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The modeling of proportional or percentage data through continuous 

distributions specified on the unit interval has become progressively relevant in 

various fields. This paper presents the unit inverse power Lomax distribution as 

a strong framework for such applications. The proposed model is thoroughly 

investigated, detailing its quantile function, moments, incomplete moments, 

probability-weighted moments, order statistics, stress-strength reliability 

function, and entropy measures. Ten distinct methods for estimation of the 

involved parameters, such as maximum likelihood, maximum product of 

spacings, minimum spacing absolute-log distance, least square, weighted least 

square, percentile, Anderson-Darling, left-tail Anderson-Darling estimation, 

left-tail Anderson-Darling second-order, and Cramer-von Mises, are studied. 

The significance of the presented model is demonstrated through comparative 

analysis with several existing statistical models via two applications using real 

datasets. This research underlines the potential advantages of the new 

distribution in accurately modeling proportional data, paving the way for further 

studies and practical applications. 

 

1. Introduction 

 

The Lomax distribution  (LD), additionally recognized as the Pareto Type II distribution, is an 

important model for lifetime analysis and heavy-tailed phenomena, having a longer and heavier 

tail compared to the normal distribution. This particular instance of the generalized Pareto 

distribution was presented first by Lomax (1954). It is particularly useful in lifetime analysis as it 

can model phenomena where there is a high probability of observing large or extreme values, such 

as in the analysis of failure times or the distributions of income, Atkinson and Harrison (1978) 

used it to model failure rates of business. Holland et al. (2006) stated that the Lomax distribution 

can be used to model the distribution of computer file sizes on servers and in the biological 

sciences. The power Lomax (PL) distribution is a generalization of the LD that incorporates an 

extra shape parameter; that was presented by Rady et al. (2016). 
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Inverted distributions offer unique properties and capabilities making them more applicable to 

certain lifetime phenomena. They are essential in different fields like financial literature, 

environmental studies, survival analysis, reliability theory, biological sciences, and life testing. 

Research has been dedicated to exploring inverted distributions and their uses in various domains. 

Now we mention some of these inverted distributions, for example, the inverse Weibull model 

proposed by Keller et al. (1982), inverted Lindley model by Sharma et al. (2015), inverted 

Kumaraswamy model by Abd AL-Fattah et al. (2017), inverted exponentiated Weibull model by 

Lee et al. (2017), inverted Nadarajah–Haghighi distribution by Tahir et al. (2018), inverted power 

Rama model by Onyekwere et al. (2020), inverse power Pranav model by Nwankwo et al. (2021), 

inverse Epsilon model by Jónás et al. (2022), inverse power Zeghdoudi model by Elgarhy et al. 

(2023), inverse continuous Bernoulli model by Opone and Chesneau (2024). The focus here is on 

the inverse power Lomax (IPL) model, which was introduced by Hassan and Nassr (2019). The 

key advantage of IPL model is its flexibility in modeling different types of functions. Specifically, 

the IPL distribution can accommodate decreasing and increasing-shaped hazard functions making 

it a versatile model for different real-world applications. This distribution is derived by applying a 

transformation to a random variable (rv) Z  that is distributed as PL model. The transformation 

used is 1/Y Z= . The probability density function (PDF) and cumulative distribution function 

(CDF) of IPL model are defined respectively below: 
1
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where   and   are shape parameters and   is scale parameter. 

Statisticians focus on developing flexible probability distributions for datasets with a bound range 

(0,1), which are useful for modeling real-world phenomena such as ratios, rates, indices, 

proportions, and percentages. This area of research aims to minimize information loss and produce 

precise conclusions without introducing additional parameters. Here are a few of these recently 

released distributions: unit-Gompertz model proposed by Mazucheli et al. (2019), unit-inverse 

Gaussian model by Ghitany et al. (2019), unit modified Burr-III model by Haq et al. (2020), unit 

Teissier model by Krishna et al. (2022), unit inverse exponentiated Weibull model by Hassan and 

Alharbi (2023), unit Gumbel type-II model by Shafiq et al. (2023), unit upper truncated Weibull 

model by Okorie et al. (2023), unit generalized half-normal model by Mazucheli et al. (2023), unit 

exponential model by Bakouch et al. (2023) , unit two parameters Mirra model by Al-Omari et al. 

(2024).  

 

Our research aims to provide a new unit flexible probability distribution called the unit inverse 

power Lomax (UIPL) distribution. It is based on the form of transformation 
YC e −= , where Y  is 

IPL model has specific sub-models on the (0,1) interval. A comprehensive comparison of ten 

approaches to parameter estimation for the UIPL model was presented, along with an analysis of  

the performance of these estimators for distinct values of parameters and sample sizes.  
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Our research compared maximum likelihood (ML), maximum product of spacings (MPS), 

minimum spacing absolute -log distance (MSALD), least square (LS), weighted least square 

(WLS), percentile (Pe), Anderson-Darling (AD), left-tail Anderson-Darling (LAD), left-tail 

Anderson-Darling second order (LTS), and Cramer-von Mises (CM) estimation methods. Since it 

is challenging to investigate the features of various estimating techniques theoretically, the study 

conducted in-depth simulation studies to assess the relative absolute bias (RAbias) and mean 

squared error (MSE). The UIPL model was developed for several reasons, such as 

• It is able to fit more accurately than other widely recognized unit interval distributions. To 

derive measures of uncertainty, moments, incomplete moments (IMs), probability-

weighted moments (Pwm), and reliability. 

•  UIPL distribution parameters are evaluated using ten traditional estimating methods. 

• Analyze the accuracy of various estimators using simulation studies. 

 

The following sections of research are arranged as: composition of UIPL distribution is displayed 

in Section 2. Some of its key measures are computed in Section 3. Both the uncertainty measures 

and the stress-strength (S-S) reliability measure were covered in Section 4. In Section 5, ten distinct 

estimation methods are discussed. Section 6 discusses the simulation's results. Two real datasets 

are used in Section 7 to demonstrate the flexibility and applicability of the UIPL model. Finally, 

Section 8 affords the conclusion. 

2. Unit Inverse Power Lomax Distribution 

The UIPL model is suggested in this section. Let Y  be a rv having IPL model, with parameters 

, ,    and 
YC e −= , then the CDF of the bounded IPL distribution with support on (0, 1) is 

obtained as follows 
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where , , )(  =  is the vector of parameters,   and   are shape parameters and   is a scale 

parameter. The PDF of UIPL model is represented by 
1
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In addition, survival, and hazard rate functions (Hrf) of UIPL distribution, are given respectively 

as follows 
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The cumulative Hrf, and Odds ratio are provided respectively as follows 
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Figure 1 displays the UIPL distribution PDF (4) forms using different parameter combinations. In 

accordance with the parameter values, the UIPL model's PDF is increasing, decreasing, and right 

skewed. 

