

F

EGYPTIAN ACADEMIC JOURNAL OF BIOLOGICAL SCIENCES TOXICOLOGY & PEST CONTROL

ISSN 2090-0791

WWW.EAJBS.EG.NET

Vol. 17 No. 1 (2025)

www.eajbs.eg.net

Egypt. Acad. J. Biology. Sci., 17(1):13-22 (2025)

Egyptian Academic Journal of Biological Sciences F. Toxicology & Pest Control ISSN: 2090 - 0791 http://eajbsf.journals.ekb.eg/

Effect of Biocide Compounds Biofly and Metarril on Three Phytophagous Mites, Tetranychus urticae Koch; Brevipalpus californicus (Banks); Panonychus ulmi (Koch) on Apple Trees Under Field Conditions

Ahmed M. El-Halawany¹, Abdel Sattar M. Metwally² and Awad A. Abdallah²

¹Fruit Acarology Research Department, Plant Protection Research Institute, Agricultural research Center, Giza, Egypt.

²Department of Agriculture, Zoology and Nematology, Faculty of Agriculture, Al- Azhar University, Cairo, Egypt.

*E-mail: ahmedelhalawany82@gmail.com

INTRODUCTION

The Phytophagous mites are universal pests, causes great damages to fruit trees over world. The negative effects of these pests on fruit trees are regarded to their short biological cycle, ability to cause injuries and their highly fertility rate (Araujo et.al., 2020). Some species from family Tetranychidae Donnadieu: (Tetranychus urticae Koch; Eutetranychus orientalis (Klein); Panonychus ulmi (Koch) and P. citri McGregor); Tenuipalpidae Berlese (Brevipalpus californicus (Banks) and B. phoenicis (Geijskes)) and Eriophyidae Nalepa (Phyllocoptruta oleivora (Ashmead)) are the important pests on fruit trees which causes serious damages (Author). The mite's population and losses they cause can be controlling by chemical method, but it is not sustainable for agriculture as the wide spread use of acaricides which cause ecological problems such as destroying non-target useful organisms, harmful for human health because their residues on food and developing resistance to chemicals by mites (Kumral, et al. 2020). Moreover, many studies have been conducted on the alternatives to the chemicals mites control strategies to get both environmentally- and human-friendly as well as to avoid the resistance (Ashrafju, *et. al.* (2014); Numa, *et. al.* (2015); Yesilayer, (2015); Numa Vergel, *et. al.* (2016); Basaid, *et al.* 2020). So, the presented study aims to evaluate the Biocide compounds Biofly, *Beauveria bassinet* (Bals. -Criv.) and Metarril, *Metarlizium anisopliae* (Metchnikoff) on three phytophagous mites *Tetranychus. urticae* Koch; *Brevipalpus californicus* (Banks); *Panonychus ulmi* (Koch) on apple trees under field conditions.

MATERIALS AND METHODS

The experiments were carried out in Qalubia governorate in 2021 on apple trees which were found heavily infested with three phytophagous mites (*Tetranychus urticae* (Koch); *Brevipalpus californicus* (Banks); *Panonychus ulmi* (Koch)). The experimental design was randomized complete blooks each treatment was replicated, each replicate included forty apple trees. Four applications were achieved by each commercial *Beauveria bassiana* (3×10^7 Conidia/cm³) and *Metarlizium anisopliae* (1×10^8 Conidia/ml) 1product. The length among first, second and third application were a week interval. The fourth application was done after 21 days from the third application. A 600-liter motor was used to spray the trees with the pesticide, and then each samples containing 40 leaves were examined for each treatment. Count of the phytophagous mites started just before treatment in a sample as pre-account followed by weekly samples after treatment from 20Augst to 7 October, the percentages of reduction in the phytophagous mite's population due to treatments were assessed according to Hendrson and Titlon equation (1955).

RESULTS

A-Effect of Biocide Compounds Biofly, *Beauveria bassiana* (Bals. -Criv.) and Metarril, *Metarlizium anisopliae* (Metchnikoff) against Some Phytophagous Mites Under Field Conditions.

1-Effect of Biocide Compound Biofly, *Beauveria bassiana* (Bals. -Criv.) against Some Phytophagous Mites Under Field Conditions.

a). Effect of Biocide compound Biofly, *Beauveria bassiana* (Bals. -Criv.) against two spotted spider mite, *Tetranychus urticae* (Koch).

