالي الجنابي الحاملة لواسمات جين واحد والتي تحمل جيزة 171، و هذه السلالات 12:35% و 2:35% والتي تحمل جين 17:5% الحاملة لواسمات جين واحد والتي تحمل جيزة 171، و هذه السلالات 3:35% و 2:35% و 2:35% والتي تحمل جين 12:55% و 2:35% و 2:35% و 2:35% والتي تحمل جين 2:35% و 2:35% والتي تحمل الجينين 2:35% و 2:35% و 2:35% والتي تحمل جين 12:35% و 2:35% والتي تحمل الجينييزي 12:35% و 2:35% والتلالات والتي تحمل جين 12:35% والتي 12:35% و 2:35% والت لائي مع واليو والت يتحمل التي تحمل بين 12:35% والسلالات قص

Genotype	D	H†		DM	Р	н		BY	(GY		HI%	SM			KS		000KW
G1#1	79	a	146	bcdef	113	h	11.3	efgh	4.125	cdefgh	36.6	abcdef	533	abcdefs	42.1	klmn	55.9	abcd
G1#2	90	mnop	151	iik	120	efg	11.9	cdef	4.027	defgh	33.9	fghiiklm	522	abcdefg	50	cdefghiiklmn	44.3	hiiklmn
G1#3	90.5	mnop	149	efghii	118	fgh	12	abcdef	4.122	cdefgh	34.4	efghiiklm	502	abcdefg	43.8	hiiklmn	48.8	cdefghiik]
G1#4	81.5	abcde	146	hcdefø	135	- <u>e</u>	11	eføh	3.957	deføh	36	bcdeføh	457	bcdefg	43.2	iklmn	53.9	bcdef
G1#5	86	ohiik	148	defohii	120	efo	11.6	cdefg	4 207	bcdefg	36.3	bcdefgh	505	abcdefg	43.5	iiklmn	51.4	cdefghi
G1#6	79.5	ah	140	a	130	ahc	11.0	efgh	4.025	defoh	36.5	bcdefg	383	defo	41.2	lmn	61.7	ah
G1#7	88	iklm	140	defahii	125	cde	11	efgh	3 857	defahi	35.2	defahiik	512	abcdefg	45.9	ohiiklmn	46.4	efohiiklm
G1#8	90.5	mnon	140	efahii	133	ah	13.1	abed	4 297	abcdef	32.9	ahiiklm	405	defa	56.9	abcdefg	50.9	cdefahii
G1#9	102 5	5 t	155	lm	120	efa	12.6	abede	3 5 2 5	hi	28.1	no	375	efa	55.4	abcdefahii	38.8	mno
G1#10	85.5	fahii	1/18	defahii	120	efg	11.0	bcdef	4.01	defah	20.1	fahijklm	512	abcdefa	51.8	bcdefghijklm	54.5	abcde
G1#11	02.51	Ignij	140	il.	120	bed	12.4	abeda	3 017	defahi	31.7	iklmn	457	bcdefa	53	abcdefabiikl	57.2	abcuc
G1#12	92.51	r pq	1/10	jr. dofahii	120	def	12.4	abedef	2 727	ofohi	21.2	JKIIIII	552	obadafa	20.9	abederginjki	55.9	abed
G1#12	90	nnop	140	h::1	125	ab	12	abcdel	1 205	badafa	22.0	fahiildan	442	hadafa	567	IIII abadafa	11.0	abcu hiililme
G1#15	91.51	op 2 abiit	140	nijk	113	gn	12.3	abcde	4.203	obadaf	216	ignijkim ofobiildan	442	bedefg	30.7	fahiililme	44.0	hiildaan
G1#14 C1#15	01.02	o giiijk	149	fahiil	120	abc	12.4	abcde	4.275	dafahi	21.5	lmm	405	obadaf	40.2	ignijkinin	44.4	ahiildaan
G1#15	91.02	<u>z</u> nop	149	ignijk	120	eig	12.0	abcde	3.947	dergm	31.5	imn	5/3	abcder	62.2 54.0		45.5	gnijkimn
GI#16	90.5	mnop	148	dergnij	123	der	12.1	abcder	4.267	abcder	35.4	derghi	597	abed	54.8	abcdefghij	45.9	Ignijkim
GI#1/	80.5	abc	146	bcderg	115	gn	11.6	cderg	4.375	abcde	31.1	abcde	250	abcdefg	39.3	n	48.9	cdergnijki
G1#18	99.01	LS	153	KI	130	abc	11.4	dergh	3.59	gni	31.5	Imn	350	g	64	ab	47.6	derghijki
G1#19	100	st	150	ghijk	128	bcd	12.5	abcde	3.945	defghi	31.6	klmn	408	defg	46.8	fghijklmn	50.5	cdefghij
G1#20	81.5	abcde	147	bcdefgh	123	def	10	gh	3.287	ŋ	32.9	ghijklm	413	defg	53.6	abcdefghijkl	45.3	hijklmn
G1#21	83.5	defg	148	defghij	113	h	12	abcdef	4.81	ab	40.3	а	455	bcdefg	46.5	fghijklmn	48.6	defghijkl