 

 
Figure 1: Distinct graphs of PDF for UIPL model 

 

A graphical depiction for Hrf of the UIPL model using various parameter combinations is 

displayed in Figure 2. Hrf for UIPL model can be J-shaped, bathtub shaped, or increasing 

depending on the values for parameters. 

 
Figure 2: Distinct graphs of Hrf for UIPL model 
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3. Statistical Measures 

In this section, some measures of the UIPL model are examined, especially quantile function, 
thr  

moments, moment-generating function, incomplete moments, and probability-weighted moments. 

3.1 Quantile Function  

The quantile function of the UIPL model is given as 1 ,( ), ,) (Q Fm m −= where m is distributed 

as a Uniform (0,1) , it may be obtained by reversing the CDF in Equation (3) as follows  
1
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(5) 

The first, median, and third quantiles can be obtained by inserting m =0.25, 0.50 and, 0.75 

respectively into (5). 

3.2 Moments and Moment Generating Function 

Moments are crucial statistical measures with diverse applications including characterizing 

probability distributions, enabling estimation and inference. 

If C follows UIPL distribution with PDF defined in (4), then 
thr  moments of UIPL model  

0

( 1)
1, , 1,2,3,...

!

i

i
i

r

i r i i
B r

i 




 






=


 − −

+ + = 


=


  (6) 

where r  is a positive integer and (.,.)B is incomplete beta function. The mean and variance of the 

UIPL model can be calculated from (6), respectively as follows 
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Additionally, the generating function ( )C t  for UIPL model is given as following  
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Table 1 presents numerical values for the first four moments: 1( ) , 2( ) , 3( ) , 4( ) , variance 

2( ) , coefficient of skewness 1( ) , coefficient of kurtosis 2( ) , and coefficient of variation 3( )  

associated with selected parameter values for UIPL. 
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Table 1. Some numerical values for UIPL model 

      
1  2  3  4  2  1  2  3  

0.7 3 7 0.2742 0.0798 0.0243 0.0077 0.0047 -0.3830 3.2592 0.2490 

5 9 0.2709 0.0760 0.0220 0.0065 0.0026 -0.6219 3.6472 0.1899 

7 12 0.2833 0.0818 0.0240 0.0071 0.0015 -0.7929 4.1270 0.1372 

2 3 7 0.3270 0.1120 0.0398 0.0145 0.0051 -0.5189 3.5072 0.2183 

5 9 0.3122 0.1003 0.0330 0.0111 0.0029 -0.7088 3.8828 0.1710 

7 12 0.3147 0.1006 0.0326 0.0107 0.0016 -0.8437 4.3007 0.1266 

 

Table 1 illustrates that when the values of   and   increase, it is observed that the first four 

moments' measures decrease then increase, while the 
2 , 1 and 3  decrease. But 2 increase. 

When the amount of   rises, it is observed that in the first four moments, 
2  and the 2  increase 

while, 1 and 3 decrease. Based on the values of 1 and 2 in Table 1, the UIPL can be viewed 

to be left-skewed and leptokurtic. 

 

The 3D plots of these measures for different values of ,  and   are displayed in Figure 3. 

 
 

 

  

Figure 3: 3D plots of the key moment measures for UIPL, which are the mean, 2 , 1 , 2 , and 3 , in that 

order from left to right. 

 

This figure shows that the skewness varies approximately between -0.8 and -0.4 for the values of 

the parameters taken into consideration, suggesting a wide range of possibilities.  As a result, the 

UIPL model can be negative-skewed and shows that the kurtosis varies approximately between 3 

and 4.2 for the values of the parameters taken into consideration, which means that, the UIPL 

model can be leptokurtic.  
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The previously noted shape flexibility of the PDF and Hrf of the UIPLD is completed by these 

facts. 

3.3 Incomplete Moment 

A complete understanding of a distribution is essential for accurate modeling and analysis. The 𝑠𝑡ℎ  

incomplete moment of the UIPL is given as follows  
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where (.,.,.)B is the upper incomplete beta function.  

The first incomplete moment is obtained by inserting 1s =  in (7). The IMs are employed in various 

applications, including the calculation of Lorenz curve. This curve is widely used across different 

fields and disciplines. From (7), the Lorenz curve for a rv C  is presented as 
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3.4 Probability Weighted Moments  

Greenwood et al. (1979) introduced the Pwm as an expectation of multiplication of two certain 

functions of a rv C  given two positive integers, r and k. The Pwm is obtained by 
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3.5 Order Statistics  

Order statistics play a vital role in probability and statistical inference, especially in reliability and 

lifetime data analysis. In this subsection the thp order statistics and the 
th

moment of order 

statistics are presented.  

Let 
: ; 1,...,p nc p n=  be an n  ordered random sample from UIPL with CDF in (3) and PDF in (4). 

Then, according to Mood et al. (1950) the PDF of thp order statistics is provided by 
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By inserting (3) and (4) into (8), the PDF of thp  order statistics for the UIPL is given as follows  
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The smallest and largest order statistics are obtained by inserting 1p = and p n=  respectively into 

(9),as follows 

The PDF of the smallest order statistics is obtained as 
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The PDF of the largest order statistics is obtained as 
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The 
th

moment of order statistics is obtained as  
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4. Uncertainty Measures and Stress-Strength Reliability  

In this section, the most well-known measures of uncertainty in relation to UIPL model were 

explored. Specifically, Rényi entropy, exponential entropy, Tsallis entropy, Arimoto entropy, 

Havarda and Charvát entropy, extropy, weighted extropy, and cumulative residual extropy. Also, 

the stress- strength reliability of UIPL model is discussed. 

4.1 Uncertainty Measures 

There are various ways to measure the entropy of the UIPL model. A thorough grasp of the 

uncertainty and complexity of this distribution can be obtained by looking at various uncertainty 

measures.  

a) Rényi entropy  

According to Rényi (1961) the Rényi entropy is denoted as ( )R  of a rv C  is mathematically 

specified by  
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where  is the entropy order. The ( )R of the UIPL is obtained by using PDF in (4) into (10) as 

follows 
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b) Exponential Entropy  

The Exponential entropy proposed by Campbell (1966) denoted as ( )E of a rv C  is expressed 

mathematically by 
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( ( )) , 0 1,E f c dc and



  

− 
 =  
 
 
  

1
1 1( 1)

1

0

( 1) 1 1
( 1), ( 1 .

!

i
i

i

B i i
i


     

   
 

−− −
 −

=

 
  −
 = + − − + − + 
  
 
 

  

c) Tsallis Entropy 

The Tsallis entropy which was presented by Tsallis (1988) denoted as ( )T of a rv C  is 

expressed mathematically by 

1
1

0

( 1) 1 ( ) , , 1, 0,T f c dc R
    −

  
  = − −   

  
  
  

1
( 1)

1
1

0

( 1) 1 1
( 1) 1 ( 1), ( 1 .

