
Journal of Medical and Life Science, 2024, Vol.6, No. 4, P.633-651         pISSN: 2636-4093, eISSN: 2636-4107         633 

 

Clinical and Medical Coding: A New Pathway for Automation-An Updated 

Review 

Naif Fahad Almarshadi1, MOHAMMED MUBARAK AWAD ALHARBI2, Mohammed Saleh 

Alharbi 3, Waked Ahmed Alwaked3, Hatem Mazyad Alsayer3, and Saber Maqbel Alhussain3 

1Hospital management specialist, Northern Area Armed Forces Hospital, Saudi Arabia 

2HEALTH INFORMATICS, Northern Area Armed Forces Hospital, Saudi Arabia 

3Health Information Technician, Northern Area Armed Forces Hospital, Saudi Arabia 

Corresponding author Email: Naif.f.Almarshadi@gmail.com 

DOI:10.21608/jmals.2024.413890 

Abstract: 

Background: Clinical coding is a critical process in healthcare, involving the transformation of free-text 

medical records into structured codes using classification systems like ICD-10. This process ensures consistent 

and comparable clinical data, supporting healthcare planning, policy-making, and epidemiological research. 

Aim: This review aims to explore the evolution of automated clinical coding, evaluate the performance of 

state-of-the-art deep learning models, and identify key challenges and future directions for improving 

automated coding systems. Methods: The review synthesizes findings from 113 studies on automated clinical 

coding, focusing on the transition from rule-based symbolic AI to neural AI, particularly deep learning. It 

examines the performance of multi-label classification models, the integration of knowledge-based 

approaches, and the challenges of handling long documents, imbalanced data, and terminology changes. The 

review also highlights the importance of human-in-the-loop learning and explainability in automated systems. 

Results: Deep learning models, particularly transformer-based architectures like BERT, have achieved Micro-

F1 scores of 58-60% on benchmark datasets like MIMIC-III. However, challenges such as handling infrequent 

codes, processing long documents, and incorporating symbolic reasoning persist. Hybrid approaches 

combining symbolic and neural AI show promise, as do knowledge-augmented deep learning methods. Studies 

also emphasize the need for high-quality datasets, explainability, and adaptability to new coding systems like 

ICD-11. 

Conclusion: Automated clinical coding has made significant progress but remains a complex task requiring 

further research. Future directions include integrating symbolic reasoning, improving explainability, and 

developing more representative datasets. Collaboration between AI researchers and clinical coding experts is 

essential to advance the field. 
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Introduction: 

Clinical coding is a crucial procedure that entails 

applying established categorization systems like 

ICD-10 (International Categorization of Diseases, 

Tenth Revision) to transform medical records—

which are usually composed of free-text narratives 

by medical professionals—into organized codes. To 

classify patient information into the proper diagnosis 

and procedure codes within the ICD and OPCS 

(OPCS Classification of Interventions and 

Procedures) systems, for example, a standardized 

method is applied in Scotland. In the end, these codes 

add to the national dataset known as the Scottish 

Morbidity Records (SMR01), which is an essential 

tool for healthcare analytics and decision-making 

[1]. Ensuring that clinical data is consistent and 

comparable throughout time and across various care 

units is the main goal of clinical coding. The 

resulting national databases play a key role in 

assisting a number of sectors, such as improving the 

epidemiological understanding of a wide range of 

medical disorders, planning and policy formation for 

healthcare, and health improvement activities. As a 

result, the precision and dependability of these 

statistics are crucial. Furthermore, clinical codes are 

mostly utilized for billing in the US, underscoring 

their importance to healthcare institutions' bottom 

lines [2]. NHS Digital offers easily navigable slides 

titled "Clinical coding for non-coders" [3] for 

individuals looking for a basic introduction to 

clinical coding in the UK.  