Table (1) and Figure (1); showed that the population size of *T. urticae* had been affected by the releasing of the parasite fungi *B. bassiana* with a relative difference in the percentage of reduction, which released on $(20^{th} \text{ Aug}) 2021$ by rate 100 cc 3×10^7 Conidia/cm³ during the three months of the treatment (Augst, September and October) where the pre- count of the pest was recording 450 individuals in the control group, on the other hand it reached 522 in the treatment group per 12 fruits and 40 leaves on 20^{th} Aug., 2021. The greatest reduction percentage was about a twenty day after the start of the experiment on $(10^{th} \text{ Sep.}),2021$ it had reached 95.1 %, that may agree with (**Fargues** *et al.*, **2018**) who confirmed that the optimal temperatures of the *B. bassiana* are generally between 25 and 28 °C. This result also was confirmed by the World Meteorological Organization that the average temperature in Egypt during the months of September and October arrange (23.3-26) degrees Celsius respectively. The next higher reduction ratio recorded on (17th Sept.,) in was about 77.55% after one week from the over the top on the reduction.

In general, the rest of the details of the reduction percentages on both (27th August, 3rd September, 24th September, 31st September and 7th October) had been reaching (50.73%, 41.22%, 47.92%, 63.02% and 61.19%) respectively.

Treatment Date	Rate of application /100 liters of water	Pre-Count		Number of mites after treatment/12 fruits+40 leaves		Reduction %
		Control	Treatment	Control	Treatment	
	100 <u>cc_3</u> ×10 ⁷					
20 -August 2021	Conidia/cm ³	450	522			
	100 cc 3×107					
27- August	Conidia/cm ³			350	200	50.73
	100 cc 3×107					
3- September	Conidia/cm ³			220	150	41.22
10- September				880	50	95.10
17- September				4800	1250	77.55
24 -September				9600	5800	47.92
31- September	100 cc 3×107			9850	4225	63.02
-	Conidia/cm ³					
7- October				10138	4564	61.19

Table 1: Effect of Biocide compound Biofly, *Beauveria bassiana* against *T.urticae* under field conditions.

Fig. 1: Effect of Biocide compound Biofly, *Beauveria bassiana* against *T. urticae* under field conditions

b). Effect of Biocide compound Biofly, *Beauveria bassiana* (Bals. -Criv.) against flat mite, *B. californicus* under field conditions:

Data in Table (2) and Figure (2); showed that the results of *B. bassiana* which released on the host *B. californicus* on (20^{th} Aug) by rate 100 cc 3×10^7 Conidia/cm³; were not different from the previous host *T. urticae* as the reduction rates ranged roughly during the three months of experimentation. Approximately, the highest reduction rate on this host was close in time to that of the previous host. In this case the strongest reduction recorded 74.45% on (24^{th} Sep.,) its difference may be due to the mode of action of the parasite on the mite *B. californicus*. On the other hand, the lowest reduction percentage was recorded 37.57 % on 27^{th} August. While the rest of the reduction rates were recorded (56.42%, 57.85%, 62.64%, 46.75% and 40.94%) on (3^{rd} September, 10^{th} September, 17^{th} September, 31^{st} September, and 7^{th} October) respectively.

	Rate of application	Pre-Count		Number o		
Treatment	/100 liters of water	treatment/12 fruits+40		fruits+40 leaves	Reduction	
Date		Control	Treatment	Control	Treatment	%
	100 cc 3×107					
20 -August 2021	Conidia/cm ³	450	522			
	100 cc 3×107					
27 -August	Conidia/cm ³			390	150	37.57
3- September	100 cc 3×107			250	120	56.42
	Conidia/cm ³					
10- September				450	220	57.85
17 -September				1500	650	62.64
24 -September				4050	1200	74.45
31- September	100 cc 3×107			10200	6300	46.75
	Conidia/cm ³					
7- October				9050	6200	40.94

Fig (2): Effect of Biocide compound Biofly, *B. bassiana* against B. *californicus* under field conditions.

c- Effect of Biocide Compound Biofly, *B. bassiana* against *P. ulmi* Under Field Conditions:

Information that tabulated in Table (3) and Figure (3); showed Examination result after dealing with the pest *P. ulmi* with the parasite *B. bassiana* which released on (20th Aug) by rate 100 cc 3×10^7 Conidia/cm³., where the data was as follow.