!

i
i

i

B i i
i


     

    
 

− −
 −

−

=

  
   −
  = − − + − − + − + 
   

  
  

  

d) Arimoto Entropy 

Arimoto (1971) presented the Arimoto entropy, which was denoted by ( )A of a rv C  is acquired 

by  
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1
1

0

( ( )) 1 , 1, 0,
1

A f c dc






 



 
  
  = −  
 −   
  

  

1
1

( 1)
1

0

( 1) 1 1
( 1), ( 1 1 .

1 !

i
i

i

B i i
i


      

   
  

− −
 −

=

 
  
   −
  = + − − + − + − 

−    
   
  

  

e) Havarda and Charvát Entropy 

The Havarda and Charvát entropy proposed by Havrda and Charvát (1967) is denoted as ( )HC

of a rv C  is defined mathematically by 

1
1

1
0

1
( ( )) 1 , 1, 0,

2 1
H f cC dc




 
 

−

 
  
  = −  
  −  
  

  

1
1

( 1)
1

1
0

1 ( 1) 1 1
( 1), ( 1 1 .

!2 1

i
i

i

B i i
i


  



   
   

 

− −
 −

−
=

 
  
   −
  = + − − + − + − 
  −  
   
  

  

Table 2 displays various numerical values for certain measures of entropy for UIPL model using a 

set of predetermined parameter values are presented. 

 
Table 2. UIPL entropy measures 

        R  E  T  A  HC  

0.2 

0.5 

3 1.5 -0.2751 0.8386 -0.2469 -0.1668 -0.2666 

3.5 2 -0.4274 0.7607 -0.3620 -0.2048 -0.3907 

4 2.5 -0.5578 0.6998 -0.4500 -0.2232 -0.4857 

4.5 4.5 -0.8220 0.5909 -0.6024 -0.2407 -0.6503 

5 5.5 -0.9136 0.5573 -0.6481 -0.2435 -0.6996 

5.5 6.5 -0.9837 0.5328 -0.6809 -0.2451 -0.7351 

0.7 

3 1.5 -0.5241 0.9539 -0.4850 -0.4694 -0.6295 

3.5 2 -0.6972 0.9392 -0.6291 -0.6027 -0.8165 

4 2.5 -0.8292 0.9281 -0.7341 -0.6978 -0.9527 

4.5 4.5 -1.0714 0.9081 -0.9163 -0.8591 -1.1892 

5 5.5 -1.1574 0.9011 -0.9778 -0.9124 -1.2691 

5.5 6.5 -1.2301 0.8952 -1.0287 -0.9561 -1.3351 

1.2 
3 1.5 -0.6289 0.9752 -0.6702 -0.6630 -1.0354 

3.5 2 -0.7852 0.9691 -0.8502 -0.8389 -1.3136 
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        R  E  T  A  HC  

4 2.5 -0.9225 0.9638 -1.0131 -0.9972 -1.5652 

4.5 4.5 -1.1601 0.9547 -1.3058 -1.2799 -2.0174 

5 5.5 -1.2528 0.9511 -1.4238 -1.3932 -2.1997 

5.5 6.5 -1.3339 0.9480 -1.5288 -1.4938 -2.3619 

 

Table 2 indicates that when the value of  increase while the value of , , ,   stay constant the 

values of R ,T , A  and HC decrease implying less information needed, but the value of E  

increase which implies that more information is needed to accurately predict the distribution (high 

uncertainty). When the values of   and   increase, the values of these different entropies 

decrease, implying that there is less variability. For the values of the parameters taken into 

consideration, the lowest entropy values were obtained when the entropy order value was equal to 

1.2, except for E . The degree of uncertainty or variability in a random variable is measured by 

entropy. The more uncertain the data, the higher the entropy value. There are many applications 

for these different entropies, especially in physics by Beck (2009)  , stock exchanges by Jiang et al. 

(2008), income distribution by Soares et al. (2016) , and earthquakes by Abe and Suzuki (2003). 

f)  Extropy 

A measure of uncertainty named extropy was presented by Lad et al. (2015). Statistically, the 

extropy may be used to assess the accuracy of predicting distributions using the total log scoring 

method, in commercial or scientific areas such as astronomical measurements of heat distributions 

in galaxies. The extropy denoted as ( ) for UIPL is acquired by 

0

1
(1 )

2
2

0

1
1 1

(1 ) .2
1 1

( ; )
2

,2 ( 1
!2

)

i

i

Bf i i
i

c dc



 

 
 

−


=

 
− + + −



 
 − −
 = =
 
 






   

Extropy is a different measure of uncertainty and has some advantages.  One major advantage of 

extropy is its ease of computation, making it highly valuable for exploring potential applications, 

such as inferential methods (see Mohammadi et al. 2024). One of the reasons for depending on 

cumulative residual extropy, distribution functions, such as power-Pareto, generalized lambda, and 

Govindarajulu distributions, exist even in the absence of probability density functions, (see 

Husseiny et al. (2024). In contrast, the survival function is the basis for the cumulative residual 

extropy measure. 

There are several types to measure the extropy for the UIPL model, particularly weighted and 

cumulative residual extropies. 

g) Weighted Extropy  

The weighted extropy is denoted as ( )w  is another analogue of the weighted entropy that was 

suggested by Balakrishnan et al. (2022). It can be clarified as 

2 2
1

0

1
1 1

( ; ) 2 .
1 1

, 2
2 2

w c f c d Bc 


  


 
+ − 






− −  = =

 
  


  
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h) Cumulative Residual Extropy  

The cumulative residual extropy is denoted as ( ) , which was proposed by Jahanshahi et al. 

(2020) is obtained as 
1

2

00
1 ( 1)

1 1 ( 1) 1 1
( ; ) ( 1), ( 1) .2

( !)2 2

i

i
i

F c dc B i i
i


 


  +



=

  − − − −
 = = + + +  

   
  

Table 3 introduces some specific numerical values for extropy, weighted extropy and cumulative 

residual extropy measures for UIPL model using a set of predetermined parameter values. 

 
Table 3. UIPL extropy measures 

        w    

0.5 

3 1.5 -1.5783 -0.1999 -0.0764 

3.5 2 -1.2641 -0.2348 -0.0739 

4 2.5 -1.3690 -0.2743 -0.0751 

4.5 4.5 -1.7282 -0.3017 -0.0651 

5 5.5 -1.9101 -0.3440 -0.0683 

5.5 6.5 -2.0856 -0.3884 -0.0719 

0.9 

3 1.5 -1.0515 -0.2432 -0.1025 

3.5 2 -1.0887 -0.2777 -0.0966 

4 2.5 -1.2525 -0.3178 -0.0954 

4.5 4.5 -1.5754 -0.3438 -0.0823 

5 5.5 -1.7663 -0.3869 -0.0842 

5.5 6.5 -1.9498 -0.4322 -0.0868 

Table 3 indicates that when the values of   and   raise, the values of the w  decrease indicating 

low likelihood of rare events and values of  and   increase representing higher likelihood of 

rare events. When the values of   increases, the values of the w and   decrease and values of 

  increase. 