G1#22	82	bcde	144	bc	118	fgh	11.1	efgh	3.957	defgh	35.8	bcdefghi	473	bcdefg	46.5	fghijklmn	54.5	abcde
G1#23	88.51	l klmn	148	defghij	128	bcd	13.6	a	4.47	abcd	33.1	fghijklm	650	ab	49.9	cdefghijklmn	43.1	ijklmn
G1#24	88.5	klmn	146	bcdef	125	cde	10.6	fgh	3.647	fghi	34.4	efghijklm	518	abcdefg	55	abcdefghij	45.7	fghijklm
G1#25	82	bcde	147	bcdefgh	115	gh	11.5	cdefgh	3.945	defghi	34.7	defghijklm	583	abcde	53.5	abcdefghijkl	45.2	hijklmn
G1#26	98	rs	148	defghij	115	gh	12.4	abcde	4.067	defgh	32.8	hijklm	470	bcdefg	60.1	abcde	45.9	fghijklm
G1#27	86.5	hijk	146	bcdefg	118	fgh	11.8	cdef	3.937	defghi	33.5	fghijklm	442	bcdefg	54.3	abcdefghijk	47.1	efghijklm
G1#28	86.5	hijk	145	bcde	128	bcd	12	abcdef	3.855	defghi	32.2	ijklm	470	bcdefg	52.3	bcdefghijklm	41.4	klmn
G1#29	85.53	3 fghij	148	defghij	120	efg	11.5	cdefg	4.067	defgh	35.3	defghij	635	abc	57.1	abcdefg	41.8	klmn
G1#30	89.52	2 lmno	148	defghij	118	fgh	11.3	efgh	3.542	hi	31.5	lmn	542	abcdefg	48.2	efghijklmn	32.6	0
G1#31	82.01	l bcde	148	defghij	130	abc	12.4	abcde	4.352	abcde	35.1	defghijkl	425	cdefg	52	bcdefghijklm	53.7	bcdefg
G1#32	83	cdef	146	bcdef	120	efg	11.7	cdef	4.435	abcd	37.9	abcde	487	bcdefg	53.1	abcdefghijkl	49.8	cdefghijk
G1#33	85.01	l fghi	147	bcdefgh	128	bcd	12.3	abcdef	4.227	bcdefg	34.6	efghijklm	582	abcdef	65.3	а	50.5	cdefghij
G1#34	84.02	2 efgh	148	defghij	114	h	11	efgh	3.737	efghi	34	fghijklm	588	abcde	58.5	abcdef	42.7	jklmn
G1#35	85.03	3 fghi	143	ab	133	ab	11.9	cdef	4.215	bcdefg	35.6	cdefghi	428	cdefg	48.8	defghijklmn	45.3	hijklmn
G1#36	82	bcde	147	cdefghi	128	bcd	13.1	abc	4.817	ab	36.8	abcdef	532	abcdefg	63.6	ab	51.3	cdefghi
G1#37	95	qr	146	bcdefg	128	bcd	11.4	efgh	4.127	cdefgh	36.4	bcdefgh	445	bcdefg	49.3	defghijklmn	52.2	cdefgh
G1#38	80.5	abc	143	ab	128	bcd	11.3	efgh	4.31	abcde	38.3	abcd	498	bcdefg	60.7	abcd	48.1	defghijkl
G1#39	88	jklm	147	bcdefgh	120	efg	12.5	abcde	4.907	a	39.2	ab	567	abcdefg	56	abcdefghi	40.8	lmno
G1#40	101	st	158	m	123	def	11.3	efgh	2.75	j	24	р	720	а	43.7	hijklmn	32.6	0
G1#41	110.5	5 u	158	m	133	ab	9.8	h	2.633	j	27.1	op	495	bcdefg	25.3	0	37.3	no
G1#42	81.01	abcd	147	bcdefgh	118	fgh	11.6	cdefg	4.207	bcdefg	36.2	bcdefgh	457	bcdefg	56.2	abcdefgh	47.8	defghijkl
Gemmeiza 11	82	bede	145	- bcd	118	fob	123	abcdef	4 78	abc	30.1	abe	378	defa	48 7	- defahiik1mn	62.6	2
(protected)	02	ocue	1+5	500	110	ign	12.3	abeuel			57.1	aoc	578	uerg	-+0.7	acignijkini	02.0	4
Misr 3	87	ijkl	150	ghijk	115	gh	13.6	ab	4.81	ab	35.5	cdefghi	580	abcdef	51.7	bcdefghijklmn	46.6	efghijklm
Giza 171	83.5	defg	147	bcdefgh	125	cde	11.9	cdef	4.242	bcdefg	35.8	bcdefghi	362	fg	57.2	abcdefg	53.8	bcdef
%cv	1.58		1		2.23		6.89		8.03		5.24		18		12.1		8.67	
se	1.389)	1.54		2.73		0.81		0.326		1.8		88.9		6.18		4.15	

Supplementary Table S1: Means of the studied traits for Gemmeiza 11 derived lines (first trial; G1), season 2022/2023.