Clinical coding is not an easy assignment for human 

coders. Data abstraction and summarization are part 

of the intricate process [4]. In particular, a proficient 

clinical coder must choose the most accurate codes 

from a comprehensive classification system or 

ontology after interpreting a wide range of 

documents pertaining to a patient's episode of 

treatment. This choice must follow often updated 

coding requirements and be consistent with the 

context given in the various papers. For instance, the 

International Classification of Diseases, Tenth 

Revision, Clinical Modification (ICD-10-CM), 

which has over 68,000 diagnosis codes, is used for 

coding in the US [5]. Similarly, the UK's main 

classification system for coding is ICD-10. Textual 

analysis, summary, and well-defined stages for code 

classification are all part of the standardized manual 

coding process that is used to guarantee data 

consistency. According to the NHS Digital coding 

standards of 2021, these procedures are sometimes 

referred to as the four stages of coding: analyze, 

locate, assign, and verify [6, p.11]. This methodical 

approach reduces the possibility of making mistakes 

or variances that could result in poor decision-

making. Standardized data collection, analysis, and 

application are therefore essential. The accuracy and 

applicability of the coding process are further 

guaranteed by frequent revisions to coding standards 

and recommendations, such as those offered by 

Public Health Scotland [6]. It can take months or 

even longer to train a skilled clinical coder in the 

UK's National Health Service (NHS) or elsewhere, 

highlighting the intricacy and level of experience 

needed for this position [7].  

The goal behind automated clinical coding is to 

automate the clinical coding process by utilizing 

artificial intelligence (AI) techniques like machine 

learning and natural language processing (NLP) [8]. 

This method is included in the more general category 

of computer-assisted coding (CAC) [9]. By applying 

cutting-edge machine learning and natural language 

processing techniques to intelligently interpret the 

ever-increasing volume of medical data, artificial 

intelligence (AI) has emerged as a viable tool for 

altering healthcare in recent years [10]. One possible 

AI use that can simplify the administration and 

management of clinical records in medical research 

settings and hospitals is automated clinical coding. 

Research articles on automated clinical coding have 

significantly increased in the last few years, 

especially those that use deep learning, which is 

currently the most popular method in AI. Recent 

surveys have provided ample evidence of this trend 

[11-13]. Even with the advancements in automated 

clinical coding, the problem is still far from being 
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solved. This topic has been the focus of our work for 

the last two years, and we have had in-depth 

conversations with clinicians from Scotland and the 

UK as well as clinical coding practitioners. We have 

shown both automatic and manual clinical coding, 

together with their possible interactions, to 

demonstrate the procedures involved. Our goal in 

this study is to provide an overview of the 

technological difficulties in clinical coding, 

especially those on deep learning, and to suggest 

future lines of inquiry. The intricacy of medical 

terminology, the requirement for context-aware 

coding, and the integration of automated systems 

with current manual procedures are some of the 

difficulties. By tackling these issues, we intend to 

forward the creation of automated clinical coding 

systems that are more dependable and efficient, 

which will ultimately improve the effectiveness and 

precision of healthcare data administration. 

The Need for Automated Clinical Coding 

A number of serious issues with manual coding 

procedures make automated clinical coding 

necessary. These difficulties show how using 

artificial intelligence (AI) and natural language 

processing (NLP) technology might enhance clinical 

coding's effectiveness, precision, and general quality. 

The main justifications for the necessity of 

automated clinical coding are discussed here, along 

with how it can overcome the drawbacks of manual 

coding. 

1. Time-Consuming Nature of Manual Coding 

Clinical coding by hand is a labor-intensive 

procedure by nature. For instance, in NHS Scotland, 

a clinical coder usually spends 7 to 8 minutes on each 

of the 60 cases they handle each day. Every month, a 

coding section with 25–30 coders handles more than 

20,000 cases. In spite of this endeavor, a backlog of 

cases frequently exists, which may take months or 

even more than a year to resolve [14]. Decision-

making, policy-making, and epidemiological 

research all depend on prompt access to vital 

healthcare data, which may be hampered by this 

delay. Because automated clinical coding streamlines 

the coding process, allows for quicker turnaround 

times, and guarantees that healthcare data is available 

when needed, it has the potential to drastically 

minimize this backlog. 