4.3. Stress-Strength Reliability  

According to Birnbaum (1956), The notation S-S reliability is denoted by 2 1p C C  =   , where 

1C  represents the component strength having UIPL 1( , , )    and 2C  represents the component 

stress having UIPL 2( , , )   . Then  is acquired by 

1 21

(1
1

1)

0

(
,

ln ) ( ln )
( ln ) 1 1 1

c c
c

c
dc

 
 

 

  

− − −
− −

− +
 


   − − 

− + − +       
    

=


  

2

1 2

.


 +
 =  
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5. Parameter Estimation 

Ten different strategies for estimating the vector of parameters ( , , )   = , ML, MPS, MSALD, LS, 

WLS, Pe, AD, LAD, LTS and CM, associated with the UIPL distribution with PDF given by (4) are 

discussed in this section, For additional details regarding the estimation techniques employed, see Aguilar 

et al. (2019) and Ali et al. (2020). 

5.1 Maximum Likelihood 

Let 1 2, ,..., nc c c  be a random sample of size n from a rv C  with UIPL model. The log-likelihood 

function for estimating the vector of parameters   is pointed by  is 

( ) ( )
1 1 1

1
ln ln ln( ) ln( ) ( 1) ln( ln ) ( 1) ln 1 ( ln ) .

n n n

i i i
i i i

n n n c c c


    


−

= = =

= + − − − + − − + + −
 
 
 

    

 (11) 

The desired ML estimators are acquired by maximizing the log-likelihood function. Differentiating 

(11) with respect to each parameter ,   and   respectively, results in following equations 

1

1
ln 1 ( ln ) ,

n

i
i

n
c 

  

−

=

  
= − + − 

  
  (12) 

( )1 1

( ln ) ln( ln )
ln( ln ) ( 1) ,

( ln )

n n
i i

i
i i i

c cn
c

c






  

−

−
= =

− −
= − − + +

 + −
   (13) 

and  

2
1

( ln )
( 1) .

( ln )

n
i

i i

cn

c






   

−

−
=

− −
= + +

 + −
  (14) 

The ML estimators of  , say ˆ ˆ ˆ ˆ( , , )   =  are acquired by Equating (12), (13) and (14) by zero 

and solving them numerically using R programming language. 

5.2 Maximum Product Spacings  

An alternative estimation technique to ML is the MPS method. Cheng and Amin (1979) presented 

this method, the MPS maximizes the product of the spacings between ordered data points. It is 

especially helpful for estimating parameters of continuous probability distributions. 

Let 1: :,...,n n nc c  be an ordered random sample of size n  from UIPL model, the MPS estimators, 

ˆ ˆ ˆ ˆ( , , )   =  are given by maximizing the following function 

1

,
1

1
( ) log( ( )),

1

n

i n
i

n
  

+

=

 =
+
  

where 
, : 1: 0:( ) ( ) ( ) , ( ) 0i n i n i n nF c F c F c  −= − = and 1:( ) 1n nF c + = . 

: :
,

1( ln ) ( ln
.( )

)
1 1 1 1i n n

n
i

i

c c
 

 







− −
− −

−= −

 
 
 

    − −    − + − +
       


   

 (15) 
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5.3 Minimum Spacing Absolute -Log Distance 

The MSALD estimators, ˆ ˆ ˆ ˆ( , , )   =  are acquired by minimizing the following equation 

1

,
1

1
( ) log ( ) log ,

1

n

i n
i

n
   

+

=

 
= −  

+ 
  

where 
, ( )i n  is given in (15). 

5.4 Least Square  

A mathematical model's parameters are estimated by minimizing the sum of the squares of the 

variations between the values that are observed and those that are predicted. The LS estimators, 
ˆ ˆ ˆ ˆ( , , )   =  are acquired by minimizing the following equation 

2
2

1

:
:

1

( ) ( ) .
1 1

l( n )
1 1

n n

i n
i

i

i

ni i
F c

n n

c









−

= =

− −




 − +
 


  
   

= − = −    + +     




   

5.5 Weighted Least Squares  

This statistical technique involves giving each observation a different weight in order to estimate 

the parameters of a probability model. The WLS estimators, ˆ ˆ ˆ ˆ( , , )   =  are calculated to 

minimize the following equation 

1

:

2
22 2

:
1

( ln )
1

2( 1) ( 2) ( 1) ( )
( ) ( ) .

( 1) 1 ( 1)
1

1

n n

i
i

n
i i

nn n i n n i
W F c

i

c

n i n i n i n







= =

−
−  

+ + + +    
= − = −    − + + − + +    



 

 −
− +

 
 

   

5.6 Percentile Estimation  

The Pe estimators, ˆ ˆ ˆ ˆ( , , )   =  are acquired by minimizing the following function  

( )
2

:
1

( ) ln( ) ln ( , ) ,
1

n

i n
i

i
P F c

n
 

=

 
= − + 
  

1

:

2

( ) ln( ) ln ,1
1

( ln )
1 i n

n

i

i
P

c

n







−
−

=

 −


  
  

= −  +    

−
 
 



+  

where 
1

i

n +
 is an unbiased estimator of :( , )i nF c  .  

 

5.7 Anderson-Darling Estimation  

The AD estimators, ˆ ˆ ˆ ˆ( , , )   =  are acquired by minimizing the following equation 

 : 1 :
1

(2 1)
( ) log ( ; ) log ( ; ) ,

n

n i n n i n
i

i
A n F c S c

n
  + −

=

−
   = − − +     
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1

1

: :(2 1)
( ) log log .

( ln ) ( ln )
1 1 1i n n

n
n i

n
i

A
c ci

n
n

 
 

 


− −

−

=

− −
+

   − −
   − + +
  

    
−     = − − +  

   
  

        

  

5.8 Left – Tail Anderson-Darling Estimation 

The LAD estimation method focuses on estimating the parameters of a distribution, with a 

particular emphasis on the left tail. These methods utilize the Anderson-Darling statistic, which 

quantifies how well a distribution fits the observed data. Estimation process involves minimizing 

the CDF of the UIPL model for the ordered rvs to determine the model parameters. 

The LAD estimators, ˆ ˆ ˆ ˆ( , , )   =  are acquired by minimizing the following function 

: : :
1 1

3 1
( ) ( ; ) (2 1) log ( ; ) log ( ; ) ,

2

n n

i n i n i n
i i

L n F c i F c F c
n

   

= =

   = − − − +      

1

:

:

1

:

3
( )

2

1
(2 1) log log .

