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The idea of rough continuous functions is essential to 

comprehending the dynamics and structure of data in the field of 

information systems theory. Within the information systems 

paradigm, this study examines the connection between rough set 

theory and continuity. We start by outlining the rough sets' theoretical 

underpinnings and how they are used in data analysis and display. 

Building upon this foundation, we introduce the notion of rough 

continuous functions, which extend traditional continuity concepts to 

accommodate the ambiguity intrinsic to rough set theory. Key 

contributions include a formal definition of rough continuous 

functions and an exploration of their properties within information 

systems. We investigate how these functions facilitate a more nuanced 

understanding of data behavior, particularly in scenarios where data 

exhibit varying degrees of granularity and uncertainty. Practical 

implications are discussed, highlighting the potential applications of 

rough continuous functions in data-driven decision-making and 

information system design. By connecting rough set theory with 

continuous functions, this paper not only advances theoretical 

understanding but also offers practical insights into managing and 

interpreting complex data structures within information systems. 
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Introduction

Rough set theory [brief. (RST)], 

introduced by (Pawlak, 1982), is a 

mathematical approach to deal with 

uncertainty and vagueness in data 

analysis (Kandil et al., 2013; 

Mashhour, 1970; Salama and Abd El-

Monsef, 2011b; Lashin et al., 2005; 

Salama and Abd El-Monsef, 2011a; 

Hai Yu and Zhan, 2014; Abu-Donia 

and Salama, 2012; Slowinski, 2000; 

Wybraniec Skardowska, 1989; Yao, 

1998). Unlike classical set theory, which 

requires precise information, (RST) 

provides a framework for working with 

imprecise or incomplete information. It 

is particularly useful for classifying 

objects in situations where data may be 

inconsistent or incomplete. One of the 

earliest approaches to data analysis that 

was not statistical, its methodology 

focuses on the classification and 

examination of vague, unclear, or 

insufficient knowledge and data 

(Pawlak, 1982). The approximation of a 

set’s upper and lower boundaries, which 

is the formal classification of knowledge 

about the topic of interest, is the basic 

idea behind (RST) (Kandil et al., 2016). 

The key concept of rough sets revolves 

around the approximation of sets. A 

rough set is defined by two 

approximations: the lower 

approximation set [brief. (LAS)], which 

contains all objects that surely belong to 

the set, and the upper approximation set 

[brief. (UAS)], which includes all 

objects that possibly belong to the set. 

The difference between these 

approximations reflects the uncertainty 

or "roughness" of the data. Throughout 

time, the theory of Rough Set has 

demonstrated itself to be a helpful tool 

for addressing a variety of problems, 

such as expressing ambiguous or 

uncertain knowledge, knowledge 

analysis, evaluating the consistency and 

the reliability of information based on its 

availability and date patterns, 

recognizing and evaluating date 

dependency, and reasoning based on 

ambiguous and reduced data (Salama, 

2010; 2020b; 2011a; 2014a). 

Rough set applications are employed far 

more widely now than they were 

formerly, mostly in the fields of process 

control, evaluation of database 

characteristics, and medical (Salama, 

2008b; 2014b; 2016; 2020a). This paper 

covers (RST), information systems [brief. 

(IS)], continuous functions on (IS), and 

topological functions. It can be defined 

as a function that maintains certain 

attributes or connections between data 

elements throughout system 

transformations or states. 

In this paper, we aim to explore rough 

continuity in greater depth and propose 

novel ideas regarding rough functions 

within information systems. We begin 

by discussing the fundamental concepts 

in Section (1). Section (2) introduces the 

(IS) and the information table [brief. 

(IT)]. Section (3) Clarifying the 

Connection to Information Systems. 

Section (4) details the methods used in 

our study, followed by a presentation 

and explanation of rough continuous 

functions on (IS) in Section (5). The 

paper concludes with the conclusions 

drawn in Section (6) and suggestions for 

future work in Section (7). An Ethics 

Statement is provided separately, and 

References are included at the end of the 

manuscript. 
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Fundamental concepts 

For many years, (RST) has been 

evolving, and an increasing number of 

scholars are becoming interested in its 

methods. It is a formal theory that 

emerged from basic studies of (IS) 

logical characteristics. In relational 

databases, (RST) has been utilized for 

database mining and knowledge 

discovery for a considerable time. This 

part discusses the concepts of (RST), 

which are in some ways like the 

concepts of other theories that deal with 

ambiguous and unclear data. Two of the 

most popular and traditional techniques 

for addressing and modeling 

uncertainties now include the Dempster-

Shafer theory of uncertainty and Fuzzy 

set theory (Pawlak et al., 1995). The 

subsequent discussion highlights the 

central concepts of (RST): 

Sets 

A group of entities having Shared 

characteristics are a fundamental 

element in mathematical concepts. 