2. Prone to Errors in Manual Coding 

Incomplete patient data, subjectivity in diagnosis 

code selection, inexperience with coding, and data 

input errors are some of the reasons why manual 

coding is prone to errors [4]. The average clinical 

coding accuracy, according to UK studies, is about 

83%, with considerable variation between 

investigations, ranging from 50% to 98% [15]. 

According to tests conducted between 2019 and 

2020, Scotland's coding accuracy is comparatively 

good, with primary conditions reporting 92.5% 

accuracy for 3-digit codes and 88.8% accuracy for 4-

digit codes. There is potential for improvement, 

nevertheless, as under-coding is seen in 20% of 

frequent disorders even in Scotland [16]. By 

reducing human error, maintaining consistency, and 

following coding standards, automated coding 

systems—especially those that use AI and NLP—can 

improve accuracy. The idea that computer-assisted 

coding (CAC) can enhance the precision, caliber, and 

effectiveness of manual coding is supported by a 

recent qualitative literature assessment [9]. 

Automated coding systems can assist clinical coders 

more effectively by incorporating AI technology, 

which lowers the possibility of errors and increases 

data reliability. 

3. Improving Efficiency and Quality 

The cognitive strain required of human coders, who 

must evaluate, condense, and categorize intricate 

medical information into standardized codes, limits 

the effectiveness of manual coding. It frequently 

takes months or even years to become proficient in 

this technique, which calls for a great deal of training 

and experience [7]. By managing monotonous and 

time-consuming activities, automated coding 

systems can lessen this load, freeing up human 

coders to concentrate on more complicated cases that 

need sophisticated judgment. Automated systems 

can also process vast amounts of data rapidly, which 
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helps coding teams fulfill deadlines and cut down on 

backlogs. Automated coding can increase 

productivity while simultaneously enhancing the 

general quality of healthcare data, increasing its 

dependability for use in clinical decision-making, 

research, and policy-making. 

Automated Clinical Coding a Complex Problem 

to Solve: 

Even though automated clinical coding has several 

advantages, creating efficient systems is a difficult 

and complex process. The complexity of 

classification systems, the structure of clinical 

documentation, and socio-technical aspects are some 

of the factors that make automated clinical coding 

challenging. We go into further depth about these 

difficulties below. 

1. Complexity of Clinical Documents: 

Because of their variable structure, length, and 

frequent use of symbols, acronyms, and partial 

information, clinical documents are naturally 

difficult to process. Clinical papers are frequently 

unstructured and contain concise notations that 

require domain-specific knowledge to comprehend, 

in contrast to standardized writings like articles or 

social media posts. For instance, discharge 

summaries in the MIMIC-III dataset, a popular 

dataset for intensive care, typically consist of 1,500 

words and contain symbols like “+” to indicate a 

positive test result or “?” to indicate ambiguity, as 

well as acronyms like “Hep C” for hepatitis C 

[19,20]. A thorough understanding of a patient's 

records, which may comprise a variety of document 

types like radiology reports, pathology reports, and 

discharge summaries, is also necessary for clinical 

coding. The coding process is made more difficult by 

the fact that these materials are not always consistent 

or comprehensive [8,21]. 

2. Dynamic and Complex Classification Systems: 

Classification schemes like ICD-10-CM and ICD-11, 

which are dynamic and intricate, constitute the 

foundation of clinical coding. About 68,000 

diagnosis codes make up the ICD-10-CM system, 

which was introduced in the US in 2015 and is five 

times more extensive than the ICD-9-CM system [5]. 

