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 Automatic Modulation Classification (AMC) plays a crucial role in Cognitive Radio (CR) systems, 

especially within Internet of Things (IoT) devices where spectrum efficiency and flexibility are 

paramount. Traditional modulation classification methods often rely on feature extraction and 

machine learning (ML) algorithms, which need a lot of complex calculations and may struggle with 

complex modulation schemes and noisy channels. Deep Learning (DL), particularly Recurrent Neural 

Networks (RNNs) and Convolutional Neural Networks (CNNs), has a positive impact on AMC due 

to their ability to automatically learn and extract discriminative features from the sequences of raw 

I/Q received signals. So, this paper proposes DL AMC model is built and investigated using 

Radioml2016 data for enhancing spectrum management for CR in IoT systems. The proposed model 

has  reduce model parameters by 35% by using depthwise separable convolutional and traditional 

convolution to create the model architecture while increasing the accuracy of  the model to 84 % at 

high SNR . The reduction in the model parameters led to a reduction in the prediction time to achieve 

the requirement in cognitive radio systems for IoT devices. 
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1. Introduction  

The rapid increase in IoT devices necessitates efficient 

spectrum utilization, driving the need for intelligent CR systems. 

AMC is a critical task within CR, enabling devices to identify and 

adapt to the modulation schemes of incoming signals 

dynamically. DL has demonstrated significant capabilities in 

handling diverse and complex data patterns, making it an 

attractive candidate for AMC tasks in IoT CR systems. 

The CR systems enable unlicensed Secondary Users (SUs) 

to utilize idle channels of Primary Users (PUs) without disrupting 

their operations. As a result, an SU intending to access a free 

channel band must employ a robust Spectrum Sensing (SS) 

technique to accurately detect whether the PU is present or absent 

in the channel, as illustrated in Fig. 1 of the cognitive cycle of CR. 

This allows the SU to effectively manage the spectrum and make 

appropriate decisions [1]. Some other functions that can be 

performed by a SU are Adaptive Coded Modulation (ACM) and 

Modulation Classification (MC)[2]. A CR is expected to be able 

to correctly  recognize or classify the type of modulation scheme 

of the received signal rapidly without any latency so as to know 

there is a PU in the channel based on the fact all primary users 

employ one modulation technique for the transmission over the 

frequency channel and also to apply  the  appropriate demodulation 

process in the receiving side. 

 The automatic modulation classification (AMC) methods 

are divided into traditional methods and advanced methods. 

In Traditional methods, there are two primary approaches, 

likelihood-based and feature-based methods, have very important 

roles in determining the modulation type of received signals. 

While advanced methods for AMC depend on deep learning (DL) 

[3]. Likelihood-based methods rely on statistical principles to 

compute the likelihood that a received signal corresponds to each 

modulation scheme within a predefined set [4]. These methods 

typically involve maximum likelihood estimation or Bayesian 

inference to assess the probability of observing the signal under 

different modulation hypotheses [5]. In contrast, feature-based 

methods extract discriminative features from the received signal, 

such as constellation points, signal-to-noise ratio estimates, or 

higher-order statistics, and use these features to train classifiers 

like neural networks or SVMs for modulation classification [6]. 

While likelihood-based methods excel in accuracy under ideal 

statistical assumptions, feature-based methods offer robustness in 

varying signal conditions and are computationally more efficient. 

The choice between these methods often hinges on the specific 

requirements of the application, including computational 

complexity, robustness to noise and channel conditions, and 

availability of training data. 

 
Figure 1: Cognitive cycle of CR. 
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Moreover, Software Defined Radio (SDR), which is core for 

CR systems gaining immense popularity in Which the neighbor 

devices are expected to adopt Conditions and adjust transmission 

and adjust their transmission parameters, modulation schemes, 

etc[7]. It is one of the most important to be able to classify the 

modulation type at the receiver’s end without needing prior 

knowledge about the transmitter’s system.  