Mathematical entities like relations, 

functions, and integers can all be 

considered as sets. Nevertheless, the idea 

regarding conventional sets in 

mathematics is paradoxical because a set 

is seen as a "categorization" In which no 

elements are included, and it is defined 

as an empty set (Stoll, 1979). A 

pertinence connection is a relationship 

that exists between an element and a set. 

A set's constituent pieces are referred to 

as its elements. The cardinality of a set is 

a measure of its elemental count. 

Examples of sets that handle ambiguous 

and uncertain data are provided below: 

a. Fuzzy set 

In the last half of the 1960s, 

mathematician Loft Zadeh created it 

with the intention of handling the 

imprecise and approximate mathematical 

concept for computer programming and 

storage. For Zadeh to arrive at the 

mathematical foundation for fuzzy set 

theory [brief. (FST)], he had to return to 

the classical theory of sets, where each 

set is described by a function. To 

identify values as members of the 

Universal Set  that fall inside the real 

number  interval (Abu-Donia and 

Salama, 2010; Qin and Zheng, 2005; 

Zhao Tsang, 2008; Li et al., 2008, 

Gong et al., 2008), the characteristic 

function can be extended to the fuzzy 

category. 

The fuzzy set  and the function referred 

to as the Function of pertinence 

characterize the fuzzy function as, the set 

 is defined in such a way 

that,  the degree to which  

(Zadeh, 1965),  , meaning  is 

fully in the set .  

, meaning  is not in the set . 

, this means  partially 

belongs to the set , with the value 

indicating the degree of membership. 

b. Rough set 

A method that mathematician (Pawlak, 

1982) first proposed at the start of the 

1980s; it is a technique used in 

mathematics for managing imprecise and 

nebulous data. Like The boundary area 

of a set conveys uncertainty and 

imprecision in (FST) and (RST). rather 

than by a set's incomplete participation, 
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as in (FST) does. The notion of a rough 

set is broadly defined by approximations 

known as topological procedures, both 

interior and closure. 

Observation 

Studying fuzzy, rough, and classical sets 

and contrasting their interpretations is 

fascinating (Kandil et al., 2011; Salama, 

2008a; Liu and Sai, 2009; Abu-Donia, 

2008). The definition of a classical set is 

axiomatic or intuitive, and it is a 

primitive idea. Fuzzy sets are 

characterized by the fuzzy membership 

function, which employs complex 

mathematical structures, integers, and 

functions. Since topological processes 

known as approximations define the 

rough set, this definition also 

necessitates a deep understanding of 

mathematics. 

Information system (IS) and 

information table (IT) 

An (IS) or data table can be thought of as 

a grid where the rows represent objects, 

and the columns represent their attributes. 

(Salama and El Barbary, 2017; Abu-

Donia et al., 2007; Kryszkiewicz, 1998; 

Srinivasan et al., 2001; El Barbary et 

al., 2017). It is applied to the data format 

that Rough Set will adopt, in which a set 

number of characteristics are assigned to 

each object (Lin, 1997). These items are 

detailed based on the layout of the data 

table, with columns representing 

attributes and rows corresponding to the 

objects being analyzed (Wu et al., 2004). 

The following is an example of an 

information table: 

 

Table (1): Demonstration of an (IT) 

  

Patients 
Attributes 

Vomiting Temperature Headache Viral illness 

P1 Yes High No Yes 

P2 No High Yes Yes 

P3 Yes Very High Yes Yes 

P4 Yes Normal No No 

P5 No High Yes No 

P6 Yes Very High No Yes 

 

Relation of indiscernibility 

An essential concept in (RST) is the 

indiscernibility relation [brief. (IR)], 

which is defined as a relationship 

between two or more objects in which 

every value is the same with respect to a 

subset of the qualities under 

consideration. An equivalency 

connection known as the 

"indiscernibility relation" regards all 

identical objects in a collection as 

elementary (Pawlak, 1998). It is evident 

from Table (1), which is discussed in 

Section (4), This set comprises 

characteristics closely connected to the 

patients' symptoms, including vomiting, 

temperature, and headache. Upon 

dissecting Table (1), it becomes evident 

that the set pertaining to {patient 2, 

patient 3, patient 5} is indistinguishable 

with respect to the property of headache. 

