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This study evaluated the impact of different integration methods when using 

hybrid models for time series forecasting, employing monthly global oil price 

data from January 2004 to December 2023. The research included individual 

models of Autoregressive Integrated Moving Average (ARIMA) and Support 

Vector Regression (SVR) and a hybrid model (ARIMA-SVR) utilizing multiple 

integration techniques (additive, multiplicative, and regression). The results 

demonstrated the superiority of the additively integrated hybrid model, which 

achieved the lowest values for forecast accuracy metrics (MAE, MPE, MAPE, 

and MSE), significantly outperforming the other models. Specifically, this 

model showed a 46.4% improvement in MAE compared to the ARIMA model 

and a 29% improvement compared to the SVR model. The regression hybrid 

model followed in performance, followed by the multiplicatively integrated 

model, the SVR, and lastly, the ARIMA model. These findings highlight the 

effectiveness of hybrid models, particularly those with additive integration, in 

enhancing the forecasting accuracy of complex time series exhibiting both linear 

and nonlinear patterns. The study recommends exploring more sophisticated 

integration methods and expanding the scope of applications in future research. 

 

1. Introduction 

Forecasting time series data is a prominent area of research due to its extensive applications across 

various fields, including business, economics, government, social sciences, environmental science, 

medicine, politics, and finance. This widespread relevance has garnered significant attention. The 

inherent challenge in forecasting lies in the need to anticipate future events, a crucial element for 

effective planning and informed decision-making. 

Numerous statistical methods are employed for forecasting diverse phenomena. Among these, time 

series analysis stands out as a key approach. Time series are characterized by continuous 

fluctuations, exhibiting linear and non-linear patterns. Analyzing such series with a single model, 

whether linear or non-linear, may not capture the full complexity of their behavior. Consequently, 

the need has arisen for advanced techniques, leading to the development of the hybrid model. 

Many previous studies have harnessed the power of hybrid models to predict various phenomena 

across a broad spectrum of domains. These studies have consistently demonstrated the 

effectiveness of hybrid approaches in improving the accuracy of statistical forecasts. For example, 
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Xu et al. (2020) employed hybrid models to predict drought rates for water stations in Henan 

Province, China, achieving superior performance compared to individual ARIMA and SVR 

models. Similarly, Farghaly, Ali, and El-Hafeez (2020) developed an innovative associative 

classifier that integrates association rule mining with a Support Vector Machine (SVM) and a 

Sequential Forward Selection (SFS) feature selection method. Their method focused on reducing 

the number of classification rules while improving accuracy. They employed the Gini index to 

select informative attributes and utilized an SFS wrapper approach to identify optimal feature 

subsets. Results on UCI datasets revealed that this hybrid approach significantly outperformed 

traditional classification techniques, demonstrating enhanced F-measure, balanced classification 

rate (BCR), and overall classification accuracy. In addition, the method improved computational 

efficiency by reducing rule generation, underscoring the value of integrating feature selection with 

associative rule mining and SVM techniques. 

Building on the growing body of research utilizing hybrid models, Lai et al. (2021) compared SVR 

and ARIMA models with their hybrid counterparts to predict unemployment rates in five 

developing and five developed countries during the COVID-19 pandemic. Their findings 

demonstrated the superiority of the hybrid (ARIMA-SVR) model. Similarly, Zheng (2021) also 

found hybrid models to outperform individual SVR and ARIMA models when predicting daily 

coal prices at a port in China. Similarly, Nawi et al. (2021) observed a superior performance of 

hybrid models over single SVR and ARIMA models for predicting sea surface temperatures in the 

South China Sea. 

Beyond time series forecasting, hybrid approaches have shown promise in other domains. Farghaly 

and Abd El-Hafeez (2022) introduced a novel feature selection method, FS-FAI, for text 

classification using frequent and associated item sets. This technique leverages association 

analysis to identify relevant features based on their frequency and relationships with the target 

variable. Specifically, the Apriori algorithm extracts frequent item sets, followed by pruning based 

on all-confidence. Experiments conducted on BBC and SMS spam datasets revealed that FS-FAI 

effectively reduces feature space and improves classification performance, especially when used 

with Naive Bayes and Random Forest classifiers. By incorporating feature interactions and 

eliminating redundancy, FS-FAI facilitates the creation of highly accurate text classification 

models using small feature sets. 

Furthermore, Farghaly and Abd El-Hafeez (2023) further developed their feature selection 

approach, proposing a novel method based on frequent and correlated items (FS-FAI). Their 

approach utilizes association analysis to discern significant features by assessing relationships 

between features and the target variable. This method employs the Apriori algorithm for mining 

frequent item sets, which is also followed by pruning based on all-confidence. Testing on an SMS 

spam dataset showed that FS-FAI reduced redundant features and achieved high accuracy; the 

Naive Bayes and Decision Tree classifiers achieved 95.64% and 95.38% accuracy, respectively, 

while using only approximately 7% of the total features. The proposed methodology thus provides 

a viable means for improving text classification while increasing computational efficiency. 

Kontopoulou et al. (2023) conducted an assessment ARIMA models and machine learning 

algorithms for time series forecasting, integrating these techniques into hybrid statistical-AI 

models. These hybrid models were applied to various applications, including finance, health, 

weather, utilities, and network traffic forecasting. The results generally indicated that AI 

algorithms provided improved forecasting accuracy compared to traditional statistical approaches.  

Zhang and Zhou (2024) proposed a hybrid model, ARIMA-SVR-POT, which combines ARIMA, 

Support Vector Regression (SVR), and Peak Over Threshold (POT) techniques derived from 

extreme value theory. They assessed the performance of their hybrid model against three other 

established models: ARIMA-EGARCH, ARIMA-SVR, and ARIMA-EGARCH-POT. Their 
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investigation, using WTI crude oil futures data from June 23, 2016, to September 30, 2022, 

demonstrated that the ARIMA-SVR-POT hybrid model accurately predicted returns and volatility. 

Similarly, Huang and Li (2024) employed an ARIMA-SVR model to examine aggregated regional 

financial risk loan data. This approach integrated machine learning techniques within a traditional 

statistical regression framework. Specifically, they used the ARIMA model to fit the historical data, 

and the resulting error was then utilized as input for the SVR model to improve the non-linear error 

prediction. The experimental results showed that the advanced ARIMA-SVR method 

outperformed individual methods regarding both Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE), demonstrating its superiority over the deep learning LSTM method. 