With more than 120,000 codable terms and almost 

17,000 distinct codes for illnesses, injuries, and 

reasons of death, the more recent ICD-11 system, 

which went into use in early 2022, adds even more 

complexity. ICD-11 is far more flexible, but it is also 

more difficult to use because it permits code 

combinations to describe almost 1.6 million clinical 

circumstances [22, 23]. Additionally, ICD-11 brings 

significant revisions to diagnostic criteria, chapter 

organization, and diagnostic categories, especially in 

areas like psychiatric categorization [24]. The 

"Foundation Component," a semantic network that 

depicts a deep polyhierarchy of medical concepts, 

serves as the system's backbone. Code combinations 

are employed to express complicated patient 

characteristics in "post-coordination," which is made 

possible by this structure [25, 26]. These complex 

and dynamic classification schemes, which are 

updated frequently to consider advancements in 

medical knowledge and procedures, require 

automated coding systems to adjust [6]. 

3. Socio-Technical Challenges 

The adoption of automated clinical coding systems 

poses socio-technical issues that need to be resolved 

in addition to technical ones. The way coders engage 

with AI-based technologies must be carefully 

considered when a national healthcare system makes 

the switch to a semi-automated or completely 

automated coding environment. To maximize the 

usage of accurate automatic codes, for example, how 

should information be given in an automated coding 

system so that coders can quickly spot and fix 

mistakes? Building trust in automated systems is also 

essential; programmers need to have faith in the 

correctness and dependability of the system. 

Additionally, programmers' jobs may change from 

manual coding to positions like coding editors or 

analysts, which would call for additional education 

and training [9]. The implementation of automated 

coding systems requires a comprehensive strategy 

that considers both technological and human 
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considerations, as these socio-technical issues 

demonstrate. The drawbacks of manual coding, such 

as its inefficiency, error-proneness, and time 

commitment, could be greatly mitigated by 

automated clinical coding. Automated systems can 

increase clinical coding speed, accuracy, and quality 

by utilizing AI and NLP technology, which will 

ultimately improve healthcare data management. 

Nevertheless, creating such systems is a difficult 

undertaking that calls for resolving issues with 

dynamic classification schemes, the intricacy of 

clinical documentation, and socio-technical factors. 

To fully realize the potential of automated clinical 

coding and improve healthcare data management, 

these issues must be resolved. 

Role of AI: Symbolic or Neural AI? 

There are two main schools of thinking in artificial 

intelligence (AI) that have influenced the 

development of automated clinical coding systems: 

neural AI (including deep learning) and symbolic AI. 

Each strategy has unique benefits and drawbacks, 

and the decision between the two—or combining the 

two—has a big impact on how well automated 

clinical coding systems work. The historical 

background, advantages, and disadvantages of these 

strategies are examined here, and we make the case 

for a hybrid solution that combines the best features 

of each. 

Symbolic AI: Knowledge-Based Approaches: 

Symbolic AI, sometimes referred to as rule-based or 

knowledge-based AI, models human reasoning and 

decision-making by using logic, rules, and symbols. 

The goal of symbolic AI in clinical coding is to 

mimic the accepted procedures and standards that 

human coders adhere to. To link clinical text to the 

proper medical codes, this method entails developing 

specific rules and logical expressions. For instance, 

clinical records have been categorized into pertinent 

codes using regular expressions, keyword matching, 

and decision trees [8,13,27-29]. From the 1950s until 

the beginning of the 1980s, symbolic AI dominated 

AI research. When used in intricate, real-world 

situations, such as natural language understanding 

(NLU), it was severely limited. Scalability was the 

biggest obstacle: manually creating rules to deal with 

the enormous and complex diversity of natural 

language was impractical and time-consuming, 

particularly for assignments comprising tens of 

thousands of codes and their interactions [17, 18]. 

Rule-based approaches have proven to be highly 

accurate in clinical coding despite these drawbacks, 

especially when utilized to assist human coders. For 

example, keyword matching and regular expressions 

can detect certain terms or phrases with high 

accuracy, but they frequently have limited recall, 

which means they might overlook crucial 

information that does not fit the predetermined rules 

[30]. 