When it comes to the vomiting attribute, 

the set pertaining to {patient 1, patient 3, 

patient 4} is undetectable. Patient 2 and 
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Patient 5 are similar in terms of vomiting, 

temperature, and headache; however, 

Patient 2 has a viral disease whereas 

Patient 5 does not. Consequently, the 

patients' set comprising patient 2 and 

patient 5 have unresolved symptoms. 

Approximations 

(RST) begins with (IR), which is based 

on data about objects of interest. This 

relation represents the concept that, 

based on the available information, it is 

not possible to differentiate between 

certain objects due to a lack of 

knowledge. Another key idea in (RST) is 

approximations, which are related to the 

interpretation of topological operations 

that approximate something (Wu et al., 

2004). In the topology generated by the 

(IR), Upper and lower approximations of 

a set are analogous to closure and 

interior operations. The different types 

of approximations in (RST) are 

described and clarified below. 

a. Lower Approximation Set (LAS)  

(LAS) defines the domain objects that 

can be confidently determined to be part 

of the subset of interest. For a set  in 

relation to , this approximation 

includes all objects that are unmistakably 

categorized as belonging to  based on 

. This is denoted as . 

b. Upper Approximation Set (UAS)  

(UAS) refers to the objects that might be 

included in the subset of interest. For a 

set  in relation to , the (UAS) 

consists of all objects that could 

potentially be classified as part of  

according to . This set is denoted as . 

c. Boundary Region  

The Boundary Region describes the 

objects of a set  concerning  that 

cannot be definitively classified as either 

 or its complement  with respect to 

. If the Boundary Region is empty , 

the set is termed "Crisp", meaning it is 

precisely defined in relation to . 

Conversely, if the (BN) is not empty 
, the set  is considered "Rough". 

Mathematically, the (BN) is represented 

as . Given a set , an 

equivalence relation , and a knowledge 

base . 

Two subsets can be correlated: 

1. -lower:  

2. -upper: 

. 

In a comparable fashion, 

 and  are 

defined as follows (Pawlak, 1991). 

3. ⇒ definitely member of 

. 

4.  ⇒ certainly non-

member of . 

5.  ⇒ potentially 

member of . 

Figure (1) illustrates these regions 

visually (Lambert-Torres et al., 1999). 

 

 
 

Fig. (1): Explanation of A-approximation 

sets and A-regions 

d. Quality Approximation 

It is calculated numerically using its own 

components, particularly those of lower 

and upper approximations. The 

coefficient used to assess quality is 
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denoted by , where  refers to a 

set of objects or records related to . 

The quality of approximation is assessed 

using two coefficients described below. 

One of these coefficients is the 

Imprecision Coefficient, , which 

measures the approximation quality of  

and is represented by: 

 

Where  and  it represents 

the cardinality of approximation lower 

and upper, and the approximation are set 

. Therefore, , If 

, then  is a well-defined set 

with respect to the attributes , meaning 

that  is a crisp set. If  , then 

 is a rough set with respect to the 

attributes . Applying this to Table (1), 

 for patients who might 

have a viral illness. The other coefficient 

is the Quality Coefficient of the upper 

and lower approximations. The Quality 

Coefficient of the upper approximation, 

 represents the proportion of 

all elements classified as belonging to  

and is denoted by: 

 

In Table (1),  for 

patients who might have a viral illness. 

The Quality Coefficient of the lower 

approximation,  represents the 

percentage of all elements that are likely 

classified as belonging to  and is 

denoted by: 

 
In Table (1), , 

for patients with a viral illness. 

Note: In the Quality Coefficients for the 

upper and lower approximations 

presented in point 2 of this section,  

denotes the cardinality of a given set of 

objects (Herawan, 2015). 