( ln )
1 1

( ln ) ( ln )
1 1 1 1

i

n

n

i

n

i

i
n

n

i

L n
c

c c
i

n




 
 









−
−

− −
− −

=

=



= −

   
   −

  −  − +
     

  −




− +
   


−



   − + − +


 
 

    





 

5.9 Left–Tail Anderson-Darling Estimation Second Order  

The LTS estimators, ˆ ˆ ˆ ˆ( , , )   =  are acquired by minimizing the function 

:
:1 1

1 (2 1)
( ) 2 log ( ; ) ,

( ; )

n n

i n
i ni i

i
Le F c

n F c
 


= =

−
 = +    

1

: :1

1 1

( ) 2 log (2 1)
( ln ) ( ln )

1 1 1 1 .
n n

i

i n i n

i

Le n
c c

i

 
 


 

− −
−

−

−
−

= =

   
  = + −
  
 

   − −
   − + − +


  
  

   

   

5.10 Cramer- Von Mises Estimation  

The CM estimators, ˆ ˆ ˆ ˆ( , , )   = are acquired by minimizing the following function 

2
2

:
1

:

1

( ln1 )
1 1

1 2 1 2 1
( ) ( ; ) .

12 2 12 2

−

= =

−  
− −    

= +


 −
 − +
 

− = + −           

 
i

i
i

i

n
n n

n

i i
Cm F c

n n n

c

n




 


 

6. Numerical Simulation 

This section focuses on simulation work, which is considered one of the most critical parts of the 

research. The performance of distinct estimation techniques proposed for estimating the 

parameters of UPL model is investigated by analyzing detailed simulation results. Different sample 

sizes 50,80,150(100)350n = , and various parameter values, Set 1: (0.6,2.5,0.2) = , 



A New Bounded Distribution 

16 

  

Set 2: (0.6,2.8,0.2) = , Set 3: (0.4, 2.5,0.07) = are used. Additionally, 1000 random samples 

are generated from the UIPL model based on (5). Finally, RAbias and MSE were calculated using 

the following equations as 

1000

ˆ( )
1

ˆ1

1000
RAbias  




 


=

−
=  , 

1000
2

ˆ( )
1

1 ˆ( )
1000

MSE  


 

=

= −  

 

Simulation algorithm 

 

1. Indicate the population parameter values. 

2. Using the inverse CDF in (5), a random sample of size 50,80,150 (100) 350n =  is generated. 

3. Apply estimation techniques to assess the estimates' values. 

4. Utilize the various estimation techniques to determine the RAbias and MSE for each parameter. 

5. The simulation results are presented in Tables 4–6. The following are displayed as below  

1. Based on various estimation techniques, the RAbias of all estimates decrease as n increase 

(see Tables 4–6). 

2. The AD of   for all sets has the smallest RAbias value for all different sample sizes (see 

Tables 4–6). 

3. The lowest MSE obtained for the  estimate was in set 1 compared to the rest of the sets 

(see Tables 4 and 6). 

4. The MSEs for the   estimate increase as value of   increases (see Tables 4 and 5). 

5. The lowest MSE obtained for the   estimate was in set 1 compared to the rest of the sets 

(see Tables 4 and 6). 

6. From set 1 and set 3 it can be shown that , the MSEs for   and   estimates decrease as 

values of  and   decrease and   estimate stay constant (see Tables 4 and 6). 

7. The MSEs for the  estimate increase as value of  and   decrease (see Tables 4 and 6) 

8. Tables 4 and 5 show that the AD of   in set 1 and set 2 has the smallest MSE value for all 

different sample sizes. 

9. Table 6 shows that ML of  in set 3 has the smallest MSE value for all different sample 

sizes. 

10. The MSEs of all estimates based on different techniques decrease for all chosen sets of 

parameters as the sample size increases (see Tables 4–6), and (see Figures 4–6), which 

display heatmaps of the MSEs of all estimates based on different techniques. 

11. In heatmaps the colors appear to range from dark to light, indicating a decrease in values 

of MSEs. Higher values are represented by darker hues, and lower values by lighter hues. 

12. Just looking at the heatmaps, we can see that the AD method is the lightest shade of color 

which indicates that it is less MSEs for all sets.  

13. Considering the outcomes of the simulation, the AD approach is typically the most 

effective estimation technique, whereas LTS is the least effective. 
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Figure 4: MSEs of all methods of set 1 

  
Figure 5: MSEs of all methods of set 2 

  
Figure 6: MSEs of all methods of set 3 
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Table 4. Parameter estimates of simulation results for Set 1 