Neural AI: Deep Learning Approaches: 

Neural AI, especially deep learning, differs from 

symbolic AI in that it learns intricate correlations and 

patterns straight from data. Artificial intelligence 

(AI) has been transformed by deep learning models 

like transformers and convolutional neural networks 

(CNNs), which have achieved state-of-the-art 

performance in a variety of applications, such as 

image recognition and natural language processing 

(NLP). To assign one or more medical codes to a 

given clinical document depending on its content is 

the aim of deep learning approaches that structure the 

issue as a multi-label classification problem in the 

context of automated clinical coding [31-34]. 

Compared to symbolic AI, deep learning offers a 

number of benefits. First, because the models acquire 

pertinent features straight from the training data, it 

does away with the requirement for feature 

engineering and manually created rules. This 

increases the adaptability and ease of applying deep 

learning techniques to new coding systems or 

datasets. Second, when compared to conventional 

machine learning techniques, deep learning models 

can perform better overall because they can capture 

intricate, non-linear correlations in the data [32]. 

Deep learning has been used more and more for 

automated clinical coding since about 2017, which 

has sparked a boom in research in this field [31, 32]. 
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Deep learning for medical coding is becoming more 

and more popular, according to recent surveys and 

carefully selected paper collections [11,12,13,33]. 

Deep learning is not without its difficulties, though. 

Its need for vast volumes of labeled training data, 

which can be challenging to acquire in the clinical 

setting because of privacy issues and the intricacy of 

medical terminology, is one of its key drawbacks. 

Furthermore, deep learning models frequently 

function as "black boxes," which makes it 

challenging to understand their judgments or 

integrate domain-specific knowledge, like coding 

standards or ontologies. This lack of interpretability 

can be a serious disadvantage in the healthcare 

industry, where accountability and transparency are 

essential. 

The Case for a Hybrid Approach: 

Although deep learning has emerged as the most 

popular method for automated clinical coding, its 

shortcomings are increasingly being acknowledged 

by the necessity to use symbolic AI techniques. A 

promising answer is provided by a hybrid strategy 

that blends the advantages of neural and symbolic AI. 

This method uses deep learning's scalability and 

pattern recognition skills in conjunction with 

symbolic AI's interpretability and domain-specific 

knowledge. Using knowledge-augmented deep 

learning techniques, which include external 

knowledge sources like ontologies and knowledge 

graphs into deep learning models, is one new 

approach. For instance, embedding-based methods 

for integrating knowledge graphs into deep learning 

frameworks have been investigated in a number of 

publications [37-40]. By strengthening the model's 

comprehension of medical concepts and their 

connections, these techniques hope to improve the 

model's capacity to assign precise codes. However, 

the majority of previous research has concentrated on 

utilizing the target ontology's hierarchical structure 

and terminology (such as ICD-9 or ICD-10), leaving 

other important knowledge sources like SNOMED-

CT and UMLS (Unified Medical Language System) 

underdeveloped [38]. Integrating coding standards 

and recommendations into deep learning models 

presents another potential. These location-specific 

and frequently updated standards offer a vital context 

for precise coding. A major problem, though, is to 

extract and encode this knowledge in a way that deep 

learning models can use. To make sure that the 

models are in line with practical procedures, 

cooperation between clinical coding specialists and 

AI researchers is necessary. The argument between 

neural and symbolic AI for automated clinical coding 

is about combining their advantages rather than 

picking one over the other. While neural AI offers 

scalability and the capacity to extract intricate 

patterns from data, symbolic AI offers 

interpretability and the ability to integrate domain-

specific knowledge. The most promising method for 

overcoming the difficulties associated with 

automated clinical coding is a hybrid strategy that 

combines the two paradigms, such as knowledge-

augmented deep learning. We can create systems that 

are accurate and transparent by utilizing the 

extensive knowledge found in clinical ontologies and 

coding guidelines, along with the strength of deep 

learning. This will ultimately increase the 

effectiveness and dependability of clinical coding in 

healthcare systems across the globe.  