[†] DH; days to 50% heading, DM; days to 50% maturity, PH; plant height (cm), By; biological yield per plot (kg), GY; grain yield per plot (kg), HI% harvest index percentage, SM; number of spikes per square meter, KS; number of kernels per spike, 1000KW; 1000 kernels weight.

Genotype	D	Η†	Γ	DM	P	H		BY		GY	Н		SM		KS		1000KW	
G2#1	83	cdefg	146	ghijk	125	def	12	abcdefgh	4.1	bcdefghij	34	efghijkl	417	ef	40	hij	46	fghij
G2#2	90	mn	151	n	118	gh	13	abc	4.3	abcdefghi	32	jkl	525	abcdef	51	bcdefghij	45	fghij
G2#3	91	n	149	lmn	120	fgh	13	abcd	4	cdefghijk	32	kl	642	а	37	j	42	hij
G2#4	80	ab	141	abc	123	efg	11	efghij	3.9	efghijk	35	bcdefghijk	475	bcdef	40	hij	53	bcdefgh
G2#5	87	ijkl	148	jklm	115	h	11	defghij	4.2	abcdefghij	37	abcdefghij	587	abcd	47	efghij	53	bcdefgh
G2#6	81	abc	144	cdefg	125	def	12	cdefghij	4.3	abcdefghi	37	abcdefghij	408	ef	48	defghij	59	abcde
G2#7	82	bcde	142	bcde	125	def	11	defghij	4.3	abcdefghi	38	abcdefghi	388	f	57	abcdefghi	53	bcdefgh
G2#8	81	abcd	146	ghijk	120	fgh	11	efghij	4.2	abcdefghij	38	abcdefghi	458	bcdef	49	bcdefghij	65	а
G2#9	88	jklm	144	defgh	118	gh	12	cdefghij	3.6	hijk	32	kl	433	def	46	fghij	58	abcde
G2#10	79	а	143	bcdef	123	efg	11	defghij	3.8	efghijk	34	fghijkl	383	f	44	ghij	61	abcd
G2#11	84	efghi	148	jklm	128	cde	14	а	4.9	а	36	abcdefghijk	602	abc	63	abcdef	48	efghij
G2#12	89	lmn	148	jklm	118	gh	11	defghij	3.8	efghijk	33	hijkl	475	bcdef	64	abcdef	38	j
G2#13	83	cdefg	144	cdefg	130	bcd	10	j	3.5	jk	35	bcdefghijk	432	def	51	bcdefghij	55	abcdef
G2#14	97	0	149	1mn	118	gh	12	defghij	3.8	efghijk	33	ijkl	427	def	53	bcdefghij	41	ij
G2#15	90	mn	150	mn	115	h	11	ghij	3.7	fghijk	34	cdefghijk	437	cdef	60	abcdefg	49	efghij
G2#16	89	klmn	147	ijkl	115	h	13	abcd	4.7	abc	37	abcdefghij	615	ab	55	abcdefghij	49	efghij
G2#17	90	mn	147	ijkl	133	bc	11	defghij	4	defghijk	35	bcdefghijk	383	f	56	abcdefghi	52	bcdefgh
G2#18	88	jklm	147	hijkl	128	cde	12	abcdefgh	4.2	abcdefghij	35	bcdefghijk	495	abcdef	57	abcdefgh	55	abcdef
G2#19	82	bcde	144	defgh	135	ab	12	cdefghij	4.5	abcdef	39	abcdef	455	bcdef	64	abcdef	52	bcdefghi
G2#20	86	ghij	144	cdefg	123	efg	10	ij	4.1	bcdefghij	39	ab	483	abcdef	63	abcdef	45	fghij
G2#21	84	defgh	147	ijkl	135	ab	13	abcdef	4.8	ab	38	abcdefgh	560	abcde	65	abcde	50	defghi
G2#22	80	ab	141	abc	120	fgh	12	cdefghij	4.5	abcdef	39	abcdef	422	def	52	bcdefghij	56	abcdef
G2#23	87	ijkl	147	ijkl	135	ab	13	ab	4.9	а	37	abcdefghij	425	def	54	abcdefghij	49	efghij
G2#24	90	mn	148	klmn	140	a	14	а	4.4	abcdefg	33	jkl	478	bcdef	67	ab	46	fghij