Decision tables and decision 

algorithms 

In a decision table [brief. (DT)], 

attributes fall into two categories: 

condition attributes and decision 

attributes. In Table (1), as outlined in 

Section (3), attributes like vomiting, 

temperature, and headache are classified 

as condition attributes, while viral illness 

is categorized as a decision attribute. 

Each row in the decision table outlines 

the actions or decisions to be made when 

the conditions specified by the condition 

attributes are fulfilled. For example, in 

Table (1), the conditions (vomiting: yes), 

(headache: no), and (temperature: high) 

result in the decision (viral illness: yes). 

In Table (1), the condition attributes of 

headache, vomiting, and temperature 

have the same values, indicating that 

patients 2 and 5 present the same 

symptoms. Nevertheless, the decision 

attribute values differ among these 

patients. These regulations are said to as 

contradictory, non-determinant, or 

inconsistent. These guidelines are 

referred to as determinate, consistent, 

non-conflicting, or just guidelines. A 

factor of consistency, represented by 

, where  is the condition and  

is the decision, is the quantity of 

consistency rules that are present in the 

decision table. The decision table is 

inconsistent if ; otherwise, it 

is consistent if . Considering 

that Table (1) has , 

meaning that, Within the set of six rules 

for Table (1), there are two inconsistent 

rules (covering patients 2, 5, and 6) and 



 

17 Rough Continuous Functions on Information systems 

four consistent rules (covering patients 1, 

3, 4, and 6). Decision rules are 

commonly expressed in the form of "if... 

then..." statements. One guideline is 

provided for the implied viral disease in 

order to proceed: 

If  

Vomiting = yes 

and 

Temperature = high 

and 

Headache = no 

Then 

Viral Illness = yes 

If a fever is high, vomiting is present, 

and headaches are absent, then viral 

illness is present. 

Decision algorithms are sets of decision 

rules associated with (DT). These 

algorithms encompass all the rules 

outlined in the corresponding (DT). It is 

important to distinguish between 

decision tables and decision algorithms. 

A decision algorithm, which consists of 

logical expressions, differs from a (DT), 

which is a collection of implications 

(Pawlak, 1991). For additional details 

on contemporary rough set 

methodologies and applications, see 

(Pomykala, 1987; El Barbary and 

Salama, 2019; Qin et al., 2008; Al-

shami, 2017; Al-shami and Noiri, 

2019; Zhu, 2007; Zhu, 2009; Yao, 

1998a; Yao, 1998b; Bonikowski, 1998).  

Clarifying the Connection to 

Information Systems 

Rough set theory is a fundamental 

tool in data analysis and uncertainty 

management within information systems. 

This theory relies on upper and lower 

approximations to define imprecise or 

ambiguous sets, making it particularly 

valuable in fields such as data analysis, 

decision-making, and intelligent system 

design. This study aims to explore the 

continuity of rough functions within 

information systems, drawing 

connections between continuity in 

topological spaces and the 

approximation processes used in data 

analysis. The research introduces a 

mathematical definition of rough 

continuous functions, examines their 

properties, and demonstrates their 

application in handling uncertain and 

evolving data across various domains. 

Methods 

Study Aim: The aim of this study is to 

explore and analyze the properties of 

rough continuous functions within the 

framework of information systems. We 

focus on theoretical aspects and 

mathematical proofs to understand how 

rough continuity interacts with various 

structures in information systems. 

Design and Setting: This research is 

purely theoretical and is conducted 

through mathematical analysis and 

logical reasoning. The study is based on 

established theories and models in the 

field of information systems, with an 

emphasis on theoretical exploration 

rather than empirical data. 

Procedures: We investigated rough 

continuous functions by applying 

mathematical proofs and theoretical 

constructions. The study involves 

examining definitions, properties, and 

examples of rough continuous functions 

as they pertain to information systems. 

We utilized logical reasoning and 

theoretical frameworks from existing 

literature to analyze these functions. 

Statistical Analysis: Since this is a 

theoretical study, statistical analysis is 

not applicable. The findings are derived 

through mathematical proofs and 

theoretical exploration. 
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Rough continuous functions on 

information systems 

Throughout this section, consider 

 and 

 are two information 

systems that have been topologized. This 

paper aims to define the concept of IS-

rough continuity and to explore its 

various characteristics. 

Definition (1): The map  is 

continuous if and only if it preserves the 

structure of the information in a certain 

manner. 