 Shams et al. (2024) developed an innovative deep-learning model called SACNN for detecting 

and classifying emergency vehicle sirens and traffic noise from extensive audio datasets. This 

model integrates the strengths of Efficient Net for feature extraction with One-Dimensional 

Convolutional Neural Networks (1D-CNN), utilizing a self-attention layer to enhance detection 

accuracy and efficiency. Experimental results indicated that SACNN outperformed other models, 

achieving superior scores in accuracy, precision, recall, and F1-score. Furthermore, the model 

showed computational efficiency, thus making it well-suited for real-time applications. This study 

provides a promising solution for enhancing traffic management, public safety, and noise pollution 

monitoring. 

Eliwa et al. (2024) introduced an adaptive network-based fuzzy inference system (ANFIS) for 

forecasting gasoline prices. This study leveraged a comprehensive dataset from the U.S. Energy 

Information Administration, incorporating previous prices as an additional feature to enhance 

predictive performance. The ANFIS model demonstrated superior performance compared to 

traditional time series techniques such as VAR and ARIMA, achieving a score of 0.9970 and a 

correlation coefficient of 0.9985, which indicates a high level of accuracy and a strong positive 

relationship between predicted and actual values. The study also provided insights into the 

membership functions employed in the ANFIS model, visually demonstrating how input variables, 

including day, month, year, and previous price, are mapped to linguistic terms and fuzzy sets. 

These findings underscore the ANFIS model’s potential as a robust and accurate method for 

gasoline price forecasting. 

Mostafa et al. (2024a) conducted a scoping review exploring the role of deep learning in 

simplifying feature selection for hepatocellular carcinoma (HCC). Their review analyzed various 

studies that employed deep learning algorithms for HCC prediction, emphasizing methodologies, 

datasets, and performance metrics. Key findings highlighted the potential of techniques including 

(CNNs and RNNs) to enhance predictive accuracy and robustness while automating feature 

extraction. Additionally, the review addressed challenges related to data requirements, 

interpretability, and generalizability of deep learning models in medical applications. Furthermore, 

the study explored the importance of multimodal integration and ethical considerations for 

translating deep learning applications into clinical practice. 

A recent study by Mostafa et al. (2024b) investigated the impact of feature reduction techniques 

on machine learning models for hepatocellular carcinoma (HCC) prediction. The researchers 

utilized clinical data from the TCGA-LIHC dataset, employing methods like feature weighting, 

hidden feature correlation, and optimized selection to reduce data dimensionality. The study 

compared several algorithms, including Naive Bayes, Neural Networks, Decision Tree, SVM, and 

KNN, both before and after feature reduction. Results indicated that feature reduction significantly 

improved both the accuracy and execution time of the models, highlighting the importance of 

preprocessing data for medical prediction tasks. These findings suggest that an emphasis on 



The Impact of Different Integration Methods on Using the Hybrid Models  

52 

optimal feature selection could enhance model efficiency for HCC diagnosis and treatment 

planning.  

Lastly, El Koshiry (2024) investigated university ranking data from the QS World University 

Ranking, analyzing 4220 institutions and 25 attributes. The study examined the global distribution 

of universities, their size, research activity, and status, revealing that Europe is the continent with 

the most represented institutions. Linear regression and exponential smoothing techniques were 

then applied to project future university numbers across continents. The findings identified 

significant correlations between academic reputation, employer reputation, faculty citations, and 

overall scores. Machine learning algorithms, specifically random forest, and gradient boosting 

showed superior performance in predicting university rankings based on input parameters. These 

findings contribute valuable insights into global higher education trends and provide a framework 

for anticipating future shifts in the academic landscape. 

Prior studies share a common thread in their application of diverse machine learning and artificial 

intelligence techniques, such as neural networks, support vector machines, association analysis, 

and time-series forecasting, to enhance performance across diverse domains. These domains range 

from acoustic pattern recognition and oil price prediction to text classification, feature selection, 

and cancer prognosis. These research endeavors underscore the significance of feature selection 

and the integration of hybrid models in achieving superior accuracy and efficiency in varied 

analytical tasks, thereby providing a robust foundation for the present study. 

The distinctiveness of this research lies in its specific focus on integrating two models, ARIMA 

and SVR, to construct hybrid models, instead of analyzing them in isolation as is done in many 

other studies. Furthermore, this study compares different integration methods such as additive, 

multiplicative, and regression to determine the optimal approach for modeling global oil price data. 

Performance assessment is conducted using multiple metrics, leading to the formulation of 

practical recommendations for enhancing forecasting. 

This systematic approach, centered on model integration and analyzing results within a specific 

context, differentiates the present study from others that often adopt a broader scope or concentrate 

on individual models. 

2. Methodology 

In this research, we focus on the individual models SVR and ARIMA, as well as the hybrid model 

"ARIMA - SVR". Here's a description of each model: 

2.1 Autoregressive Integrated Moving Average (ARIMA) Model 

The ARIMA model is generated by combining the autoregressive model AR(p) and the moving 

average model MA(q) after taking the necessary differences to make the time series stationary. 

This model is represented by ARIMA (p, d, q) (Box – Jenkins; 1970). 

𝑦𝑡 = ∅0 + ∅1 𝑦𝑡−1 + ⋯ … . +∅𝑝 𝑦𝑡−𝑝 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 … . −𝜃𝑞𝑒𝑡−𝑞   (1) 

where; 

∅1, ∅2 … … , ∅p: represent the parameters of the autoregressive model. 

p: is the order of the autoregressive model. 

θ1, θ2 … . . θq :represent the parameters of the moving average model. 

q: is the order of the moving average . 

𝑒t :represents the random error . 
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When the time series is non-stationary, it can be transformed into a stationary series by taking 

differences of order (d). In this case, the ARIMA model is denoted as ARIMA (p, d, q), and its 

equation is written as: 

∅𝑝(𝐵)∇𝑦𝑡=𝜃𝑞(𝐵)𝑒𝑡 
𝑑  (2) 

∅𝑝(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝜃𝑞(𝐵)𝑒𝑡 (3) 

where;  

d: denotes the differencing order for achieving stationarity in the time series. 