G2#25	85	ghij	144	defgh	125	def	12	bcdefghi	4.5	abcde	38	abcdefghi	393	ef	53	bcdefghij	49	efghij
G2#26	87	ijkl	147	hijkl	120	fgh	11	ghij	3.7	ghijk	34	fghijkl	380	f	52	bcdefghij	43	ghij
G2#27	109	р	155	0	135	ab	11	defghij	3.3	k	29	1	398	ef	51	bcdefghij	42	hij
G2#28	86	ghij	145	fghij	128	cde	12	abcdefgh	4.6	abcd	38	abcdefgh	472	bcdef	66	abc	49	efghij
G2#29	82	bcdef	141	abc	133	bc	11	defghij	4.4	abcdefgh	39	abcd	375	f	59	abcdefg	55	abcdef
G2#30	86	hijk	144	defgh	125	def	12	cdefghij	4.1	bcdefghij	36	bcdefghijk	413	ef	64	abcdef	55	abcdef
G2#31	84	efghi	141	abc	120	fgh	11	fghij	4.2	abcdefghij	38	abcdefg	438	cdef	62	abcdef	53	bcdefg
G2#32	80	ab	142	bcd	135	ab	11	hij	4.3	abcdefgh	41	а	370	f	51	bcdefghij	53	bcdefgh
G2#33	90	mn	148	klmn	123	efg	12	bcdefghi	4.3	abcdefghi	36	abcdefghijk	398	ef	61	abcdefg	50	efghi
G2#34	83	cdefg	146	ghijk	125	def	12	cdefghij	4	defghijk	34	defghijk	447	cdef	62	abcdef	49	efghij
G2#35	80	ab	139	а	118	gh	11	ij	4	defghijk	38	abcdefghi	408	ef	39	ij	55	abcdef
G2#36	85	fghi	147	hijkl	130	bcd	12	abcdefg	4.8	ab	39	abcde	420	def	66	abcd	50	defghi
G2#37	80	ab	142	bcd	120	fgh	11	ghij	4.1	bcdefghij	38	abcdefghi	467	bcdef	58	abcdefgh	62	abc
G2#38	89	klmn	144	defgh	120	fgh	11	defghij	4.4	abcdef	39	abcde	418	def	55	abcdefghij	52	bcdefghi
G2#39	90	mn	148	klmn	128	cde	12	defghij	4.3	abcdefghi	37	abcdefghi	412	ef	57	abcdefgh	41	ij
G2#40	81	abcd	142	bcd	120	fgh	11	defghij	4.4	abcdefg	39	abc	415	ef	72	а	55	abcdef
G2#41	80	ab	141	ab	115	h	10	ij	3.6	ijk	35	bcdefghijk	412	ef	62	abcdef	51	cdefghi
G2#42	97	0	151	n	130	bcd	12	bcdefghi	3.9	defghijk	34	ghijkl	412	ef	62	abcdef	46	fghij
Gemmeiza 11 (protected)	82	bcdef	145	efghi	118	gh	12	abcdefgh	4.8	ab	39	abcd	378	f	49	cdefghij	63	ab
Misr 3	84	efghi	146	ghijk	120	fgh	12	bcdefghi	4.3	abcdefghi	37	abcdefghij	412	ef	56	abcdefghi	50	defghi
Giza 171	88	jklm	148	Jklm	115	h	13	abcde	4.3	Abcdefghi	34	Defghijk	487	Abcdef	51	bcdefghij	50	efghi
%cv	1	.6	0	.98	2.9	96		6.63		7.1		5.5	1	5.3		13.2		8.9
se	1	.37	1	.43	3.0	57		0.77		0.3		1.99	6	8.4		7.33		4.52

Supplementary Table S2: Means of the studied traits for Gemmeiza 11 derived lines (second trial; G2), season 2022/2023.

[†] DH; days to 50% heading, DM; days to 50% maturity, PH; plant height (cm), By; biological yield per plot (kg), GY; grain yield per plot (kg), HI% harvest index percentage, SM; number of spikes per square meter, KS; number of kernels per spike, 1000KW; 1000 kernels weight.