Recent advancements in deep learning (DL) technologies 

have led to the development of methods that can autonomously 

learn features. DL is particularly advantageous due to its ability to 

leverage large datasets, which are readily available in 

communication systems. One challenge associated with DL is its 

complexity, involving both training and testing phases. However, 

recent architectures utilizing different types of convolutions, such 

as separable convolutions, have shown promise. These 

architectures significantly reduce model size without 

compromising accuracy. By decreasing the number of parameters 

compared to traditional convolutional methods, separable 

convolutions are well-suited for small devices in the Internet of 

Things (IoT) environment. This study compares the effectiveness 

of separable convolutions against conventional convolutional 

neural networks.  

      This paper is organized as follows: Section1 introduction; 

Section 2 reviews automatic modulation classification techniques; 

Section 3 provides an in-depth discussion of deep learning in 

AMC. Section 4 is the most significant part in as it present the 

implementation of our model. Section 5 presents the results, while 

Section 6 concludes the paper and outlines directions for future 

work. 

2. Related work 

DL represents a cutting-edge research frontier within the 

realm of machine learning. By assimilating the underlying 

patterns and attributes of data samples, DL systems emulate 

human-like analytical and learning processes, thereby enabling 

advanced capabilities in prediction and classification [8]. The 

rapid evolution of digital computing technology has dramatically 

expanded both data volumes and computational power, fostering 

accelerated advancements in DL methodologies [9]. 

Contemporary deep learning algorithms find application across a 

diverse array of classification challenges, including but not 

limited to computer vision [10], bioinformatics [11], natural 

language processing [12], visual recognition [13], and signal 

processing [14]. This domain of machine learning leverages 

extensive datasets to train models, allowing them to extract 

features and effectively classify or predict novel data points [15]. 

The swift progress in deep learning has led to the development of 

sophisticated communication applications, such as modulation 

classification. 

Numerous researchers have developed methods for the 

automatic classification of modulation schemes. Specifically, 

various likelihood-based approaches, which rely on the power 

spectral density (PSD) of the received signal, have been explored. 

It has been noted that LB methods achieve favorable results, 

though they come with significant computational complexity. 

While many studies have concentrated on the accurate prediction 

of modulation schemes using LB methods, they often overlook 

the associated computational demands [16]. FB methods, 

designed as suboptimal classifiers for practical use, focus on 

extracting valuable features from the received signal and 

classifying them using a classifier. These features might include 

instantaneous wavelet transforms, as seen in [17], or constellation 

diagram plots, as illustrated in [18]. Research indicates that while 

LB methods offer optimal solutions with high accuracy, they 

require considerable computation and prior knowledge about the 

signal. In contrast, FB methods provide a suboptimal solution 

with lower latency, as they do not need prior signal knowledge. 

Additionally, to satisfy the requirements of a cognitive radio 

system as outlined in [1], deep learning techniques, particularly 

CNN networks, have proven effective for modulation 

classification. 

O’Shea [19] was proposed the first model using CNNs for 

classifying modulation types of raw signal samples generated 

with GNU Radio. He also introduced an open-access dataset for 

training neural networks, which has been widely utilized in 

subsequent research. In a later publication [20], a more 

comprehensive radio (OTA) dataset was introduced, featuring a 

broader array of modulation types in real-world settings. Research 

in [21] explored three different architectures—Convolutional 

Long Short-Term Memory Deep Neural Network (CLDNN), 

Long Short-Term Memory Network (LSTM), and Deep Residual 

Network (ResNet)—focusing on maintaining high performance 

while implementing strategies to minimize the number of 

parameters required for network training. Conversely, [22] 

developed an Automatic Modulation Classification (AMC) 

system based on CNN and LSTM to enhance accuracy and reduce 

overall training time. Additionally, [23] presented a hybrid signal 

recognition model combining CNN with Gated Recurrent Units 

(CnGr) to decrease model size, facilitating easier deployment and 

maintaining high recognition accuracy. 

In this study, we introduce a CNN architecture designed for rapid 

automatic modulation classification of raw input IQ sequences 

data from received signals across various SNR levels, with the 

aim of enhancing model accuracy as possible. The CNN model 

was developed and analyzed to boost accuracy and minimize the 

total number of parameters. 

3. Deep Learning Approaches for Modulation Classification 

3.1. Convolutional Neural Network structure 

CNNs are a specialized type of multilayer perceptron inspired by 

the way neurons connect in the biological brain. They are 

designed to handle and interpret visual data, such as images and 

videos, by simulating the brain's processing mechanisms [9]. 