B: denotes the backward shift operator. 

Box-Jenkins Methodology: 

The Box-Jenkins methodology consists of four main stages for obtaining the optimal model for 

forecasting the studied time series : 

2.1.1 Identification 

During this phase, we identify the model parameters p, d, and q. The Dickey-Fuller and Phillips-

Perron tests are used to determine the value of d, which represents the number of differences 

needed to achieve stationarity in the time series. The p and q values are established through the 

autocorrelation function (ACF), partial autocorrelation function (PACF), and the Akaike 

information criterion (AIC). The AIC is computed to determine the model order, p, and q, in the 

following manner: 

𝐴𝐼𝐶 = 𝑛 𝐿𝑛 (𝜎̂2𝑛) + 2𝑚 (4) 

where; 
m: Number of model parameters. 

n: Number of observations. 

σ̂n
2: Variance of the residuals. 

Schwarz Criterion (BIC) 

Also known as the Bayesian Information Criterion (BIC), it is calculated as follows: 

Bic(m) = n Ln (σ̂n
2) + m Ln (n) (5) 

Therefore, the best model has the lowest BIC(m) and AIC(m) values. 

2.1.2 Estimation 

After identifying the proposed model to represent the time series data, the model parameters are 

estimated. There are several methods for parameter estimation, with the most important ones being 

the Maximum Likelihood method and the Ordinary Least Squares method. 

2.1.3 Diagnostic 

After identifying and estimating the proposed model to represent the time series data, the suitability 

of the model for the data is determined by analyzing the residuals obtained from applying the 

model. The residuals should be randomly distributed, and this is assessed based on the 

assumptions: 

H0: ρ = 0 

H1: ρ ≠ 0 

Two tests are used to assess how well the model fits the data: 
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Confidence Interval Test: 

If the autocorrelation coefficient of the residuals rk (et) falls within the confidence interval with a 

probability of 95%. 

−1.96
1

√𝑛
≤ 𝑟𝑘(𝑒𝑡) ≤ 1.96 

1

√𝑛
 

The errors are normally distributed, and the model is a good fit for the data. 

Ljung – Box (Q) statistic: 
- The test is done as follows: 

H0: The data fits the model.  

H1: The data does not fit the model. 

Test statistic: 

𝑄𝑚 = 𝑛(𝑛 + 2) ∑
𝑟𝑘

2(𝑒)

𝑛 − 𝑘
              

𝑚

𝑘=1

 (6) 

r𝑘(e): The autocorrelation coefficient for the residuals at lag (k). 

𝑛: represents the number of errors. 

m: denotes the number of lag periods. 

If the P-value < α, then the model is unfit for the data, and thus another model should be chosen. 

2.1.4 Forecasting 

Forecasting is the final stage of Box-Jenkins models and represents the primary objective of model 

building. 

2.2 Support Vector Regression Model (SVR) 

The Support Vector Regression (SVR) model is a powerful tool for data analysis and forecasting, 

notable for its high capability in handling non-linear data. SVR has been widely used for time 

series forecasting involving non-linear patterns, such as financial and economic data. The SVR 

model works by classifying and separating input data using an optimal hyperplane, regardless of 

whether the data is linearly separable (Cao and Tay, 2003). 

𝑓(𝑥, 𝑤) = 𝑤𝑡𝜑(𝑥𝑖) + 𝑏  (7) 

where; 

w: is the regression coefficients vector. 

φ(xi): plots in a space with multiple dimensions. 

b: is the bias term, and the prediction error is made using the loss function f(x). (Rosenbaum et al; 

2013) 
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Figure 1. The algorithm of Support Vector Regression (SVR)  

One of the primary objectives of the Support Vector Regression (SVR) model is prediction and 

classification. The concept is based on having two different datasets that can be separated using 

several lines. To find the optimal hyperplane, the distance between the closest point in the first 

group and the closest point in the second group should be maximized. These points are called 

"support vectors" or decision boundaries. The larger the distance between the nearest points in 

both groups, the more accurate the classification of new observations will be. The following 

equation represents the loss function. 

L(y, f(w, x)) = {
0                   |f|𝑦𝑖 − 𝑓(𝑤, 𝑥)| ≤ 𝜖

|𝑦𝑖 − 𝑓(𝑤, 𝑥)| − 𝜖        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The point of using SVR is to find the function f (w, x) that agrees with the deviation ϵ for all 

training data in the prediction model. The problem is formulated as follows: 

Minimize: 
1

2
  ‖𝑤‖2 

Subject to {
𝑦𝑖 − 𝑓(𝑥𝑖, 𝑤) − 𝑏 ≤ 𝜖 + 𝛿𝑖

𝑓 (𝑥𝑖, 𝑤) + 𝑏 − 𝑦𝑖 ≤ 𝜖 + 𝛿𝑖
 

 

Sometimes it is infeasible to predict all training data within the deviation ϵ. Therefore, slack 

variables are introduced. Consequently, the problem is reformulated as follows: 

Minimize: 
1

2
‖𝑤‖2 + 𝐶 ∑(𝛿𝑖 + 𝛿𝑖

∗)

𝑛

𝑖=1

 

Subject to {
𝑦𝑖 − 𝑓(𝑥𝑖, 𝑤) − 𝑏 ≤ 𝜖 + 𝛿𝑖

∗

𝑓(𝑥𝑖, 𝑤) + 𝑏 − 𝑦𝑖 ≤ 𝜖 + 𝛿𝑖
 

𝛿𝑖
∗, 𝛿𝑖 ≥ 0 

where; 

C: is the regularization parameter, where C > 0, also known as the regularization term. 

𝛿𝑖
∗, 𝛿𝑖: are variables that measure deviations larger than ϵ. 

The Lagrange equation is used to solve the problem as follows: 
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f(x) = ∑(𝛼𝑖 − 𝛼𝑖
∗)𝜑(𝑥𝑖 , 𝑥) + 𝑏

𝑛

𝑖=1

 (8) 

where; 
(𝛼𝑖 − 𝛼𝑖

∗): Lagrange multipliers. 

and by using the kernel function, the solution becomes 

f(x) = ∑(𝛼𝑖 − 𝛼𝑖
∗)𝑘(𝑥𝑖 , 𝑥) + 𝑏

𝑛

𝑖=1

 (9) 

where; 

𝑘(𝑥𝑖, 𝑥): This function is known as Kernel, and it is used when linear separation of data is 

challenging. The data is transformed from the original domain to a high-dimensional space, 

allowing for better data separation. (Cosgun et al.; 2011). 