This definition can be grounded in the 

set of attributes and how values are 

distributed among objects in the two 

systems. In this context, the continuous 

function is viewed as preserving the 

relationship between objects and their 

attributes across the systems. 

Requirements: 

a. Attribute Preservation: 

There should be a relationship between 

the attributes in the two systems. If 

 and  are corresponding 

attributes, their values under the 

influence of function  must be 

compatible. 

b. Value Preservation: 

If there is a relationship between 

attribute values in the two systems, the 

values should transform consistently 

through the function  . In other words, 

if  represents the value of 

attribute  for object  in , and 

 represents the value of 

attribute  for object  in , then 

they should satisfy: 

 

or there should be an appropriate 

transformation function. 

c. Open and Closed Sets: 

If a topological structure exists within 

the systems, the function  must 

preserve the characteristics of open and 

closed sets. Specifically, if a set is open 

in the first system, then its preimage 

under  should be open in the second 

system. 

Definition (2): The function  

is rough continuous is considered rough 

continuous if the preimage of every open 

set in  is an open set in  i.e., 

 is open for every 

attribute  in  be open. 

Definition (3): Let  be a 

rough continuous function. The lower 

approximation set in  is mapped to the 

lower approximation set in , i.e. 

. 

Definition (4): Let  be a 

rough continuous function. The upper 

approximation set in  is mapped to the 

upper approximation set in , i.e. 

. 

Example (1):  Let  and  are two 

systems, such that  represent a 

Company Data and  refer Employee 

Data and assume we have a function  

that maps the attributes of the companies 

to the attributes of the employees as 

follow: 

Step (1): Constructing Indiscernibility 

Tables 

Information System  (Industry type and 

Company size): 
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Entities Industry type Company size 

 
Technology Large 

 
Healthcare Medium 

 
Finance Small 

 
Technology Medium 

 
Healthcare Large 

 

Information System  (Salary and 

Experience): 

Entities Salary Experience 

 
High Senior 

 
Medium Mid- level 

 
Low Beginner 

 
Medium Senior 

 
High Mid- level 

 

Step (2): Function  Calculating 

Lower and Upper Approximations 

The function  maps each company to a 

typical job position within that company: 

Company (in ) 
Mapped Job position (in 

) 

  

  

  

  

  

Step (3): Rough Continuity analysis 

Calculating Lower and Upper 

Approximations 

Lower approximation Example: 

Subset : Consider , 

representing high salary position. 

The lower bound approximation : 

The job position set that is unequivocally 

included in  based on the attributes. 

For simplicity, assume  (i.e., 

the exact match). 

Inverse Image  in : 

Companies that map to . 

(Large Technology a

nd Large Healthcare companies) 

The Lower Approximation  in 

: The set of companies that belong to 

, i.e.,  (Exact 

match). 

Check Rough Continuity: 

 

The function  preserves the lower 

approximation, showing rough 

continuity. 

Upper approximation Example: 

Subset : Consider , 

representing Medium-salary position. 

The Upper bound approximation : 

The job positions set that could 

potentially be part of . Assume  

. 

Inverse Image  in : 

Companies that map to . 

 

(Medium Healthcare and Medium 

Technology companies) 

The Upper Approximation  in 

: The set of companies that possibly 

belong to , i.e., 

 (Exact match). 

Check Rough Continuity: 

 
The function  preserves the upper 

approximation, confirming rough 

continuity. 

Theorem (1): Let  be a 

function from a topologized Information 

system  to a 
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topologized information system 

. Therefore, the 

following statements are 

interchangeable: 

(1)  is considered rough continuous. 

(2) The preimage of every lower 

approximation set in  be lower 

approximation set in . 

(3) The preimage of every upper 

approximation set in  be upper 

approximation set in  

Proof (1): Implies (2) and (3) Assume 

that  is rough continuous. By the 

definition of rough continuity,  

preserves the rough structure between 

the systems  and . Specifically, this 

means that for any set 

,  and 

. Since be a 

lower approximation is the set in , it 

follows that the preimage image of a 

lower approximation set in  is a lower 

approximation set in . Similarly, since 

 is an upper approximation set in 

, the preimage image of an upper 

approximation set in  is an upper 

approximation set in . This shows that 

 is a lower approximation set in 

 and  is an upper 

approximation set in . Thus, (2) and 

(3) hold. 