The top of the reduction occurred on (24th Sept.,) 77.7 %, it was same the date of the highest reduction of the mite *B.californicus*. While in this treatment there is a close result on (3rd Sept.) that reached 75.65% reduction percentage. On the other hand, the lowest reduction was recorded on (27th Aug.,) But the total details of this treatment during the three months were as follows (42.52%, 75.65%, 49.73 %, 49.18 %, 77.7 %, 43,62 %, and 45.1 %) reduction percentages on the days of the examinations (27th August, 3rd September, 10th September, 17th September, 24th September, 31th September and 7th October) respectively.

conu	1110115.					
Treatment	Rate of application /100 liters of water	Pre-Count		Number of treatment/12 f	Reduction %	
Date		Control	Treatment	Control	Treatment	
20 -August 2021	100 cc 3×107	450	522			
	Conidia/cm ³					
27- August	100 cc 3×107			8400	5600	42.52
	Conidia/cm ³					
3- September	100 cc 3×107			354	100	75.65
	Conidia/cm ³					
10- September				600	350	49.73
17 -September				950	560	49.18
24 -September				5800	1500	77.7
31- September	100 cc 3×107			25000	16350	43.62
	Conidia/cm ³					
7 -October				9900	8200	45.1

 Table 3: Effect of Biocide compound Biofly, B. bassiana against P.ulmi under field conditions.

Fig. (3): Effect of Biocide compound Biofly, B. bassiana on P.ulmi) under field conditions

2-Effect of Biocide Compound Metarril, *Metarlizium anisopliae* (Metchnikoff) against Some Phytophagous Mites Under Field Conditions.

a). Effect of Biocide compound Metarril, *Metarlizium anisopliae* (Metchnikoff) against Two Spotted Spider Mite, *T. urticae*:

Results which inserted in Table (4) and illustrated in Figure (4), Showed the effect of the biocide compound biofly, *M. anisopliae* on *T. urticae* started from (20th Aug.) 2021. Where the initial number pre-count of the *T.urticae* were 460 individuals for control and 380 for the treatment per 12 fruits and 40 leaves; recorded as follow results. That parasite caused a decrease in the density of the mites at a rate 84.55% reduction percentage on (3rd Sept.), whereas it was the highest percentage in this experiment on the other hand the lowest reduction 40.68 % was recorded on (31st Sept.,). While the rest of the reduction rates were recorded as follows: (68.14%, 65.03 %, 56.76%, 60.92 %, and 53.44%) on (27th August, 10th September, 17th September, 24th September and 7th October) respectively. These results proved what (Bugeme *et al.*, 2014) reported where they mentioned that the parasite *M. anisopliae* can be as an alternative to acaricides.

Treatment Date	Rate of application /100 liters of water	Pre-Count		Number of mites after treatment/12 fruits+40 leaves		Reduction %
		Control	Treatment	Control	Treatment]
20- August 2021	100 cc					
-	1×10 ⁸ Conidia/ml	460	380			
27- August	100 cc					
	1×10 ⁸ Conidia/ml			380	100	68.14
3- September	100 cc			980	125	84.55
-	1×10 ⁸ Conidia/ml					
10- September				4500	1300	65.03
17- September				9800	3500	56.76

22200

5940

150

16700

12160

390

60.92

40.86

53.44

Table 4: Effect of Biocide compound Metarril, *M. anisopliae* on two spotted spider mite *T. urticae* (Koch) under field conditions.

Fig. 4: Effect of Biocide compound Metarril, *M. anisopliae* on *T. urticae* under field conditions.

b). Effect of Biocide compound Metarril, *M. anisopliae* against Flat mite *B. californicus* under field conditions

Results in Table (5): and Figure (5), Where the release of Biocide compound *M. anisopliae* in the field was tested on the mite *B. californicus* Confirm The pathogenic fungus had a very high lethal effect on the mites under study During the experiment that took place in the 2021 season, which released on (20 Aug) by rate 100 cc 1×10^8 Conidia/ml during time from August to October of the same year, the percentage of reduction reached its peak during the month of September specifically in the examination that took place on September 10^{th} 96.91%, where the control number of the mite recorded 981 individuals while the density of the mite in the treatment was 25 individuals, on the other side had been noted that the lowest reduction on 31^{St} September 40.56%. other than, the reduction percentages were (60.04%, 70.35%, 68,69%, 41,14% and 70.65%) on both (27th August, 3rd September, 17th September, 24th September and 7th October) respectively.

24- September

31- September

7- October

100 cc

1×10⁸Conidia/ml

Table 5: Effect of Biocide compound Metarril, *M. anisopliae* on flat mite *B.californicus* under field conditions.