Genotype	D	Η†	DM	РН	BY	GY	HI%		SM		KS		1000KW	
S1#1	96	0	151 lmno	125 ab	13.9 abcd	4.02 bcdefghij	29.0 ghijklmn	463	cd	54.7	cdefghijk	40.6	jklmno	
S1#2	81	de	147 fghijk	125 ab	13.4 abcde	3.98 bcdefghij	29.7 efghijklmn	542	abcd	54.6	cdefghijk	40.8	ijklmno	
S1#3	84	efg	147 fghijk	110 ef	12.5 bcde	3.75 defghijk	30.2 defghijklmn	568	abcd	49.9	defghijkl	43.4	fghijklmn	
S1#4	99	р	152 no	115 cdef	13.5 abcde	3.67 efghijkl	27.4 1mnopq	480	bcd	57.8	bcdefghi	41.4	hijklmno	
S1#5	82	def	145 defgh	115 cdef	14.1 ab	4.68 ab	33.3 bcdefg	505	abcd	50.7	defghijkl	45.6	cdefghijkl	
S1#6	86	ghi	148 ghijklm	108 f	13.6 abcde	3.68 defghijkl	27.1 mnopq	593	abcd	50.6	defghijkl	41.8	hijklmn	
S1#7	95	0	148 fghijkl	118 bcde	13.0 abcde	3.97 bcdefghij	30.5 defghijklm	540	abcd	47.0	efghijkl	41.8	hijklmn	
S1#8	81	d	143 abcde	113 def	12.3 bcde	4.35 abcdef	35.3 b	492	abcd	56.4	cdefghij	53.0	abc	
S1#9	90	lm	150 klmn	108 f	12.8 abcde	3.55 ghijkl	27.8 jklmnop	617	abcd	41.9	hijkl	38.9	lmno	
S1#10	86	ghij	151 klmno	118 bcde	12.4 bcde	3.52 ghijkl	28.4 ijklmno	517	abcd	43.9	ghijkl	41.2	hijklmno	
S1#11	81	de	148 fghijkl	120 bcd	12.8 abcde	3.92 bcdefghij	30.9 cdefghijklm	555	abcd	58.8	bcdefgh	47.9	bcdefghij	
S1#12	82	def	150 jklmn	118 bcde	12.6 bcde	3.99 bcdefghij	31.8 bcdefghijk	465	bcd	61.2	bcdef	48.3	bcdefghi	
S1#13	77	bc	146 efghij	120 bcd	13.4 abcde	4.09 bcdefghi	30.7 cdefghijklm	617	abcd	54.6	cdefghijk	51.3	abcde	
S1#14	81	de	148 ghijklm	115 cdef	12.3 bcde	3.54 ghijkl	28.9 hijklmn	542	abcd	34.7	1	28.5	р	
S1#15	89	klm	151 klmno	120 abcd	13.0 abcde	3.55 ghijkl	27.4 klmnopq	618	abcd	51.7	defghijkl	41.0	ijklmno	
S1#16	86	ghij	147 fghijk	115 cdef	13.0 abcde	3.81 defghij	29.4 fghijklmn	555	abcd	41.6	ijkl	44.3	defghijklm	
S1#17	95	0	157 р	115 cdef	13.0 abcde	3.01 kl	23.2 q	472	bcd	55.0	cdefghijk	34.2	op	
S1#18	86	ghi	146 efghij	113 def	13.6 abcde	4.36 abcde	32.1 bcdefghij	592	abcd	39.5	jkl	47.4	bcdefghijk	
S1#19	101	р	154 ор	118 bcde	13.3 abcde	3.99 bcdefghij	30.1 defghijklmn	570	abcd	62.1	bcdef	39.0	lmno	
S1#20	100	р	154 ор	118 bcde	12.6 bcde	3.27 jkl	25.9 nopq	582	abcd	73.8	b	39.9	klmno	
S1#21	82	def	145 defgh	113 def	11.8 cde	3.94 bcdefghij	33.3 bcdefg	642	abcd	51.1	defghijkl	38.5	lmno	
S1#22	86	ghi	144 bcdef	120 abcd	14.9 a	4.61 abc	31.1 bcdefghijklm	575	abcd	56.1	cdefghijk	38.0	mno	
S1#23	88	ijkl	149 ijklmn	113 def	12.7 abcde	4.16 bcdefgh	32.9 bcdefgh	535	abcd	52.3	defghijk	40.0	klmno	
S1#24	80	d	141 ab	115 cdef	12.7 abcde	3.88 cdefghij	30.6 defghijklm	683	abc	47.2	efghijkl	41.3	hijklmno	