2.3 Hybrid Model 

The time series is assumed to be as follows: 

𝑦𝑡 = 𝐿𝑡 + 𝑁𝑡 (10) 

where; 
𝐿𝑡: The time series' linear element. 

𝑁𝑡: The time series' nonlinear component. 

The merging process is carried out in various ways: 

2.3.1 Additive Hybrid Model (ARIMA-SVR) 

The construction of the hybrid model follows these steps (Zhang, 2003): 

1. Building the ARIMA model starting from the identification phase to prediction. 

2. Obtaining the forecasted values from ARIMA to represent the linear part (𝐿̂𝑡). 

3. Constructing the SVR model to model the residuals resulting from ARIMA. 

4. Obtaining the forecasted values from the SVR model to represent the non-linear part (𝑁̂𝑡).  

5. The hybrid model is as follows: 

𝑦̂𝑡 = 𝐿̂𝑡 + 𝑁̂𝑡 

 

     
Figure 2. The additive hybrid model 

Source: Prepared by the author. 

2.3.2 Multiplicative Hybrid Model (ARIMA – SVR) 

The multiplicative hybrid model (Wang et al; 2013) (Alsuwaylimi;2023).  assumes that the series 

consists of two parts, linear and nonlinear, as shown in the following figure: 
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𝑦𝑡 = 𝐿𝑡  . 𝑁𝑡 

1. Obtaining the predicted values from ARIMA to represent the linear part (𝐿̂𝑡). 

2. The nonlinear part is obtained as follows: 

𝑛𝑡 = 𝑦𝑡/𝐿̂𝑡 

3. It is estimated by using an SVR model to obtain (𝑁̂𝑡) to represent the nonlinear part. 
4. The hybrid model is in the figure: 

𝑦̂𝑡 = 𝐿̂𝑡 . 𝑁̂𝑡 

 

 

Figure 3. Multiplicative hybrid model 

Source: Prepared by the author. 

2.3.3 Hybrid regression model (ARIMA – SVR) 

The hybrid model is built by utilizing the forecasted values generated by the ARIMA model and 

SVR as individual models, forming a multiple linear regression model to determine the integration 

weights as follows: (Watchareeporn & Chutatip; 2010) 

𝑦𝑡 = 𝛽0 + 𝛽1𝐹𝐴𝑅𝐼𝑀𝐴 + 𝛽2𝐹𝑆𝑉𝑅 

where; 

yt: Actual data (dependent variable). 

FARIMA: Predicted values from the ARIMA model. 

FSVR: Predicted values from the SVR model. 

β1: First linear regression coefficient (first weight). 

β2: Second linear regression coefficient (second weight). 

Considering 𝛽0 = 0, the regression model will consist of the dependent variable being the real 

values of global oil prices and the independent variables being the predictions resulting from using 

SVR and ARIMA. 

Π 

 

SVR 
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Figure 4. Hybrid regression model 

Source: Prepared by the author. 

2.4 Model Accuracy Efficiency Metrics  

The efficiency of the performance of the models is measured to test the best model according to 

several statistical criteria  (Wei, 2006), which are: 

1. Mean square error (MSE): 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑡 − 𝑦̂𝑡)2

𝑛

𝑡=1

 

2. Mean absolute percentage error: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑡 − 𝑦̂𝑡|

𝑦𝑡
× 100

𝑛

𝑡=1

 

3. Mean Absolute error: 

𝑀𝐴𝐸 = ∑
|𝑦𝑡 − 𝑦̂𝑡|

𝑛

𝑛

𝑡=1

 

3. Applied Study 
This study aims to forecast time series using individual models SVR and ARIMA, as well as the 

hybrid model "ARIMA – SVR" through different integration methods, applied to global oil price 

data from January 2004 to December 2023. The data used compares monthly observations totaling 

240 data points, with 216 data points used as the training set, representing 90% of the total data, 

and the remaining 24 data points used as the test set, representing 10% of the total data. The study 

seeks to compare actual and predicted values to assess the model's forecasting capability. 

The software programs EViews 12, Stat Graphic 19, and Python were utilized to analyze the time 

series data of global oil prices. We begin by conducting descriptive statistics for both the training 

and test sets as follows: 

Table 1. Descriptive Statistics 

Value (Test) Value (Training) Statistics 

24 216 N 

86.20 88.27 Mean 

83.7 63.83 Median 

70.25 16.6 Min. 

114.8 133.8 Max. 

12.83 22.47 Standard Division 

0.19-  0.44-  Kurtosis 

0.86 0.45 Skewness 
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This dataset analysis presented in Table (1) provides a comprehensive overview of the descriptive 

statistics for both the test and training values. Descriptive statistics serve as a fundamental tool in 

data analysis, offering insights into the central tendency, dispersion, and shape of data distribution. 

In this context, the dataset comprises two sets of values: the test values, with a mean of 86.20 and 

a median of 83.7, and the training values, which exhibit a higher mean of 88.27 and a median of 

63.83. The range of values is notable, with the test set spanning from a minimum of 70.25 to a 

maximum of 114.8, while the training set ranges from 16.6 to 133.8. 

Furthermore, the standard deviation indicates variability within each dataset, with the test values 

showing a standard deviation of 12.83 and the training values at 22.47, suggesting greater 

dispersion in the training data. The kurtosis values, recorded at 0.19 for the test and 0.44 for the 

training set, along with skewness values of 0.86 and 0.45 respectively, provide additional context 

regarding the distribution's peakness and asymmetry. 

This descriptive framework lays the groundwork for further statistical analysis and interpretation, 

enabling researchers to draw meaningful conclusions from the observed data patterns. By 

understanding these basic measures, one can deepen their understanding of the fundamental 

characteristics of the data before proceeding to more complex analysis. 