Unlike conventional neural networks that often require extensive 

manual feature extraction, CNNs automatically learn spatial 

hierarchies and patterns through their convolutional layers. They 

are highly effective for various classification tasks because they 

demand less preprocessing compared to other classification 

techniques. A CNN consists of a series of layers, each of which 

transforms its input volume into a different volume using a 

differentiable function [8]. A typical CNN architecture, as 

depicted in Fig. 2, generally includes: 
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• Convolutional Layers: These layers are responsible for 

feature extraction from the input data. They utilize a set of 

learnable filters, also known as kernels, to process the input 

images. The filters or kernels are compact matrices, typically 

with dimensions like 3×3, 3×2, or 8×2. They slide over the 

input image and compute the dot product between the kernel 

weights and the corresponding patches of the image. The 

result of this operation is called feature maps. 

• Activation Layer:  After the convolution operation, an 

activation function is applied to introduce non-linearity into 

the network.  The widely used activation function is the 

Rectified Linear Unit (ReLU),and SoftMax. 

• Pooling layer: Serves to simplify and condense the data by 

summarizing information in localized regions of the feature 

map. This process aids in reducing computational demands, 

improving efficiency, and helping the network to focus on 

significant features rather than intricate details. 

• Flattening: After the convolution and pooling layers, the 

feature maps are converted into a one-dimensional vector 

through flattening.  

• Fully Connected Layers: These layers take the flattened 

input and perform the final classification or regression tasks. 

In these layers, each neuron is interconnected with every 

neuron from the previous layer. The output layer generates 

the ultimate results of the network. 

• Output Layer: The ultimate layer give us the output.  For 

classification tasks, used SoftMax layer that outputs 

probabilities for each class. For regression tasks, this might 

be a linear layer producing continuous values. 

• Normalization Layers (optional): Batch normalization (BN) 

layers can be inserted to normalize the inputs of each layer to 

improve training speed and stability. 

• Dropout Layers (optional): DO acts like a regularization 

technique, improving the network's ability to generalize by 

ensuring that it doesn't become overly dependent on specific 

neurons or patterns in the training data. 

 

Figure 2: A typical CNN architecture.  

3.2. convolution types 

Convolution is a mathematical operation utilized to integrate two 

sets of information, producing a composite result. In the realm of 

CNN this operation is applied to input data to discern features and 

create a feature map. This operation involves a convolution kernel 

or filter, which is a matrix of learnable parameters, typically of 

dimensions. During the convolution process, the kernel traverses 

the input image, executing element-wise matrix multiplication. 

The result of this multiplication for each receptive field (the 

specific region of the image under the kernel) is recorded in the 

resulting feature map. 

1.Traditional convolution 

When the input feature matrix has a depth of three, four 

convolution kernels are used for the convolution process in 

traditional convolution, as illustrated in Fig. 3. Additionally, 

every kernel has a depth of 3, which is equal to the input feature 

matrix's depth. As a result, the depth of the output feature matrix 

will be 4 based on the quantity of convolution kernels. 

Considering that the convolution process has a stride of 1, the  

standard convolution computation cost is computed as follows in 

equation (1). 

𝑐𝑜𝑛𝑣𝑡 = 𝐷𝑘. 𝐷𝑘. 𝑀. 𝑁. 𝐷𝑓 . 𝐷𝑓                                (1) 

where 𝑀: Represents the count of input channels, 𝑁: Indicates the 

count of output channels, 𝐷𝑘 : Refers to the size of the 

convolutional kernel, and 𝐷𝑓 : Denotes the dimensions of the 

feature map. 

 

Figure 3: Traditional convolution process. 

2. Depthwise Separable Convolution DSC 

Depthwise separable convolution (DSC) is an optimized variant 

of standard convolution aimed at reducing computational 

complexity and model size. It decomposes the convolution 

process into two separate layers: depthwise convolution and 

pointwise convolution. The concept of depthwise separable 

convolution was initially introduced in [24] and later utilized by 

MobileNet models to decrease model complexity [25].Similar to 

spatially separable convolution, depthwise separable convolution 

involves splitting the kernel into two distinct components: 

depthwise convolution and pointwise convolution [26]. 