S1#25	80	d	143 abcde	113 def	12.2 bcde	4.27 abcdefg	35.0 bc	507	abcd	45.2	fghijkl	50.5	abcdef	
S1#26	93	no	151 klmno	123 abc	14.1 ab	4.24 abcdefgh	30.2 defghijklmn	602	abcd	71.5	bc	39.6	lmno	
S1#27	80	d	145 cdefg	118 bcde	12.2 bcde	3.99 bcdefghij	32.8 bcdefgh	525	abcd	55.3	cdefghijk	44.2	efghijklm	
S1#28	84	fgh	146 efghi	115 cdef	13.2 abcde	3.93 bcdefghij	29.8 efghijklmn	600	abcd	62.1	bcdef	37.1	mno	
S1#29	95	0	151 lmno	120 abcd	12.3 bcde	2.961	23.9 рд	558	abcd	48.6	efghijkl	38.9	lmno	
S1#30	77	b	140 a	128 a	12.8 abcde	3.85 defghij	30.0 defghijklmn	553	abcd	53.1	defghijk	51.4	abcde	
S1#31	89	jklm	146 efghij	125 ab	13.1 abcde	3.88 cdefghij	29.8 efghijklmn	457	cd	66.8	bcd	36.6	no	
S1#32	82	def	142 abcd	113 def	14.2 ab	4.44 abcd	31.3 bcdefghijklm	722	а	39.1	kl	38.9	lmno	
S1#33	73	a	143 abcde	118 bcde	11.7 de	3.51 ghijkl	30.1 defghijklmn	595	abcd	50.4	defghijkl	54.2	ab	
S1#34	80	d	145 cdefg	118 bcde	12.9 abcde	4.43 abcde	34.3 bcd	557	abcd	53.5	defghijk	44.6	defghijklm	
S1#35	80	cd	143 abcde	120 abcd	11.6 e	3.75 defghijk	32.5 bcdefghi	518	abcd	49.9	defghijkl	48.7	bcdefgh	
S1#36	84	fgh	146 efghi	118 bcde	12.5 bcde	4.17 bcdefgh	33.5 bcdef	507	abcd	50.8	defghijkl	47.6	bcdefghij	
S1#37	73	a	141 abc	118 bcde	11.4 e	3.34 ijkl	29.5 fghijklmn	415	d	48.2	efghijkl	57.9	a	
S1#38	87	hijk	146 efghij	118 bcde	13.2 abcde	4.37 abcde	33.3 bcdefg	450	cd	53.9	defghijk	42.1	ghijklmn	
S1#39	111	q	152 mno	115 cdef	14.0 abc	3.36 ijkl	24.1 opq	632	abcd	49.6	efghijkl	40.0	klmno	
S1#40	84	efg	146 efghi	123 abc	13.2 abcde	4.16 bcdefgh	31.6 bcdefghijkl	570	abcd	60.0	bcdefg	42.9	ghijklmn	
S1#41	87	hijk	150 klmn	115 cdef	12.4 bcde	3.48 hijkl	28.2 ijklmnop	570	abcd	62.4	bcde	44.2	efghijklm	
S1#42	91	mn	149 hijklmn	115 cdef	13.2 abcde	3.59 fghijkl	27.4 lmnopq	700	ab	43.3	ghijkl	37.3	mno	
Sids 12 (protected)	82	def	146 efghi	110 ef	8.6 f	3.73 defghijk	43.7 a	183	e	102.1	a	51.8	abcd	
Misr 3	88	ijkl	148 fghijkl	115 cdef	14.8 a	4.94 a	33.4 bcdefg	483	bcd	50.2	defghijkl	50.5	abcdef	
Giza 171	84	fgh	148 fghijkl	118 bcde	12.4 bcde	4.18 bcdefgh	34.0 bcde	407	d	49.1	efghijkl	49.5	bcdefg	
%cv	1	.45	1.24	2.8	6.9	7.9	7.03		17.5		15.72		8.54	
se	1.	246	1.82	3.212	0.891	0.309	2.147		95		8.425		3.712	

Supplementary Table S3: Means of the studied traits for Sids 12 derived lines (first trial; S1), season 2022/2023.

† DH; days to 50% heading, DM; days to 50% maturity, PH; plant height (cm), By; biological yield per plot (kg), GY; grain yield per plot (kg), HI% harvest index percentage, SM; number of spikes per square meter, KS; number of kernels per spike, 1000KW; 1000 kernels weight.