3.1 Autoregressive Integrated Moving Average (ARIMA) Model 

To construct a better model for forecasting and estimating its parameters and to ensure the model's 

suitability for time series data of global oil prices, it is necessary to analyze the series according to 

the following steps: 

3.1.1 Time Series Stationarity 

Stationarity stands as a key concept in the analysis of time series data. The Box-Jenkins 

methodology can only be used if the analyzed time series is stationary. Checking the reliability of 

the time series is the initial step that must be examined. Hence, before implementing the method, 

the data needs to be ready to guarantee the time series' stability. The stability of a series can be 

visually assessed by examining the original plot and the plots of the autocorrelation function (ACF) 

and partial autocorrelation function (PACF). Additional statistical techniques like the ADF and 

KPSS tests can also be employed for this objective. 

 
Figure 5. Time Series of Global Oil Prices 
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From Figure (5), we observed that there is no general trend in the time series of global oil prices, 

indicating that the series is stable over time. This stability is further confirmed by the shapes of 

both the Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF) 

  
Figure 7. ACF Figure 6. PACF 

The initial phase of constructing the ARIMA model involves analyzing the shape of the 

Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF). From Figures 

(2) and (3), it is observed that the ACF values are significant for many lags, and the series does not 

decay slowly. This indicates that the series is stable at its original level, i.e., it is integrated of order 

zero, I(0). To further validate the stability of the time series, unit root tests (ADF, PP, KPSS) were 

conducted, and the results are as follows: 

Table 2. unit root tests 

Test Value  P – value  I (d) 

ADF -3.28 0.016 I (0) 

PP -2.86 0.04 I (0) 

KPSS 0.344 0.344 I (0) 

From Table (2), we observe that in both the ADF and PP tests, the p-value is lower than the 

significance threshold of 0.05. Therefore, we dismiss the null hypothesis and embrace the 

alternative hypothesis regarding the time series of global oil prices as stable at its original level. 

On the other hand, in the KPSS test, the p-value is greater than 0.05, leading to the acceptance of 

the null hypothesis that the series is stable at its original level, I (0). 

3.1.2 Model Estimation 

After confirming the stationarity of the time series for global oil prices at the original level and 

observing the autocorrelation function, the proposed model is ARIMA (2,0,0), and its equation is 

written as follows: 

𝑦𝑡 = μ + ∅ 𝑦𝑡−1 + ∅ 𝑦𝑡−2 + 𝑒𝑡 

To find the best model for the time series, we compare the proposed model with several other 

models to determine the most appropriate model for the data. The model with the lowest values 

for the following statistical measures is considered the best: 

Table 3. Comparison of Candidate Models 

Model AIC BIC HQC 

ARIMA (2,0,0) 3.4497 3.4966 3.4686 

ARIMA (2,0,1) 3.4609 3.5223 3.48617 

ARIMA (2,0,2) 3.471 3.5491 3.5029 

ARIMA (1,1,0) 3.4729 3.4988 3.4790 
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Based on Table (3), the best model is ARIMA (2,0,0) as it has the lowest values for all statistical 

criteria. 

 
Table 4. Estimation of the Proposed ARIMA (2,0,0) Model 

Parameter  Estimate  St. error P – value  

AR (1) 1.3157 0.0625 0.000 

AR (2) -0.36898 0.0624 0.000 

Mean 68.6703 6.4203 0.000 

Constant  3.6585   

Therefore, the equation for the model is as follows: 

𝐲̂𝐭 = 𝟑. 𝟔𝟓𝟖𝟓𝟕 + 𝟏. 𝟑𝟏𝟓𝟕𝟏𝐲𝐭−𝟏 − 𝟎. 𝟑𝟔𝟖𝟗𝟖𝟑𝐲𝐭−𝟐 

 

3.1.3 Model Diagnosis 

After estimating the model parameters and determining their order, it is essential to verify the 

model's adequacy and efficiency. This is done by calculating the residuals' autocorrelation 

coefficients and conducting the following tests: 

Ljung-Box Test: 

The results of the test were as follows: 
 
Table 5. Ljung – Box 

Test  Statistics (Q) P – value  

Ljung – Box 15.778 0.826 

From Table (5), we noticed that the p-value for the test is greater than 0.05. Therefore, we accept 

the null hypothesis H0: ρi(et) = 0, indicating that the errors are random and uncorrelated. 

Consequently, the model is adequate and efficient for representing the time series of global oil 

prices. 

Residual Test: 

When graphing the autocorrelation and partial autocorrelation coefficients of the residuals, we 

observe that all autocorrelation values fall within the 95% confidence interval. This indicates that 

the residual series consists of uncorrelated random variables, suggesting that the model used is 

appropriate and accurately represents the data. 

  
Figure 9. ACF of the Residuals Figure 8. PACF of the Residuals 
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3.1.4 Forecasting 

After the model passed the diagnostic tests, confirming its suitability for predicting global oil 

prices for 24 observations, which constitute the test set, the prediction results are shown in Table 

(11). The following figure illustrates the estimated and actual values for the ARIMA (2,0,0) model. 

 

 
Figure 10. Plot of Estimated and Actual Values for ARIMA (2,0,0) 

 

From Figure (10), it is observed that the performance of the ARIMA model in the forecasting 

process is unsatisfactory for monthly global oil prices. 

3.2 Estimating the Support Vector Regression (SVR) Model 

To estimate the Support Vector Regression (SVR) model for the global oil prices series, the data 

was divided into two groups: a training set consisting of 90% of the total data, which includes 216 

observations, and a test set comprising 10% of the total data, which includes 24 observations. To 

estimate the model, the appropriate "Kernel" function must first be determined as follows: 

Table 6. Types of Kernel Functions 

Measure Linear Polynomial RBF Sigmoid 

MSE 0.0000004 409.4 57.5 197.5 

R2(Training) 100% 18.58% 88.5% 60.6% 

 

Based on Table (6), the linear Kernel function was selected for predicting global oil prices due to 

its lowest mean squared error and highest coefficient of determination (R-squared) for the training 

set. After applying several trial tests on the training data, C=1.0 and ε=0.1 were identified as the 

optimal parameters, providing the lowest mean squared error values. These parameters were 

employed to train the model, and predictions were made for the test set comprising 24 observations 

from January 2022 to December 2023 using Stat Graphics 19 software. The predicted values are 

shown alongside those from other models in Table (11). 