• Depthwise convolution applies an individual filter to each 

input channel independently, as demonstrated in Fig. 5. For 

example, with 3 input channels,  there will be 3 ∗ 𝐷𝑘 ∗ 𝐷𝑘 

spatial convolutions. Each filter interacts only with its 

corresponding channel,as resulting in equation (2). 

 

complexity= 𝐷𝑘. 𝐷𝑘. 𝑀. 𝐷𝑓 . 𝐷𝑓                             (2) 

https://www.geeksforgeeks.org/activation-functions-neural-networks/
https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/
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where 𝑀: Represents the count of input channels, 𝐷𝑘: Refers to 

the size of the convolutional kernel, and 𝐷𝑓 : Denotes the 

dimensions of the feature map. 

 

 

Figure 4: Depthwise convolution process. 

• Pointwise convolution is employed to adjust the dimensions 

of the output from the depthwise convolution, aligning it with 

the output dimensions of a traditional convolutional neural 

network, as illustrated in Fig. 5. A 1×1 convolution is used to 

integrate the outputs from the depthwise convolution, 

effectively merging and combining features across various 

channels. 

 

Figure 5: Pointwise convolution process. 

In conventional convolutional operations, the processes of 

filtering and combining are executed simultaneously within a 

single step. In contrast, depthwise separable convolutions 

decompose these tasks into two distinct stages, as illustrated in 

Fig. 6. Specifically, DSC partition the convolutional operation 

into a DC layer and a PC layer. The cumulative computational 

complexity of depthwise separable convolution is derived in 

equation (3) from the sum of the complexities associated with 

each of these two layers [23]. 

𝑐𝑜𝑛𝑣𝐷𝑆𝐶 = 𝐷𝑘. 𝐷𝑘. 𝑀. 𝐷𝑓 . 𝐷𝑓+ 𝑀. 𝑁. 𝐷𝑓 . 𝐷𝑓                       (3) 

where 𝑀: Represents the count of input channels, 𝑁: Indicates the 

count of output channels, 𝐷𝑘: is size of the convolutional kernel, 

and 𝐷𝑓: Denotes the dimensions of the feature map. 

The ratio of computational cost between the traditional 

convolution and depthwise separable convolution is obtained by 

equation  4. 

𝑐𝑜𝑛𝑣𝐷𝑆𝐶

𝑐𝑜𝑛𝑣𝑡
=  

1

𝑁
+  

1

𝐷𝑘
2                                             (4) 

When the convolution kernel size is 3, the equation simplifies to 

1/N + 1/9 In theory, traditional convolution has a computational 

cost that is 8 to 9 times greater than that of DSC. DSC reduces the 

parameters involved in convolution operations. However, smaller 

models might yield suboptimal results if depthwise separable 

convolution replaces conventional 2D convolution. Nevertheless, 

when used appropriately, depthwise separable convolution can be 

highly efficient without compromising the model’s performance. 

 
Figure 6: Depthwise separable convolution process. 

4. Methodologies and Implementations 

This paper seeks to identify the correct modulation scheme among 

11 different modulated signals. It is assumed that the receiver is 

an IoT device with an antenna , receiving signals from a source 

within a cognitive radio system. The received signal for the CR 

system can be represented by the mathematical formula shown in 

equation (5). 

v(𝑡)=s(𝑡)∗ℎ(𝑡)+g(𝑡)                                 (5) 

where v(𝑡) denote the observed signal at the receiver, s(𝑡) 

signifies the transmitted modulated waveform, ℎ(𝑡) encapsulates 

the channel’s impulse response, representing the spectral 

characteristics and distortive effects imparted by the wireless 

medium, and g(𝑡) embodies the stochastic white Gaussian noise 

introduced by the channel, which follows an adaptive statistical 

distribution. 

In fact, using a cognitive radio spectrum, you can transmit two 

signals at the same time One of the signals is known as I (in-phase), 

the other as Q (quadrature).  The two sinusoids that have the same 

frequency and a relative phase shift of 90°. The I/Q data 

encompasses all the characteristics of the baseband signal and is 

represented in a complex form. 