n    ML MPS MSALD LS WLS Pe AD LAD LTS CM 

50 

RAbias 

̂  0.1316 0.2272 0.1479 0.1117 0.0895 0.1632 0.0929 0.1054 0.1792 0.1471 

̂  0.2672 0.375 0.4833 0.3232 0.2295 0.2971 0.2226 0.4279 0.5236 0.3602 

̂  0.8095 0.9089 0.8727 0.8685 0.6846 0.7132 0.6819 0.9221 0.8321 0.8789 

MSE 

̂  1.3553 2.3951 1.5782 1.3456 0.9613 1.7681 0.8352 1.0187 2.1531 1.5503 

̂  0.4053 0.7569 1.3545 0.6708 0.3677 0.9358 0.3176 0.9242 1.7917 0.7683 

̂  0.2953 0.3622 0.3702 0.3352 0.2173 0.2855 0.2064 0.3307 0.4344 0.3441 

80 

RAbias 

̂  0.0525 0.0972 0.0669 0.0486 0.0375 0.0912 0.0418 0.0463 0.0849 0.0679 

̂  0.1587 0.1912 0.2292 0.2178 0.1623 0.1551 0.126 0.286 0.6443 0.2345 

̂  0.4385 0.5116 0.6836 0.6444 0.435 0.4996 0.4241 0.6862 1.0765 0.6658 

MSE 

̂  0.3909 0.5411 0.6832 0.5909 0.3942 0.867 0.362 0.4282 0.9907 0.6392 

̂  0.2322 0.2839 0.3088 0.2826 0.2771 0.367 0.1011 0.4718 1.9503 0.3092 

̂  0.0927 0.1298 0.1994 0.1685 0.0853 0.1409 0.0813 0.192 0.4907 0.1816 

150 

RAbias 

̂  0.0285 0.0516 0.0307 0.0246 0.0206 0.0521 0.0224 0.0251 0.0291 0.0342 

̂  0.0586 0.0735 0.1011 0.1011 0.0624 0.0537 0.0624 0.1142 0.4861 0.1066 

̂  0.1933 0.207 0.3363 0.3318 0.2131 0.2447 0.2095 0.3337 0.9604 0.3355 

MSE 

̂  0.1757 0.2113 0.296 0.2612 0.1849 0.3843 0.1785 0.2032 0.4009 0.2721 

̂  0.04 0.046 0.0815 0.0761 0.042 0.0638 0.0398 0.0878 1.0163 0.0788 

̂  0.0293 0.0328 0.0654 0.0558 0.0294 0.0492 0.0289 0.0596 0.3266 0.0572 

250 

RAbias 

̂  0.0139 0.0282 0.0146 0.0118 0.0089 0.0303 0.0107 0.0109 0.0038 0.0174 

̂  0.0367 0.0455 0.0527 0.0603 0.0412 0.0321 0.0402 0.0707 0.3917 0.063 

̂  0.1155 0.12 0.1765 0.1922 0.1332 0.1435 0.1287 0.2029 0.8084 0.1927 

MSE 

̂  0.0899 0.1019 0.1394 0.1388 0.0976 0.2118 0.0963 0.1072 0.2102 0.1421 

̂  0.0204 0.0226 0.0318 0.0369 0.0226 0.0335 0.0216 0.04 0.7155 0.0375 

̂  0.0134 0.0146 0.0229 0.0247 0.0148 0.0231 0.0142 0.026 0.2475 0.025 

350 

RAbias 

̂  0.0092 0.0194 0.0064 0.0045 0.0043 0.0223 0.0054 0.0047 0.0025 0.0085 

̂  0.0265 0.033 0.0445 

 

  

0.0521 0.0346 0.024 0.0337 0.0556 0.339 0.0539 

̂  0.0867 0.0892 0.1469 0.1635 0.1118 0.1104 0.1083 0.16 0.6363 0.1636 

MSE 

̂  0.0624 0.068 0.0956 0.097 0.0695 0.153 0.0676 0.0737 0.1548 0.0985 

̂  0.013 0.014 0.0213 0.0247 0.0156 0.023 0.015 0.0252 0.7002 0.025 

̂  0.0086 0.0092 0.015 0.0167 0.0104 0.0157 0.01 0.0162 0.1631 0.0168 
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Table 5. Parameter estimates of simulation results for Set 2 

n      ML MPS MSALD LS WLS Pe AD LAD LTS CM 

50 

RAbias 

̂  0.1316 0.2265 0.1505 0.1133 0.0904 0.1389 0.0926 0.1055 0.1790 0.1477 

̂  0.2671 0.3752 0.4841 0.3421 0.2294 0.2574 0.2226 0.4278 0.5436 0.3602 

̂  0.8094 0.9086 0.8393 0.8687 0.6845 0.6659 0.6819 0.9221 0.8110 0.8789 

MSE 

̂  1.6944 2.9454 2.2266 1.7391 1.2347 1.7967 1.0388 1.2802 2.6730 1.9793 

̂  0.4053 0.7593 1.3503 0.8023 0.3677 0.6959 0.3175 0.9237 1.9273 0.7683 

̂  0.2952 0.3621 0.3400 0.3354 0.2172 0.2637 0.2064 0.3307 0.4181 0.3440 

80 

RAbias 

̂  0.0525 0.0972 0.0671 0.0485 0.0375 0.0759 0.0418 0.0463 0.0835 0.0676 

̂  0.1586 0.1913 0.2425 0.2178 0.1622 0.1159 0.1260 0.2860 0.6446 0.2346 

̂  0.4384 0.5114 0.6813 0.6444 0.4350 0.4543 0.4241 0.6862 1.0768 0.6659 

MSE 

̂  0.4903 0.6788 0.8320 0.7367 0.4945 0.8676 0.4541 0.5367 1.1954 0.7942 

̂  0.2318 0.2851 0.3900 0.2825 0.2767 0.1923 0.1011 0.4718 1.9513 0.3095 

̂  0.0927 0.1297 0.2061 0.1685 0.0853 0.1282 0.0814 0.1921 0.4910 0.1817 

150 

RAbias 

̂  0.0285 0.0516 0.0304 0.0246 0.0206 0.0446 0.0224 0.0252 0.0291 0.0341 

̂  0.0586 0.0735 0.1018 0.1010 0.0624 0.0437 0.0624 0.1142 0.4860 0.1066 

̂  0.1933 0.2070 0.3385 0.3318 0.2131 0.2101 0.2095 0.3337 0.9792 0.3355 

MSE 

̂  0.2203 0.2650 0.3613 0.3276 0.2319 0.3943 0.2239 0.2550 0.5030 0.3413 

̂  0.0400 0.0460 0.0825 0.0761 0.0420 0.0546 0.0398 0.0878 1.0152 0.0788 

̂  0.0293 0.0328 0.0664 0.0558 0.0294 0.0422 0.0289 0.0596 0.3413 0.0572 

250 

RAbias 

̂  0.0139 0.0282 0.0145 0.0118 0.0089 0.0256 0.0107 0.0109 0.0037 0.0174 

̂  0.0367 0.0455 0.0528 0.0603 0.0412 0.0271 0.0402 0.0707 0.3916 0.0630 

̂  0.1155 0.1201 0.1766 0.1922 0.1332 0.1255 0.1287 0.2029 0.8083 0.1927 

MSE 

̂  0.1128 0.1279 0.1749 0.1741 0.1225 0.2193 0.1208 0.1345 0.2637 0.1783 

̂  0.0204 0.0226 0.0318 0.0369 0.0226 0.0295 0.0216 0.0400 0.7151 0.0375 

̂  0.0134 0.0146 0.0228 0.0247 0.0148 0.0203 0.0142 0.0260 0.2473 0.0250 

350 

RAbias 

̂  0.0092 0.0194 0.0066 0.0045 0.0043 0.0186 0.0054 0.0047 0.0025 0.0085 

̂  0.0265 0.0330 0.0440 0.0521 0.0346 0.0203 0.0337 0.0556 0.3391 0.0539 

̂  0.0867 0.0893 0.1454 0.1634 0.1118 0.0968 0.1083 0.1600 0.6363 0.1636 

MSE 

̂  0.0783 0.0853 0.1196 0.1217 0.0872 0.1585 0.0848 0.0925 0.1940 0.1235 

̂  0.0130 0.0141 0.0212 0.0247 0.0156 0.0201 0.0150 0.0252 0.7010 0.0250 

̂  0.0086 0.0092 0.0150 0.0167 0.0104 0.0137 0.0100 0.0162 0.1631 0.0168 
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Table 6. Parameter estimates of simulation results for Set 3 