(2) and (3) implies (1) Assume that the 

preimage of every lower approximation 

set in  is a lower approximation set in 

, and the preimage of every upper 

approximation set in  is an upper 

approximation set in . We need to 

show that  is rough continuous, 

meaning: 

 and 

. Let . Since 

 is a lower approximation set in 

, and  is the greatest lower 

approximation set in  contained in 

, we have 

. However, by the 

assumption that  is a lower 

approximation set in  and the 

definition of , we also have: 

. Hence, 

. A similar argument 

applies to upper approximation sets, 

showing that:  . 

This proves that  is rough continuous. 

(2) Implies (3) Assume that the preimage 

of every lower approximation set in  is 

a lower approximation set in . We 

want to prove that the preimage of every 

upper approximation set in  is an 

upper approximation set in . Given 



 

21 Rough Continuous Functions on Information systems 

, we know that . 

Take the preimage under  of both sides 

. We know 

that the preimage of the complement of a 

set is the complement of the inverse 

image of the set 

. Thus, 

. By assumption 

(2),  is a lower approximation 

set in . Therefore, 

. But the 

complement of a lower approximation 

set is, by definition, an upper 

approximation set. Therefore, 

. This shows that the 

preimage of an upper approximation set 

in  is an upper approximation set in 

, which is exactly statement (3). 

(3) Implies (2), Assume that the 

preimage of each upper approximation 

set in  is an upper approximation set in 

. We need to prove that the preimage 

of each lower approximation set in  is 

a lower approximation set in . Given 

, we know that . Take 

the preimage under  of both sides 

. Using the 

property that the inverse image of the 

complement of a set is the complement 

of the preimage of the set 

. Thus, 

. By assumption 

(3),  is an upper approximation 

set in . Therefore, 

. But the 

complement of an upper approximation 

set is, by definition, a lower 

approximation set. Therefore, 

. This shows that the 

preimage of a lower approximation set in 

 is a lower approximation set in , 

which is exactly statement (2) and 

completing the equivalence proof.  

Theorem (2): Let  and 

 be two information 

systems. If  is rough 

continuous, then the preimage of each 

exact set in  is exact set in . 

Proof. Assume  is rough 

continuous. Let  be an exact set 

in . By the definition of exactness, this 

means . We need to show that the 

inverse image  is exact in 

, meaning . Since  

is rough continuous, we have the 

following two equalities: 
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Because  is exact in , we know that 

. Substituting this into the rough 

continuity conditions, we get 

. But from the rough 

continuity conditions, we also have  

.  

Since , the set  

is exact in .  

Theorem (3): Let  , 

 and   

be three information systems. If 

 and  are two 

rough continuous functions, then 

 is rough continuous. 

Proof. Let  be a lower approximation 

set in . Since  is rough continuous 

function, then we have  is a 

lower approximation set in . Since  is 

rough continuous function, then 

 be a lower approximation set in . 

Therefore  is rough continuous.  

Remark (1): Let  and 

 be two information 

systems and let  be a 

function. Then 

(1)  If  is a lower approximation set in 

, every subset of  is a lower 

approximation set in  , then  is 

rough continuous. 

(2)  If  and  are the only lower 

approximation sets in , then  is 

rough continuous. 

Proof: 

(1)  Given that each subset of  is a 

lower approximation set in , it 

follows that for any set , the 

inverse image  must also 

be a lower approximation set in . 

Specifically, this means 

. Now, consider the 

lower approximation set  in . The 

rough continuity of  requires that 

.  

Since  for any set 

, it follows that 

. Thus,  is 

indeed equal to , satisfying the 

condition for rough continuity. The 

assumption that every subset of  is a 

lower approximation set in  ensures 

that  is rough continuous. 
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(2) Assume that the only lower 

approximation sets in are  (i.e., the 

entire space ) and . For any set 

,  must be either  or . If 

, then  (since the lower 

approximation includes all elements). If 

, then  must be a subset of some 

indiscernible or empty set. Consider the 

inverse image under . If , 

then , and since 

 is the whole space in , 

. If , then 

, and  

. In both cases, the 

condition for rough continuity holds 

. Since 

 is true for any 

, the function  is rough 

continuous.  

Theorem (4): Let  and 

 be two information 

systems. If  is a constant 

function, then  is rough continuous. 