Treatment Date	Rate of application /100 litres of water	Pre-Count		Number of mites after treatment/12 fruits+40 leaves		Reduction %
		Control	Treatment	Control	Treatment	
20 August 2021	100 cc					
_	1×108Conidia/ml	460	380			
27 August	100 cc					
	1×108Conidia/ml			380	124	60.04
3 September	100 cc					
	1×10 ⁸ Conidia/ml			392	96	70.35
10 September				981	25	96,91
17 Septembe				5800	1500	68,69
24 September				10168	4944	41.14
31 September	100 cc			16700	8200	40,56
_	1×10 ⁸ Conidia/ml					
7 October				14850	3600	70.65

Fig. 5: Effect of Biocide compound Metarril, *Metarlizium anisopliae* against flat mite *B. californicus* under field conditions.

c). Effect of Biocide compound Metarril, *Metarlizium anisopliae* on *Panonychus ulmi* (Koch) under field conditions:

Data in Table (6) and Fig (6); showed that the effect of the biocide compound biofly *M. anisopliae* when it was tasted on P. ulmi by rate100 cc 1×108 Conidia/ml during time from August to October; that The obvious positive effect is in the percentage reduction occurred on 3rd September, when the control number of the individuals of the pest was 1080, and the treatment number recorded 120, meanwhile the reduction percentage reached 86.54%, that is considered an indicator that the strongest effect comes after about two weak of treatment, which started on 20th August in the same season. While after just two weeks that compound recorded the lowest reduction 40.68 % after the peak of reduction. While the percentages of reduction taken from the experiment were (49.32%, 75.12%, 46.19% 45.5 %. and 46.19) on (27th Augst, 10th September, 24th September, 31st September, 7th October) respectively.

Treatment	Rate of application /100 litres of water	Pre-Count Number of mites after treatment/12 fruits+40 leave		iites after its+40 leaves	Reduction	
Date		Control	Treatment	Control	Treatment	%
20- August 2021	100 cc 1×10 ⁸ Conidia/ml	460	380			
27- August	100 cc 1×10 ⁸ Conidia/ml			430	180	49.32
	100 cc					
3- September	1×10 ⁸ Conidia/ml			1080	120	86.54
10- September				5500	1130	75.12
17- September				10000	4900	40.68
24- September				18000	8000	46.19
	100 cc					
31- September	1×10 ⁸ Conidia/ml			10138	4564	45.5
7- October				450	200	46.19

Table 6: Effect of Biocide compound Metarril, *M. anisopliae* on *P. ulmi* under field conditions.

Fig. 6: Effect of Biocide compound Metarril, *M. nisopliae* on *P. ulmi* under field conditions.

DISCUSSION

The present study aimed to evaluate two biocide compounds Biofly (*B.bassiana*) and Metarril (*M. anisopliae*) by concentrates 3×10^{7} conidia/ cm³ and 1×10^{8} conidia/ml resp. against three phytophagous mites (T. urticae; P. ulmi and B. californicus) on apple trees in the field. Four applications were conducted, three of them were subsequently by 7 days intervals while the last application was occurred before the end of experiment by one week .After 7 days of the first application at the 20th of August , 2021 the population reduction of T. urticae; P. ulmi and B. californicus were 50.73%; 42.52 % & 37.57% in case of B. bassiana resp. While in case of M. anisopliae the population reduction of T. urticae; P. ulmi and B. californicus were 68.14%; 49.32% & 60.04% resp. Highly decreased of the mites population after second and third applications. On the other hand, the mites population sharply decreased during the period from the third application (3rd of sept.) to 24th sept. which caused final application conducting at 31th Sept. The reduction of the mites population after last application were 61.19%; 45.1% & 40.94% in case of B. bassiana resp. while in case of M. anisopliae the population reduction of T. urticae; P. ulmi and B. californicus were 53.44%; 46.19% & 70.65% resp.the results of this study agreement with Halawa (1998) who evaluated Biofly(Beauveria bassiana) to control citrus rust mite, *Phyllocoptruta oleivora* by using four application at concentrate 3 x10⁷ conidia/ cm^3 . His results were recorded average reduction of *P. oleivora* reached to 72.2%. Moreover, the fungi, B. bassiana was used on Cucumber to control two spotted spider

mite, *T. urticae*. The biocide compound which contained spores of *B. bassiana* was sprayed four time and population reduction reached to 80.86% (EL-Adawy *et al.*, 1995). Therefore, the mentioned biocides compound can be inserted as a tandem control strategy of mites as a safe method, especially many authors such as Hassan, *et. al.* (2017) who studied the side effects of Biofly(*B. bassiana*) and Metarril (*M. anisopliae*) against the adult of the two predator mites *Phytoseiulus persimilis* and *Neoseiulus californicus*. His results indicated that, the mentioned biocompound were harmless against *P. persimilis* and slightly harmful against *N. californicus*.