Comparing actual and predicted values using the SVR model, it was observed that the SVR model 

outperformed the ARIMA model in terms of forecasting accuracy. This is proven by the strong 

correlation between the estimated and actual values, as depicted in the subsequent figure. 
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Figure 11. Estimated and Actual Values for the SVR Model 

 

To test the adequacy of the model for monthly time series data of global oil prices using the Ljung-

Box test, the results are as follows: 

Table 7. Ljung-Box Test 

Test  Q P – value  

Ljung – Box 11.32 0.713 

The results of the Ljung-Box test indicated a p-value of 0.713, which is greater than 0.05. 

Consequently, we accept the null hypothesis that the errors are random and uncorrelated, 

confirming that the model is adequate and efficient for representing the monthly time series of 

global oil prices. Additionally, we observed that the autocorrelation coefficients fall within the 

95% confidence interval and there is no autocorrelation among the residuals. This further supports 

the quality of the SVR model. 

3.3 Estimation of the Hybrid Model (ARIMA-SVR) 

To estimate the hybrid model (ARIMA-SVR), different integration methods are employed. These 

include the additive and multiplicative hybrid models and the regression hybrid model. These 

methods are utilized to determine the most appropriate model for oil price data. 

3.3.1 The Additive Hybrid Model (ARIMA-SVR) 

To estimate the hybrid model, estimated values from the ARIMA model representing the linear 

part of the series (𝐿̂𝑡) are obtained. Then, an SVR model is constructed based on the residuals from 

ARIMA, and the predicted values from the SVR model represent the nonlinear part (𝑁̂𝑡). Thus, the 

hybrid model series is obtained as follows: 

𝑦̂𝑡 = 𝐿̂𝑡 +  𝑁̂𝑡 

Then, the hybrid model is used to forecast 24 observations, which constitute the test set, as 

illustrated in Table (12). By comparing the predicted values with the actual ones using the hybrid 

model, we noticed a strong convergence between them. This is evident in Figure (12), indicating 
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a significant improvement in the performance and predictive ability of the hybrid model for 

monthly global oil prices. 

 
Figure 12. Actual and Estimated Values using the Additive Hybrid Model (ARIMA-SVR) 

To verify the adequacy of the model for the global oil price time series data, the Ljung-Box test 

was conducted with the following results: 

Table 8. Ljung-Box Test  

Test  Q P – value  

Ljung – Box 10.13 0.297 

As the p-value equals 0.297, we accept the null hypothesis, implying that the additive hybrid model 

is suitable for representing the monthly time series of global oil prices. 

3.3.2 The Multiplicative Hybrid Model (ARIMA-SVR) 

This model assumes that the series is composed of a multiplicative product of two components: 

one linear and the other nonlinear, as follows: 

𝑦𝑡 = 𝑙𝑡 . 𝑁𝑡 

The estimated values of the ARIMA model represent the linear part of the series (𝐿̂𝑡)By dividing 

the actual values of the series by the linear part, we obtain the values of the nonlinear part, which 

are then input into the SVR model. By obtaining the estimates of the values from the SVR model 

to represent the nonlinear part (𝑁̂𝑡), the new hybrid model becomes: 

𝑦̂𝑡 = 𝐿̂𝑡 .  𝑁̂𝑡 

Using the hybrid model to forecast a set of 24 test observations yielded results as shown in Table 

(12). It is noticeable that there is an enhancement in the multiplicative hybrid model’s ability to 

forecast monthly global oil prices, as depicted in Figure (13). 
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Figure 13. Actual and Estimated Values using the Multiplicative Hybrid Model (ARIMA-SVR) 

By conducting the Ljung-Box test to verify the adequacy and suitability of the model for 

representing the global oil price time series, the results were as follows: 

Table 9. Ljung-Box Test 

Test  Q P – value  

Ljung – Box 13.20 0.651 

 

It is observed that the p-value is greater than 0.05, thus accepting the null hypothesis that the 

multiplicative hybrid model is valid and efficient for representing the monthly time series of global 

oil prices. 

3.3.3 Hybrid Regression Model (ARIMA – SVR) 

This model results from a multiple regression equation representing the actual values of the 

training set, which consists of 216 observations. The dependent variable is predicted by the first 

independent variable, comprising of the predicted values by the ARIMA model, and the second 

independent variable is the predicted values by the SVR model. Therefore, the estimated regression 

equation without a constant is: 

𝑦̂𝑡 = 0.989 𝐹𝐴𝑅𝐼𝑀𝐴 + 1.493 𝐹𝑆𝑉𝑅 

Thus, the estimated and actual values  by the multiple regression hybrid model, as shown in Table 

(12) indicate high performance in the prediction process. This is evident from the convergence 

between the actual and predicted values, as illustrated in the following figure: 
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Figure 14. Actual and Predicted Values by the Hybrid Regression Model (ARIMA – SVR) 

 

Using the Ljung-Box test for the resulting series, the test results are as follows: 
Table 10. Ljung-Box Test 

Test  Q P – value  

Ljung – Box 7.125 0.1754 

The p-value is greater than 0.05, thus accepting the null hypothesis that the regression hybrid 

model is correct for the global oil price time series data. 

 
Table 11. The predicted values of the ARIMA and SVR model: 

 ARIMA SVR 

Actual 

values 

Predicted values

  

Residuals Predicted 

values 

Residuals 

1/2022 83.32 80.11 3.21 83.15 0.07 

2/2022 91.47 90.24 1.23 90.11 1.35 

3/2022 108.7 106.91 1.79 104.54 3.95 

4/2022 101.79 97.34 4.45 101.10 0.67 

5/2022 109.54 102.32 7.22 100.73 8.8 

6/2022 114.82 109.10 5.72 111.64 3.18 

7/2022 101.61 100.68 0.93 102.01 -0.39 

8/2022 93.65 90.51 3.14 90.60 3.07 

9/2022 84.36 82.62 1.63 83.30 0.93 

10/2022 87.55 89 -1.45 85.31 2.24 

11/2022 84.35 80.23 4.12 80.15 4.22 

12/2022 76.45 71.22 5.23 77.5 -1.06 

1/2023 78.11 77.01 1.1 79.20 -1.08 

2/2023 76.80 73.60 3.2 70.6 6.23 

3/2023 73.25 70.55 2.7 72.16 1.11 

4/2023 79.46 72.96 6.40 79.01 0.44 

5/2023 71.55 70.62 0.93 68.85 2.71 

6/2023 70.21 65.06 5.15 71.2 -0.95 

7/2023 76.07 79.01 -2.94 73.71 2.36 

8/2023 81.38 79.08 2.30 80.16 1.2 

9/2023 89.44 88.22 1.22 85.34 4.19 

10/2023 85.65 80.11 5.54 86.05 -0.41 

11/2023 77.62 73.35 4.32 76.10 1.59 

12/2023 71.9 73.69 -1.79 65.9 6.1 
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From Table (11), the statistical predictions for the individual models ARIMA and SVR are closely 

aligned. Comparing the actual and predicted values using the SVR model, it is evident that the 

SVR model is better than the ARIMA model in forecasting. 