n      ML MPS MSALD LS WLS Pe AD LAD LTS CM 

50 

RAbias 

̂  0.1791 0.3015 0.1823 0.1344 0.1129 0.2572 0.1153 0.1193 0.1879 0.1720 

̂  0.1437 0.1597 0.2993 0.2257 0.1714 0.3361 0.1590 0.2436 0.4632 0.2470 

̂  0.8398 0.8279 1.0045 1.0867 0.9132 1.2787 0.9235 1.0168 1.1483 1.1001 

MSE 

̂  2.0264 3.2419 2.2239 1.6331 1.3098 3.1125 1.1346 1.2163 2.0752 1.8639 

̂  0.1009 0.1309 0.2700 0.1567 0.1269 0.3645 0.0869 0.1460 0.5800 0.1739 

̂  0.0383 0.0432 0.0505 0.0518 0.0376 0.0714 0.0400 0.0440 0.0684 0.0539 

80 

RAbias 

̂  0.0806 0.1460 0.0919 0.0640 0.0492 0.1777 0.0515 0.0561 0.0970 0.0841 

̂  0.0839 0.0854 0.1687 0.1590 0.1031 0.2071 0.1016 0.1457 0.4578 0.1693 

̂  0.5235 0.4940 0.8139 0.8472 0.6231 1.1686 0.5935 0.7512 1.1185 0.8584 

MSE 

̂  0.6630 0.9813 0.9804 0.7954 0.5571 2.0840 0.4958 0.5398 1.0858 0.8536 

̂  0.0389 0.0468 0.1180 0.0873 0.0399 0.1692 0.0393 0.0533 0.4849 0.0938 

̂  0.0163 0.0182 0.0307 0.0297 0.0181 0.0540 0.0163 0.0252 0.0535 0.0310 

150 

RAbias 

̂  0.0395 0.0730 0.0422 0.0332 0.0262 0.1153 0.0270 0.0297 0.0375 0.0432 

̂  0.0341 0.0305 0.0683 0.0712 0.0476 0.0868 0.0490 0.0694 0.2967 0.0748 

̂  0.2356 0.1938 0.4382 0.4388 0.3026 0.7185 0.3011 0.3600 0.9733 0.4383 

MSE 

̂  0.2362 0.3037 0.3877 0.3536 0.2462 1.1463 0.2358 0.2454 0.4712 0.3684 

̂  0.0135 0.0147 0.0257 0.0232 0.0149 0.0459 0.0143 0.0209 0.1923 0.0239 

̂  0.0054 0.0055 0.0127 0.0102 0.0059 0.0243 0.0059 0.0078 0.0382 0.0103 

250 

RAbias 

̂  0.0193 0.0402 0.0188 0.0159 0.0113 0.0712 0.0126 0.0129 0.0077 0.0217 

̂  0.0235 0.0200 0.0391 0.0452 0.0331 0.0493 0.0328 0.0468 0.2243 0.0470 

̂  0.1448 0.1101 0.2438 0.2617 0.1907 0.4189 0.1868 0.2307 0.7961 0.2597 

MSE 

̂  0.1142 0.1350 0.1755 0.1853 0.1262 0.6483 0.1233 0.1254 0.2396 0.1902 

̂  0.0074 0.0079 0.0115 0.0124 0.0084 0.0240 0.0081 0.0113 0.1212 0.0125 

̂  0.0026 0.0026 0.0047 0.0047 0.0030 0.0105 0.0029 0.0040 0.0281 0.0047 

350 

RAbias 

̂  0.0123 0.0275 0.0084 0.0055 0.0049 0.0515 0.0058 0.0059 0.0000 0.0095 

̂  0.0183 0.0157 0.0351 0.0416 0.0288 0.0385 0.0287 0.0382 0.1993 0.0429 

̂  0.1134 0.0858 0.2025 0.2243 0.1592 0.3260 0.1572 0.1840 0.6474 0.2226 

MSE 

̂  0.0797 0.0896 0.1199 0.1247 0.0877 0.4450 0.0856 0.0866 0.1729 0.1267 

̂  0.0050 0.0052 0.0078 0.0086 0.0058 0.0170 0.0057 0.0075 0.1369 0.0087 

̂  0.0017 0.0017 0.0030 0.0032 0.0021 0.0069 0.0021 0.0026 0.0195 0.0033 
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7.Real Data Analysis 

In this section, two popular data sets are used to exhibit the effectiveness of the presented model. 

It also includes data analysis to evaluate the UIPL model's goodness-of-fit compared to other 

competitive models. 

Data I 

The data include 38 days of Saudi Arabian Covid-19 data, spanning from July 22, 2021, to August 

28, 2021, provided by Alotaibi et al. (2024). These results illustrate the drought mortality rate. The 

following data are: 

0.2375, 0.2962, 0.2167, 0.2752, 0.2353, 0.2347, 0.1951, 0.2140, 0.2329, 0.2711, 0.2126, 0.2314, 

0.1924, 0.2113, 0.2683, 0.2487, 0.2674, 0.1716, 0.2666, 0.2091, 0.2278, 0.1706, 0.2271, 0.1890, 

0.2077, 0.2452, 0.1319, 0.2259, 0.1504, 0.1879, 0.1689, 0.2063, 0.2249, 0.1686, 0.1310, 0.1497, 

0.1309, 0.1495. 

The data sets that are being proposed have multiple descriptive statistics displayed in Table 7. 

Data II 

This dataset, household food expenditures, is provided by Zeileis et al. (2016). The data examines 

how much money 38 families in a major American city spend on food. It specifically looks at the 

portion of these families' income that goes toward food expenses. The data also includes the 

number of people residing in each household and the families' perceived income levels. The 

percentages of income related to food as well as reading accuracy ratings are taken into account. 

The data is presented as follows 

0.2560663, 0.2023231, 0.2911260, 0.1898036, 0.1619337, 0.3682923, 0.2800173, 0.2067752, 

0.1604955, 0.2280656, 0.1921144, 0.2541947, 0.3015883, 0.2570303, 0.2914370, 0.3624967, 

0.2265521, 0.3086045, 0.3705066, 0.1075258, 0.3306025, 0.2590826, 0.2501853, 0.2387817, 

0.4144203, 0.1782736, 0.2250664, 0.2630519, 0.3652334, 0.5612430, 0.2423906, 0.3418765, 

0.3485698, 0.3284759, 0.3508731, 0.2353782, 0.5140399, 0.5429749. 

 
Table 7. Descriptive summary datasets 

Dataset Min 1Q  Median Mean 3Q  Max Variance Skewness Kurtosis 

I 0.1309 0.1757 0.2133 0.2100 0.2352 0.2962 0.0019 -0.1692 2.2891 

II 0.1075 0.2269 0.2611 0.2897 0.3469 0.5612 0.0103 0.9427 3.8595 

 

Figures 7 and 8 display some graphical representations of these two datasets, respectively. These 

consist of quantile-quantile (QQ) plots, box plots, violin plots, histograms, kernel density 

estimates, and total time on test plots. The purpose of these plots is to Verify that the data is suitable 

and reliable for depicting the corresponding data sets. 
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Figure 7. Simple informal graphs for data I. 

 

 
Figure 8. Simple informal graphs for data II. 