Genotype		DH†		DM		PH		BY		GY		HI%		SM		KS		1000KW
S2#1	97	qrst	147	fghi	115	Cdef	11.8	bcdefg	2.64	q	22.5	opq	775	a	42.1	hi	46.4	abcdefghijk
S2#2	89	jklmnop	151	jkl	115	Cdef	13.4	abcd	3.78	bcdefghijklmno	28.3	ijklm	567	bcdefghijklmno	60.4	bcdefghi	42.1	defghijklmno
S2#3	97	rst	143	abcde	118	bcdef	12.0	bcdefg	3.84	bcdefghijklmn	32.1	cdefghijk	508	efghijklmno	57.3	bcdefghi	42.2	defghijklmno
S2#4	93	nopqr	150	ijk	115	Cdef	11.4	defg	3.28	ijklmnopq	28.9	ghijklm	722	ab	62.9	bcdefg	39.8	hijklmno
S2#5	90	lmnopqr	141	ab	110	ef	11.2	efg	3.14	mnopq	28.1	ijklm	472	ijklmno	69.0	bcd	45.6	abcdefghijkl
S2#6	85	efghijkl	152	klm	115	cdef	12.9	abcdef	3.64	fghijklmno	28.4	hijklm	675	abcd	48.2	efghi	38.5	klmno
S2#7	95	opqrs	152	klmn	118	bcdef	13.1	abcde	3.55	ghijklmnop	27.3	klmn	455	jklmno	48.4	efghi	36.7	no
S2#8	92	mnopqr	154	lmn	115	cdef	12.8	abcdefg	3.49	hijklmnop	27.0	lmno	418	mno	75.5	b	40.6	ghijklmno
S2#9	103	stu	156	n	120	abcdef	13.7	ab	3.00	opq	21.9	pq	598	bcdefghijk	43.3	ghi	41.5	fghijklmno
S2#10	94	nopar	150	iik	120	abcdef	12.6	abcdefg	3.25	klmnopa	26.0	mnop	583	bcdefghiikl	45.1	fghi	39.4	iiklmno
S2#11	80	bcdefg	144	abcdefg	108	f	12.9	abcdef	4.51	abcd	34.9	bcde	525	defghijklmno	53.6	defghi	50.1	abcd
S2#12	75	abc	146	deføh	120	abcdef	12.9	abcdefg	3.31	iiklmnopa	25.8	mnop	477	hiiklmno	52.0	defghi	49.1	abcdef
\$2#13	72	a	143	abcde	118	hcdef	11.7	hcdefg	3.08	nopa	26.1	mnon	617	abcdefohii	48.2	efohi	53.3	a
\$2#14	73	ab	142	abc	118	bcdef	10.8	gh	2 76	nopq	24.9	mnopa	552	cdefghijklmno	61.9	bcdefgh	47.7	abcdeføb
\$2#15	72	3	142	abed	110	ef	11.6	cdefa	3.28	iiklmnona	24.9	hiiklm	600	bcdefahijk	48.9	defahi	47.0	abcdefghi
\$2#15	92 81	u bedefa	142	bedefa	115	cdef	11.0	efa	3.20	bedefabijklmno	34.0	bcdef	508	efghijklmno	51.4	defahi	42.7	defahijklmn
\$2#10	80	bedef	143	abed	113	def	0.0	hi	3.77	iklmnona	35.8	bede	418	mpo	61.7	bedefab	42.7	cdefabjiklm
\$2#17	80 77	abad	142	abed	113	aba	12.2	abadafa	2.62	fahiiklmno	20.6	fahiikim	410	nhada	57.4	bodofahi	44.0	abadafa
\$2#10	01	hadafa	142	abed	120	abada	12.5	hodofo	4.11	abadafab	29.0	igilijkili	522	dafahiikimna	50.2	bodofahi	40.5	abcdeig
52#19	01	fahiildan	142	abedaf	125	hadaf	11.9	obodof	4.11	abcdeign	22.2	bedefek	532	defghijkinno	39.2 40.2	dafahi	49.5	abcue
52#20	0.5 1.02	ignijkim	145	abcdel	110	ocuei	12.9	abcder	4.28	abcdeigh fab White	35.2	bcdeign	502	dergnijkimno	49.2	deigni	41.0	ergnijkimno
52#21	102	tu	150	n 	120	abcder	13.7	ab	3.62	rgnijkimno	20.4	mnop	593	bcdeignijk	44.5	gni	34.4	0
S2#22	88	hijklmnop	149	hijk	133	a	12.0	bcdefg	3.78	bcdefghijklmno	31.5	defghijkl	723	ab	55.8	bcdefghi	39.9	hijklimno
S2#23	82	cdefghijk	145	bcdefg	115	cdef	12.7	abcdefg	3.67	efghijkimno	29.0	ghijklm	508	efghijkimno	40.3	1	41.3	fghijklmno
S2#24	89	ijklmnop	143	abcdef	118	bcdet	13.7	ab	3.98	abcdefghijk	29.1	ghijklm	640	abcdefgh	74.9	bc	46.4	abcdefghijk
\$2#25	87	fghijklmn	144	abcdefg	115	cdef	12.7	abcdefg	3.96	abcdefghijkl	31.3	efghijkl	517	defghijklmno	54.0	detghi	42.5	defghijklmn
S2#26	84	defghijkl	141	a	110	ef	11.2	efg	4.07	abcdefghi	36.3	bcd	547	cdefghijklmno	46.4	fghi	46.9	abcdefghi