 
Table 12. Predicted and Actual Values for Hybrid Models 

 (ARIMA-SVR) 

Additive 

ARIMA-SVR 

Multiple 

ARIMA-SVR 

Regression 

Predicted 

values 

Residuals Predicted 

values 
Residuals Predicted 

values 

Residuals 

1/2022 82.21 1.001 79.37 3.85 82.05 1.18 

2/2022 90.32 1.15 89.36 2.14 89.001 2.44 

3/2022 108.93 -0.43 105.35 3.14 99.61 8.86 

4/2022 101.75 0.02 99.07 2.71 99.72 2.08 

5/2022 105.52 4.04 110.01 -0.46 107.3 2.20 

6/2022 112.71 2.13 107.30 7.52 115.9 -1.01 

7/2022 101.62 0.01 99.15 2.47 101.69 -0.07 

8/2022 91.63 2.05 93.01 0.66 89.01 4.64 

9/2022 83.25 1.01 83.17 1.1 84.25 0.03 

10/2022 85.55 2.02 86.17 1.38 87.19 0.36 

11/2022 83.36 1.01 82.45 1.91 83.45 0.94 

12/2022 76.46 -0.01 77.22 -0.78 75.49 0.93 

1/2023 77.12 1 79.15 -1.03 76.15 1.97 

2/2023 75.80 1.04 70.82 6.01 75.8 1.03 

3/2023 70.13 3.1 72.17 1.15 72.91 0.35 

4/2023 74.14 5.31 77.23 2.22 77.11 3.36 

5/2023 71.50 0.08 70.68 0.89 68.32 3.26 

6/2023 69.12 1.16 69.11 1.16 69.19 1.06 

7/2023 72.05 4.02 78.15 -2.08 75.13 0.95 

8/2023 80.13 1.27 80.24 1.16 79.65 1.73 

9/2023 87.50 1.87 84.12 5.32 88.09 1.34 

10/2023 82.45 3.18 82.38 3.26 82.31 3.33 

11/2023 73.82 3.87 75.11 2.69 72.11 7.55 

12/2023 71.39 0.56 69.12 2.89 72.13 -0.26 

 

From Table (12), a comparison between the actual and predicted values for the three hybrid models 

is provided. The statistical measures from the various hybrid models show closely aligned results, 

indicating consistent performance across the different models. 

3.4 Comparison Between Single Models and Hybrid Models Using Different Integration 

Methods. 

The test set, comprising 24 observations, is now being employed, and the results are outlined in 

Table (13) . 
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Table 13. Comparison between Single Models and Hybrid Models 

Model MSE MAPE MPE MAE 

ARIMA 13.737 0.03754 0.03080 3.2145 

SVR 10.4859 0.02793 0.0237 2.41916 

"ARIMA-SVR" 

Additive 
5.05906 0.02039 0.02005 1.71920 

"ARIMA-SVR" 

Multiplicative 
8.87285 0.02773 0.02315 2.41 

"ARIMA-SVR" 

Regression 
7.9467 0.02279 0.02170 2.00166 

The results, as shown in Table (13), indicate that the ARIMA model is the least efficient in 

predicting monthly global oil prices, as it presents weak performance with large errors. In contrast, 

the SVR model performs better in predicting monthly global oil prices due to its lower error rates. 

However, the additive hybrid model (ARIMA – SVR) is the most efficient, represented by the 

lowest values in statistical measures such as MAE, MPE, MAPE, and MSE. Following in 

efficiency is the regression hybrid model, then the multiplicative hybrid model, followed by the 

SVR model, and finally the ARIMA model. 

4. Discussion 

This research begins with an empirical analysis of global oil price time series data, focusing on the 

comparative performance of individual and hybrid time series models. Crucially, initial unit root 

tests confirmed the stationarity of the oil price series at its original level, thereby validating the 

application of stationarity-based time series modeling techniques and establishing a necessary 

foundation for subsequent analysis. 

Building on this foundation, the investigation first assessed individual models, identifying ARIMA 

(2,0,0) as the most appropriate for modeling the monthly oil price data based on its superior fit 

indicated by BIC and AIC. However, despite its statistical significance, the ARIMA model 

demonstrated limited forecasting accuracy over a 24-period test set, highlighting the inherent 

challenges of relying solely on linear models when dealing with complex, real-world datasets. In 

contrast, the Support Vector Regression (SVR) model, using a linear kernel function, exhibited 

superior forecasting performance, effectively capturing the nonlinear dynamics often overlooked 

by traditional linear models. 

This contrast then led the investigation to explore hybrid modeling structures, specifically 

combinations of ARIMA and SVR. These hybrid models, across various integration methods, 

demonstrated a marked improvement in forecasting performance compared to the individual 

models. Notably, the additive integration approach yielded the lowest error metrics (MAE, MPE, 

MAPE, and MSE), underscoring the effectiveness of additive decomposition in harnessing the 

linear components captured by ARIMA alongside the nonlinear patterns extracted by SVR, 

resulting in a more robust model. While other hybrid approaches employing multiple regression 

and multiplicative integration showed acceptable results; they proved less efficient. 