4.1. Data Preparation: 

 Raw IQ samples or spectrogram representations are used as 

inputs. In this work, we test our model over (RADIOML 

2016.10A) dataset [19]. This dataset includes 11 modulation 

category (comprising 8 digital and 3 analog) and spans 20 

different SNR values ranging from -20 dB to 18 dB. The complete 

set of 11 modulation classes. The data is structured in a dictionary 

format, where each key is a tuple representing (modulation class, 

SNR value), and each corresponding value contains the associated 

IQ samples. Initially, during data preprocessing, we visualized the 
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data across various SNR levels. Subsequently, we restructured the 

dataset into a dictionary with a single key representing the entire 

dataset. 

 
a.  GNU Radio ML dataset at SNR= -18 dB. 

 
b.  GNU Radio ML dataset at SNR= 18 dB. 

Figure 7: GNU Radio ML dataset at: (a) SNR = -18 dB (b) SNR = 

18 dB. 

Initially, all modulation classes were assigned numeric labels. 

These labels were then converted into a one-hot encoding vector, 

which is a 1 × N matrix used to differentiate each class within a 

dictionary. In this vector, only one element corresponding to the 

class number is set to 1, while all other elements are set to 0. This 

transformation is beneficial because one-hot encoding enhances 

the representation of categorical data [16]. Many machine 

learning algorithms cannot directly process categorical data, 

necessitating its conversion into a numerical format. 

Consequently, the updated records include all data from each class 

and SNR value, organized into a list of [one-hot encoded labels]. 

The modulation dataset is divided into a training set (65%), a 

validation set (15%), and a test set (20%). Fig. 7 illustrates the 

GNU Radio ML dataset for various modulation classes at two 

different SNR levels.  

4.2 Model Architectures:  

CNNs, primarily recognized for their application in image 

recognition, can also be adapted for wireless signal recognition by 

depicting the signal's time-domain information as a time-domain 

graph. In this study, we implement a depthwise separable 

convolutional neural network to optimize the number of 

parameters, reduce model size, and decrease overall training time. 

It is engineered to achieve highest possible accuracy while 

minimizing computational complexity. The model architecture 

consists of four convolutional layers: two conventional 

convolutional layers and two layers employing depthwise 

separable convolution, as illustrated in the architecture of our 

model in Fig. 8. 

 
Figure 8: Proposed model architecture. 
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4.3 Training and testing 

The models were trained and tested using the Keras library with a 

TensorFlow backend and executed on Google Colab. Optimal 

weights and coefficients were selected based on a machine 

learning parameter optimization scheme. The learning rate was 

configured to 0.001, and the Adam optimizer was utilized for the 

training process. A batch size of 400 was used, and the ReLU 

activation function was applied to all layers except the final dense 

layer, which utilized the softmax activation function. The 

convolutional layers employed a filter size of (3*3) and a stride of 

1 step. The categorical cross-entropy loss function quantifies the 

discrepancy between the probability distributions predicted by the 

model and the true probability distributions, effectively 

measuring the error in classification performance. A callback 

function was set to halt training early if the accuracy of the model 

showed no improvement. 

5. Experimental Results 

In this section, we examine the impact of our proposed network 

architecture. To assess the performance of our model, we 

compared its classification accuracy against three state-of-the-art 

models: CNN2 [27], Depthwise Separable [28], and ResNet-

LSTM [29]. For an equitable comparison, all models were trained 

using the same dataset (RADIOML 2016.10A) and evaluated on 

the identical holdout test dataset. Figure 9 provides a detailed 

analysis of the recognition accuracy. The results indicate that our 

model performs more consistently at SNRs greater than 0 dB. 

When deploying the model in cognitive radio systems and IoT 

devices, it is essential to consider not only its accuracy but also its 

complexity. Key factors for evaluating model complexity include 

the number of training parameters and the training time, as 

summarized in Table 1. 

 
Figure 9: Accuracy overview - RadioML2016.10a. 