 

Data I is mainly left-skewed with some outliers and has an increasing Hrf, as these figures 

demonstrate, while data II is almost symmetrical and has an increasing Hrf. According to the 

theoretical results, the UIPL model is capable of handling these characteristics. 

Various distributions are recommended for comparison with UIPL including, unit power Lomax 

(UPL) which was presented by Hassan et al. (2024), unit exponentiated Lomax (UEL) which was 

proposed by Fayomi et al. (2023), unit Weibull (UW) which was obtained by Mazucheli et al. 

(2020), unit Gompertz (UG), Kumaraswamy model (KM) which was obtained by Kumaraswamy 

(1980). Tables 8 and 10, respectively, contain all parameter estimates and standard errors (StErs) 

for the two real datasets. 

Measures of goodness-of-fit for suggested models such as minus two log-likelihood (-2logL), 

Akaike Information Criterion 1( ) , Bayesian Information Criterion 2( ) , Corrected Akaike 
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Information Criterion 3( ) , Hannan-Quinn Information Criterion 4( ) , Kolmogorov-Smirnov

5( )  statistic, p-value, Cramer-von Mises (W) test statistic, and Anderson-Darling (A) test statistic 

are used. 

The model with the minimum values for (-2logL), 1 , 2 , 3 , 4 , 5 , A and W and has 

maximum p-value can be considered the model that best fits the data among the alternatives 

presented. 

For data I, Table 9 displays the measures of goodness-of-fit for all models. Figure 9 displays plots 

of estimated CDFs and histograms with the estimated PDFs of all examined models. Figure 10 

display, PP plots for UIPL model with comparative distributions.  

 
Table 8. Estimated parameters with the StEr of all the compared models for data I 

Model       ( )StEr   ( )StEr   ( )StEr   

UIPL 4.7841 9.6106 0.0997 8.8495 2.2227 0.2893 

UPL 0.8120 11.4367 100.3558 0.4148 2.3454 50.5221 

UEL 0.0354 110.9134 292.9375 0.0163 49.8073 132.9154 

UW 0.0207 7.4712 ــ   ــ 0.8727 0.0110 ـــــ  ـــــ

UG 0.0022 3.6530 ــ   ــ 0.1222 0.0003 ـــــ  ـــــ

KM 3.4316 157.5982 ــ   ــ 61.9819 0.2798 ـــــ  ـــــ

 
Table 9. Different measures of goodness-of-fit for data I 

Name -2logL 1  2  3  4  5  p-value W A 

UIPL -131.5631 -125.5631 -120.6504 -124.8572 -123.8152 0.0799 0.9525 0.0351 0.2915 

UPL -127.5035 -121.5035 -116.5908 -120.7977 -119.7556 0.1179 0.6239 0.0549 0.3848 

UEL -123.2296 -117.2296 -112.3168 -116.5237 -115.4817 0.1361 0.4431 0.0461 0.3253 

UW -123.9985 -119.9985 -116.7233 -119.6556 -118.8332 0.1653 0.2240 0.2015 1.2104 

UG -116.9561 -112.9561 -109.6809 -112.6132 -111.7908 0.1903 0.1117 0.2466 1.4743 

KM -119.6590 -115.6590 -112.3838 -115.3161 -114.4937 0.1379 0.4268 0.0503 0.3466 

 
Figure 9. Plots representing the estimated CDFs and PDFs for data I 
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Figure 10. PP plots for UIPL model with comparative distributions for data I 

For data II, Table 11 displays measures of goodness-of-fit for compared models. Figure 11 display 

plots of estimated CDFs and histograms with estimated PDFs of all examined models. Figure 12 

display, PP plots for UIPL model with comparative distributions.  

 

Table 10. Estimated parameters with the StErs of all the compared models for data II 

Model       ( )StEr   ( )StEr   ( )StEr   

UIPL 0.4143 9.9934 0.0166 0.1849 2.7822 0.0288 

UPL 3.5174 4.9884 16.4179 3.8957 1.0336 18.0358 

UEL 0.0415 74.3643 28.7214 0.0414 71.0655 11.9412 

UW 0.2320 4.1288 ــ   ــ 0.4995 0.0656 ـــــ  ـــــ

UG 0.0211 2.6569 ــ   ــ 0.3310 0.0121 ـــــ  ـــــ

KM 2.9546 26.9643 ــ   ــ 10.8248 0.3692 ـــــ  ـــــ

 

Table 11. Different measures of goodness-of-fit for data II 

Model -2logL 1  2  3  4  5  p-value W A 

UIPL -73.3992 -67.3992 -62.4864 -66.6933 -65.6513 0.0715 0.9825 0.0253 0.1855 

UPL -73.0579 -67.0579 -62.1451 -66.3520 -65.3100 0.0800 0.9520 0.0308 0.2351 

UEL -66.5617 -60.5617 -55.6490 -59.8559 -58.8138 0.1257 0.5438 0.1246 0.8984 

UW -71.8687 -67.8687 -64.5936 -67.5259 -66.7034 0.0964 0.8386 0.0389 0.2964 

UG -65.2801 -61.2801 -58.0049 -60.9372 -60.1148 0.1345 0.4579 0.0934 0.6481 

KM -66.9782 -62.9782 -59.7030 -62.6353 -61.8129 0.1237 0.5642 0.1193 0.8627 
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Figure 11. Plots representing the estimated CDFs and PDFs for data II 

 

 
Figure 12. PP plots for UIPL model with comparative distributions for data II 

8. Conclusion 

In this work, a new bounded distribution was presented as an alternative to multiple new bounded 

distributions, referred to as the unit inverse power Lomax model. Its PDF can be decreasing, 

increasing, or right-skewed, according to an analysis. Conversely, the Hrf may exhibit a bathtub-

shaped, J-shaped, or an increasing pattern. The quantile, median, skewness, kurtosis, moments, 

variance, coefficient of variation, incomplete moments, Lorenz curve, probability weighted 

moment, order statistics, and stress-strength reliability are among the many measures calculated 

in closed form. The computed uncertainty measures are R , E ,T , A , HC , ,
w and  . 

The estimation techniques of ML, MPS, MSALD, LS, WLS, Pe, AD, LAD, LTS, and CM are 

employed to estimate the unknown parameters of the proposed UIPL model. The asymptotic 

behavior of the parameter estimations for the UIPL was investigated using a numerical simulated 

study, and it was concluded that the AD method was the most effective approach in most 

circumstances. The importance of the UIPL model in comparison to other well-known statistical 

models, including the unit power Lomax, unit exponentiated Lomax distribution, unit Weibull, 

unit Gompertz, and Kumaraswamy distribution, is demonstrated by two applications employing 
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actual datasets. This conclusion suggests that the UIPL distribution is a flexible model with unique 

characteristics, which gives the opportunity of further research in future such as stress-strength 

estimation, entropy estimation, and more research in different fields. 
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