The findings collectively demonstrate the advantage of using hybrid modeling frameworks when 

forecasting complex time series displaying linear and nonlinear dynamics. While individual 

models like ARIMA or SVR can perform adequately under certain circumstances, their 

effectiveness is limited by inherent assumptions, as evidenced by the comparatively higher error 

rates of ARIMA. Consequently, the proposed hybrid ARIMA-SVR model, utilizing additive 

integration, provides a robust and effective solution for forecasting global oil prices. 
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This research, therefore, builds upon and complements existing literature dedicated to enhancing 

model performance across various disciplines. Previous studies, which developed models like 

SACNN, FS-FAI, and ANFIS, focused on exceeding classification accuracy, resource efficiency, 

and predictive power through feature reduction, dimensionality reduction, and optimization 

algorithms. These efforts, alongside the present study, share the common goal of enhancing the 

statistical performance of predictive models via improved accuracy, efficient resource utilization, 

and reduced error, reflecting the consistent adoption of statistical metrics like F1-score, correlation 

coefficients, and error measures. The findings strongly advocate for hybrid modeling as a potent 

approach to forecasting time series that exhibit both linear and nonlinear dynamics. 

5. Limitation 

This study, while offering valuable insights into time series forecasting using hybrid models, is 

subject to several limitations. These limitations arise from various factors including the scope of 

the data, choices in model selection, methodological decisions, generalizability, and dependence 

on specific software. 

The analysis was restricted in terms of data scope. First, the temporal range was limited to monthly 

global oil price data from January 2004 to December 2023. Consequently, the models' performance 

may not be generalizable to different periods or varying economic conditions. Second, the study 

focused exclusively on oil prices. The efficacy of the models might vary when applied to other 

types of data or different economic indicators. 

The research relies on secondary data, with a primary emphasis on datasets from the World Bank 

and OPEC. Monthly global oil price data covering January 2004 to December 2023 was retrieved 

from the World Bank's commodity price database (www.worldbank.org), along with other relevant 

economic indicators. Additionally, OPEC's monthly and annual reports, accessed via their website 

(www.opec.org), provided further insights into the oil market. These data sources are fully cited to 

ensure transparency and reliability. 

Finally, the reliance on specific software packages—namely EViews, Stat Graphics, and Python—

presents a limitation. Different software packages or varying versions of the same software might 

produce slightly different results, which could influence the study's findings. 

6. Conclusion 

This research aims to forecast time series data by employing individual Support Vector Regression 

(SVR) and Autoregressive Integrated Moving Average (ARIMA) models, as well as their hybrid 

combination. Various integration techniques were explored for the hybrid model, which was 

applied to monthly global oil price time series data from January 2004 to December 2023. The 

study evaluates these models using several accuracy metrics to identify the optimal forecasting 

approach. 

The results indicate that the global oil price time series exhibits stability at its original level. Based 

on the Box-Jenkins methodology, the ARIMA (2,0,0) model was identified as the most suitable for 

representing the monthly price series, achieving the lowest values for the Bayesian Information 

Criterion (BIC) and Akaike Information Criterion (AIC). This ARIMA model was then used to 

forecast 24 future values. Similarly, for the SVR model, a linear kernel function was selected due 

to its lowest mean squared error (MSE) value. This SVR model was also used to forecast 24 future 

values. 

Following the estimation of the hybrid ARIMA-SVR model using different integration methods—

including additive, multiplicative, and regression-based approaches—a comparative analysis was 
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conducted. This comparison between the individual models (SVR and ARIMA) and the hybrid 

models demonstrated the superiority of the additive hybrid model. This model achieved the lowest 

values across various statistical measures: Mean Absolute Error (MAE), Mean Percentage Error 

(MPE), Mean Absolute Percentage Error (MAPE), and Mean Squared Error (MSE). The regression 

hybrid model exhibited the second-best performance, subsequently followed by the multiplicative 

hybrid model, then the SVR model, and finally, the ARIMA model. 

The next step in the analysis will focus on determining the percentage improvement achieved by 

the superior models 

Table 14. Comparison of Forecasting Model Performance (Detailed( 

Estimated 

approximate 

MAE Value 

(Based on 

Percentages) 

Percentage 

Improvement 

Compared to 

SVR 

Percentage 

Improvement 

Compared to 

ARIMA 

Comparison 

with Other 

Models 

Mean 

Absolute 

Error 

(MAE) 

(Unit 

Undefined) 

Forecasting 

Model 

3.2145 - - 
Weakest in 

Forecasting 

3.2145 

)Reference) 
ARIMA 

2.41916 - 24.74% 

Better than 

ARIMA, but 

less than hybrid 

models 

2.41916 SVR 

Approximately 

1.71925 
29% 46.4% 

Best among all 

models 

Undefined 

(Best ( 

ARIMA-SVR 

(Additive( 

Approximately 

2.00016 
Not Available 37.7% 

Better than 

ARIMA and 

SVR 

Undefined 
ARIMA-SVR 

(Regression ( 

Approximately 

2.41088 
Not Available 25% 

Better than 

ARIMA and 

SVR 

Undefined 
ARIMA-SVR 

(Multiplicative( 

 

1-The Best Model: The additive hybrid model (ARIMA-SVR) is the best-performing model 

without question, based on the significant improvement it achieved in forecasting accuracy 

(MAE), with an estimated MAE of 1.71925. 

2-SVR Performance: The SVR model performed better than ARIMA but was less efficient than 

all the hybrid models. 

3-Performance of Hybrid Models: All the hybrid models (additive, regression, and multiplicative) 

outperformed the individual ARIMA and SVR models, with the additive hybrid model 

significantly superior. 

4-ARIMA Performance: The ARIMA model had the least forecasting accuracy. 

Recommendations for Future Research 

Building on these limitations, the following are suggestions for future research: 

1. Data Expansion: Employ data from varying temporal ranges and alternative data 

modalities. 

2. Exploration of Novel Models: Test more advanced modeling techniques, such as deep 

learning and reinforcement learning. 

3. Advanced Hybrid Integration: Examine more complex methods of combining models for 

higher accuracy. 
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4. Comprehensive Evaluation: Implement a broader range of metrics and benchmark against 

non-traditional models. 

5. Economic Impact Analysis: Investigate the influence of economic shifts on model 

performance. 

6. Multivariate Models Development: Integrate additional variables along with oil prices to 

improve forecasting accuracy. 

7. By acknowledging the existing constraints and suggesting future research avenues, this 

study facilitates more robust and applicable insights into time series forecasting using a 

hybrid model Exploring diverse techniques for evaluating the efficiency of hybrid models 

and contrasting them with conventional models across different scenarios. 
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