From the analysis of the models illustrate in table 1, we see that 

the proposed model achieves the requirement goals to deployment 

in cognitive radio system for IoT devices as its reduction system 

parameters with accuracy 84%. On the other hand, the ResNet-

LSTM achieves the highest accuracy which was 90% but 

increases parameters by 68 %. The reason of this difference is that 

the ResNet-LSTM model depends on traditional convolution in 

addition to using more numbers of layers that had more 

parameters compared by our proposed model that depends on 

DSC. However, as the number of parameters grows, the model 

may take longer to process and detect. Long Short-Term Memory 

(LSTM) networks are designed to manage variable-length input 

sequences by dynamically adjusting their internal state. This is 

useful when dealing with signals as in our case. So, we work on 

another model combining between depthwise separable 

convolution and LSTM to obtain the best model with low 

parameters and highest accuracy. 

Model Parameters 

Model size 

Accuracy at 

SNR = 18 

CNN2 858,123   80% 

Depthwise separable 385,307 71% 

ResNet-LSTM 770,378 90% 

Proposed model 251,467 84% 

Table 1: Comparison of accuracy achieved on (18dB) SNR 

and total parameters for each model.  

To evaluate the effectiveness of the proposed model in identifying 

various modulation modes, Fig. 10 displays the confusion 

matrices for different recognition methods across three distinct 

SNR levels. The horizontal axis indicates the predicted class 

labels assigned by the model, while the vertical axis represents the 

actual class labels from the dataset. The diagonal entries of the 

matrix indicate correctly identified classes. It was observed that at 

low SNR (−20 dB), the model tends to classify all modulation 

modes as AM-SSB. This is because noise and other interference 

predominantly affect the received signal, making it resemble 

Gaussian noise. As the SNR improves, the impact of noise 

diminishes, and the confusion matrix becomes more distinct, with 

each signal category being classified accurately. Nonetheless, 

even with an SNR of 18 dB, WBFM may still be incorrectly 

identified as AM-DSB due to the signal's quiet periods [30]. 

Despite some recognition errors, the proposed method achieves 

high accuracy while maintaining a lightweight network. There are 

also some misclassifications between AM-DSB and WBFM, as 

well as confusion between 16QAM and 64QAM, due to 16QAM 

being a subset of 64QAM. 

6. Conclusion & future work 

Both depthwise separable and traditional convolutional neural 

network architectures have been explored for classifying 

modulation schemes. Low-power IoT devices are often incapable 

of handling the large number of parameters typical in 

conventional neural networks. In contrast, the proposed model 

utilizing depthwise separable convolutions achieves a comparable 

accuracy to traditional convolutional methods, while significantly 

reducing the number of parameters, model size, and training time. 

This approach minimizes computational costs while maintaining 

high performance,       making    it   ideal for        real-time  signal 

Classification tasks. The model's hyperparameters and 

architecture   should be      adjusted   according   to     the specific 
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a. SNR = -20 dB. 

 
b. SNR = 0 dB. 

 
c. SNR = 18 dB. 

 Figure 10: The Confusion matrix for the proposed model at: 

(a) SNR = -20 dB (b) SNR = 0 dB (c) SNR = 18 dB. 

characteristics of the dataset and the performance outcomes. 

These models are particularly suitable for implementation in low-

power IoT devices and Software-Defined Radios (SDR) within 

cognitive radio systems, which face constraints related to power 

and time. Future research will investigate integrating additional 

lightweight operations and exploring recurrent neural networks, 

like Long Short-Term Memory (LSTM) networks, to develop 

even more efficient classification models with lowest possible 

parameters while enhancing overall accuracy. Develop our model 

in real life IoT devices.  
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 Abbreviation and symbols 

AMC Automatic Modulation Classification 

CR Cognitive Radio 

IoT Internet of Things 

ML Machine Learning 

DL Deep Learning 

CNN Convolutional Neural Network 

RNN Recurrent Neural Networks 

SDR Software-Defined Radio 

AI Artificial Intelligence 

FB Feature-based 

LB Likelihood-based 

LSTM Long Short-Term Memory 

DSC Depthwise Separable Convolution 

DC Depthwise Convolution 

PC Pointwise Convolution 

SNR Signal to Noise Ratio 

BN Batch normalization layer 

DO Dropout Layer 
 