S2#27	81	cdefgh	144	abcdefg	118	bcdef	12.9	abcdefg	4.52	abc	35.2	bcde	450	klmno	60.3	bcdefghi	43.5	defghijklmn
S2#28	85	efghijkl	143	abcde	113	def	13.1	abcde	4.56	ab	35.1	bcde	547	cdefghijklmno	64.9	bcdef	46.1	abcdefghijk
S2#29	80	bcdef	141	ab	110	ef	12.0	bcdefg	4.31	abcdefg	36.1	bcde	550	cdefghijklmno	49.8	defghi	46.7	abcdefghij
S2#30	88	ghijklmno	146	efghi	118	bcdef	13.8	ab	4.52	abc	32.9	bcdefghi	657	abcdef	46.6	fghi	42.4	defghijklmn
S2#31	81	cdefgh	147	ghij	113	def	12.0	bcdefg	3.83	bcdefghijklmn	32.1	cdefghijk	647	abcdefg	54.5	defghi	53.0	ab
S2#32	80	bcdef	142	abcd	115	cdef	12.2	bcdefg	4.56	ab	37.4	b	525	defghijklmno	58.0	bcdefghi	49.6	abcde
S2#33	77	abcde	144	abcdefg	115	cdef	11.2	efg	3.79	bcdefghijklmno	34.0	bcdef	525	defghijklmno	49.8	defghi	44.9	cdefghijklm
S2#34	94	nopqr	151	klm	115	cdef	11.4	defg	3.17	lmnopq	27.8	jklmn	700	abc	55.1	cdefghi	43.4	defghijklmn
S2#35	81	cdefghi	143	abcde	115	cdef	12.5	abcdefg	4.36	abcdef	35.0	bcde	578	bcdefghijklmn	68.0	bcde	45.3	bcdefghijkl
S2#36	77	abcd	143	abcde	115	cdef	10.9	fgh	3.71	defghijklmno	34.1	bcdef	410	0	49.0	defghi	49.3	abcdef
S2#37	87	ghijklmno	143	abcdef	120	abcdef	12.3	bcdefg	4.28	abcdefgh	35.0	bcde	625	abcdefghi	52.5	defghi	45.9	abcdefghijk
S2#38	81	bcdefg	144	abcdefg	120	abcdef	11.5	cdefg	4.18	abcdefgh	36.7	bc	592	bcdefghijk	54.9	defghi	48.5	abcdefg
S2#39	81	bcdefg	145	cdefgh	118	bcdef	11.6	cdefg	3.89	abcdefghijklm	33.7	bcdefg	500	efghijklmno	51.9	defghi	47.0	abcdefghi
S2#40	80	bcdef	143	abcdef	120	abcdef	12.0	bcdefg	4.12	abcdefgh	34.3	bcdef	492	ghijklmno	46.6	fghi	38.7	jklmno
S2#41	88	ghijklmno	147	fghi	118	bcdef	12.5	abcdefg	4.07	abcdefghi	32.9	bcdefghi	495	fghijklmno	59.0	bcdefghi	45.4	abcdefghijkl
S2#42	80	bcdef	145	bcdefg	115	cdef	12.6	abcdefg	4.56	ab	36.3	bcd	425	lmno	61.4	bcdefgh	44.4	cdefghijklmn
S2#43	78	abcde	141	a	120	abcdef	12.1	bcdefg	4.34	abcdefg	35.9	bcde	438	klmno	52.1	defghi	47.7	abcdefgh
S2#44	90	klmnopq	147	ghij	118	bcdef	12.6	abcdefg	4.06	abcdefghij	32.3	cdefghij	582	bcdefghijklm	49.4	defghi	37.0	mno
S2#45	77	abcd	144	abcdefg	130	ab	12.4	abcdefg	4.27	abcdefgh	34.6	bcde	417	no	54.6	defghi	46.0	abcdefghijk
S2#46	105	u	155	mn	120	abcdef	11.4	defg	2.65	q	23.4	nopq	407	0	47.0	fghi	37.7	lmno
S2#47	106	u	156	n	120	abcdef	12.7	abcdefg	2.62	q	20.7	q	475	ijklmno	53.8	defghi	42.1	defghijklmno
Sids 12 (protected)	82	cdefghij	146	defgh	110	ef	8.6	i	3.73	cdefghijklmno	43.7	a	183	р	102.1	a	51.8	abc
Misr 3	95	pqrst	147	fghi	113	def	14.4	a	4.66	a	32.5	cdefghij	653	abcdefg	45.4	fghi	48.7	abcdef
Giza 171	82	cdefghij	147	ghij	125	abcd	13.6	abc	4.45	abcde	32.9	bcdefghi	585	bcdefghijkl	49.3	defghi	52.4	abc
%cv		4.1		1.27		6.02		8.38		10.38		6.3		14.95		14.8		7.3
Se		3.499		1.844	7	.045		1.021		0.3941		1.99		81.25	8	8.121		3.242

Supplementary Table S4: Means of the studied traits for Sids 12 derived lines (second trial; S2), season 2022/2023.

† DH; days to 50% heading, DM; days to 50% maturity, PH; plant height (cm), By; biological yield per plot (kg), GY; grain yield per plot (kg), HI% harvest index percentage, SM; number of spikes per square meter, KS; number of kernels per spike, 1000KW; 1000 kernels weight.