Declarations

Ethical Approval: Not applicable.

Competing Interests: The authors declare that they have no competing interests.

Authors' Contributions: MA, NG, SE and AT did the conceptualization. MA, NG, SE and AT contributed in the formal analysis. MA, NG and SE took part in the investigation. MA wrote the original draft. NG and AT did the writing review and approved the final manuscript. All authors read and approved the final manuscript.

Funding: No funding was received.

Availability of Data and Materials: All datasets analyzed and described during the present study are available.

REFERENCES

- Araujo M.J.C., Camara C.A.G., Bornf.S., Moraes M.M. (2020): Acaricidal activity of binary blends of essential oils and selected constituents against *Tetranychus urticae* in laboratory/ greenhouse experiments and the impact on *Neoseiulus californicus*. *Experimental and Applied Acarology*, 80, 423, 2020
- Ashrafju, M.; Ahmadi, K.; Purhematy, A. (2014): Impacts of six ethanolic plant extracts on feeding and developmental time of *Tetranychus urticae*.*Acta Phytopathologica et Entomologica Hungarica*; 2014. 49 (2) : 245-251. 12 ref.
- Basaidid, K.; Chebli, B.; Mayad, E.H.; Furze, J.N., (2020): Biological activities of essential oils and lipopeptides applied to control plant pests and diseases: A review. *International Journal of Pest Management*, vol.67 (5): 155-177.
- El Adawy, A.M.; Yousri, H.; Ahmed, Y. M. and El-Sharkawy, T. (1995). Effect of some acaricides and the biocide naturalis- L (*Beauveria bassiana*) on the two spotted spider mite Tetranychus urticae (Koch) infesting cucumber under plastic house condition.6th Nat.Conf.of pests & Dis. of veg.&fruits in Egypt and Arab Count.,Ismailia, Egypt., 1995, P. 136 141.
- Figueiredo, E. S. de; Massaro, M.; Carmo, S. do; Moraes, G. J. de (2018): Rearing system for the predatory phytoseiid *Euseius concordis* (Acari: Phytoseiidae). *Experimental and Applied Acarology*, vol.74 (1): 13-23.
- Halawa. A.M. (1998): Studies on some mites associated with citrus trees. MSc. Faculity of Agriculture. Benha university, 98 pp.
- Hassan, D.M.A, Rizk, M.A., Sobhy, H.M., Mikhail, W.Z.A. and Nada, M.S. (2017): Virulent Entomopathogenic Fungi against The Two-Spotted Spider Mite *Tetranychus urticae* and some Associated Predator Mites as Non-Target Organisms. *Egyptian Academic Journal of Biological Sciences (A.Entomology)*, Vol.10 (6) : 37-56.
- Henderson, C.F. and Tilton, E.W. (1955): Tests with acaricides against the brow wheat mite, *Journal of Economic Entomology*, Vol.48 (2): 157–161.

- Kumral, A.Y.; Kumral, N.A.; Gurbuz O. Chlorpyrifos and Jensen, (2020): deltamethrin degradation potentials of two *Lactobacillus plantarum* (Lactobacillales: Lactobacillaceae) strains. *Turkish Journal of Entomology*, vol.44 (2), 165, 2020.
- Numa, S.; Rodriguez, L.; Rodriguez, D.; Coy-Barrera, E. (2015): Susceptibility of *Tetranychus urticae* Koch to an ethanol extract of *Cnidoscolus aconitifolius* leaves under laboratory conditions. *SpringerPlus*; 2015. 4 (338) : (11 July 2015). 43 ref.
- Numa Vergel, S. J.; Rodriguez Coy, L.; Rodriguez Caicedo, D.; Coy-Barrera, E. (2016): Effect of acaricidal activity of Solanum nigrum on *Tetranychus urticae* Koch under laboratory conditions. *African Journal of Biotechnology*; vol.15 (10) : 363-369. 30 ref.
- Yesilayer, A.; Matur, E. C.; Dogar, G. (2015): Plant extracts as an organic control agent for spider mites *Tetranychus urticae* (Tetranycidae: Acarina) Koch. Source Sixth *International Scientific Agricultural Symposium* "Agrosym 2015", Jahorina, Bosnia and Herzegovina, October 15-18, 2015. Book of Proceedings; 2015. 1190-1193. 25 ref.