Proof. Let  be a constant 

function such that  for 

every element  in . Let  be a lower 

approximation set in . If , then 

 which is a lower 

approximation set in . But if , 

then  which is also a lower 

approximation set in . Therefore  is 

rough continuous.  

Remark (2): Let  and  be two lower 

approximation sets in an information 

system  . Then 

(1)   is a lower approximation set. 

(2)  is a lower approximation set. 

Proof: 

(1) Let  and  be two lower 

approximation sets in . Then  

and . we have . 

Then . Hence  is a 

lower approximation set in . 

(2) Let  and  be two a lower 

approximation sets in , then  and  

are open sets. Then  is open set in 

, that is . 

Hence  is a lower approximation 

set in .  

Conclusion 

This study introduces and 

investigates the concept of rough 

continuous functions within the 

framework of information systems, 

allowing for a more flexible and precise 

model for analyzing uncertain data. The 

findings show that these functions 

preserve the core structure of rough set 

theory, providing a powerful tool for 
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data analysis in various fields such as 

decision-making, pattern recognition, 

and machine learning. 

Future work 

While this paper lays the 

groundwork for understanding rough 

continuous functions in information 

systems, several avenues for future 

research remain open: 

a. Expanding Applications: Exploring 

the use of rough continuous functions 

in areas such as medical diagnosis, 

financial forecasting, and intelligent 

systems support. 

b. Algorithm Development: Designing 

efficient algorithms for computing 

rough continuous functions in large-

scale information systems, optimizing 

computational complexity. 

c. Integration with Other Theories: 

Combining rough continuous functions 

with theories such as fuzzy logic and 

artificial neural networks to develop 

more robust models for managing 

ambiguous data. 

d. Empirical Validation: Testing the 

application of rough continuous 

functions on real-world datasets to 

evaluate their performance compared to 

traditional methods. 

Through these advancements, rough 

continuous functions can play a crucial 

role in data analysis and decision-

making within advanced information 

systems. 
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 "نظم المعلوماثفي  الدوال التقريبيت المستمرة"

سلامت المس مجدأ
2

رياض حمد، عبدالرحمن أ
1

العتيق عبدالفتاح، 
2

 

1
 انعانٍ نههنذست، انقاهشة، يصش يعهذ طُبتقسى انعهىو الأساسُت، 

2
 انعهىو، جايعت طنطا، طنطا، يصشقسى انشَاضُاث، كهُت  

فكشة انذوال انخشنت انًستًشة ضشوسَت نفهى دَنايُكُاث وهُكم انبُاناث فٍ يجال نظشَت نظى انًعهىياث. تبحث 

هزه انذساست داخم نًىرج نظى انًعهىياث عن انعلاقت بُن نظشَت انًجًىعاث انخشنت والاستًشاسَت. نبذأ بتىضُح 

نخشنت واستخذاياتها فٍ تحهُم انبُاناث وتًثُهها. بناءً عهً هزه الأسس، نقذو يفهىو الأسس اننظشَت نهًجًىعاث ا

انذوال انخشنت انًستًشة انتٍ تىسع يفاهُى الاستًشاسَت انتقهُذَت نتتكُف يع انغًىض انًتأصم فٍ نظشَت انًجًىعاث 

واستكشاف خصائصها داخم نظى انخشنت. تشًم انًساهًاث انشئُسُت تعشَفًا سَاضًُا نهذوال انخشنت انًستًشة 

ًًا أكثش دقت نسهىك انبُاناث، خاصت فٍ انسُناسَىهاث انتٍ تظهش  انًعهىياث. نتحقق ين كُفُت تسهُم هزه انذوال فه

فُها انبُاناث دسجاث يتفاوتت ين انحبُبُت وعذو انُقُن. تُناقش انتطبُقاث انعًهُت، يع إبشاص الاستخذاياث انًحتًهت 

ًستًشة فٍ صنع انقشاس انقائى عهً انبُاناث وتصًُى نظى انًعهىياث. ين خلال انشبط بُن نظشَت نهذوال انخشنت ان

انًجًىعاث انخشنت وانذوال انًستًشة، لا َقذو هزا انبحث تقذيًا فٍ انفهى اننظشٌ فحسب، بم َقذو أَضًا سؤي عًهُت 

 .لإداسة وتفسُش هُاكم انبُاناث انًعقذة داخم نظى انًعهىياث