State-of-the-Art Deep Learning Models: 

Clinical coding is a very difficult work that presents 

many difficulties for modern AI, especially in the 

areas of deep learning and natural language 

processing (NLP). Although deep learning models 

have made significant strides in automating clinical 

coding in recent years, the problem is still far from 

being resolved. To translate a patient's clinical notes 

into a collection of pertinent medical codes, state-of-

the-art deep learning models for clinical coding are 

mostly based on multi-label classification. 

Nevertheless, these models have a number of 

drawbacks, such as trouble digesting lengthy texts, 

managing rare or invisible codes, and a lack of 

symbolic reasoning skills. We examine the present 

state of deep learning models, their successes, and 

their shortcomings below. 
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The Multi-Label Classification Framework: 

Learning a complex, non-linear function that 

associates a patient's clinical notes with a collection 

of medical codes is the fundamental idea behind the 

most advanced deep learning models for clinical 

coding. Usually, this is presented as a multi-label 

classification problem, in which every clinical 

remark has the potential to be linked to several codes. 

For this objective, deep learning models have 

become the norm, especially those based on 

transformer architectures such as BERT 

(Bidirectional Encoder Representations from 

Transformers) [41-44]. The semantic content of 

clinical literature is captured by these models using 

pre-trained language representations, which are 

subsequently refined on particular coding tasks. 

Even with their success, these models continue to 

perform below par on benchmark datasets such as 

MIMIC-III (Medical Information Mart for Intensive 

Care III) [20]. For instance, for the entire set of 8,932 

ICD-9 codes in MIMIC-III, the optimal Micro-F1 

scores (a harmonic mean of precision and recall) 

range from 58% to 60% [45-52]. This demonstrates 

how challenging the problem is, even for 

sophisticated deep-learning models. Furthermore, 

despite being widely utilized, MIMIC-III has limited 

representativeness. The information, which was 

gathered between 2001 and 2012, is more than 10 

years old and only includes US intensive care 

patients. This restricts its applicability to more varied 

clinical settings or other areas, like the UK. 

Key Challenges in Deep Learning for Clinical 

Coding 

While deep learning models have shown promise, 

they face several major challenges when applied to 

clinical coding: 

1. Handling Unseen, Infrequent, and 

Imbalanced Labels: The unequal distribution of 

codes is one of the biggest problems with clinical 

coding. Over 50% of codes in the MIMIC-III 

dataset never appear at all, and about 5,000 codes 

appear less than ten times in the training data 

[37]. Deep learning models, which depend on a 

lot of labeled data to train efficiently, are 

challenged by this. Because they are unable to 

generalize to uncommon or unexpected 

scenarios, vanilla deep learning models have 

trouble with infrequent or unseen codes. In 

multi-label categorization, where there are many 

possible code combinations and the labels are 

wildly unbalanced, this problem is made worse. 

To tackle this problem, strategies like zero-shot 

learning [37,46] and meta-learning [47] have 

been investigated, but they are still being studied. 

2. Lack of Symbolic Reasoning Capabilities: To 

arrive at the correct codes for clinical coding, 

coders must frequently use complicated 

reasoning to integrate unrelated bits of 

information from a patient's records. For 

instance, a coder may have to apply coding 

principles to evaluate ambiguous circumstances 

or reconcile contradicting information from 

various sources [8,43]. However, deep learning 

algorithms do not directly describe the reasoning 

process; instead, they mostly use labeled data to 

learn relationships between text and codes. This 

restricts their capacity to reason like humans, 

which is essential for precise coding. Deep 

learning models' performance and explainability 

may be improved by integrating symbolic 

reasoning, for example, by formalizing coding 

rules into logical expressions [29] or by utilizing 

knowledge graphs [37-40]. This field is yet 

unexplored, though. 

3. Handling Long Documents: Clinical notes are 

frequently long and contain repetitive material, 

especially discharge summaries. Discharge 

summaries in MIMIC-III typically have 1,500 

tokens, while some documents have 10,000 

tokens or more [19]. For deep learning models, 

which must find pertinent information for every 

code in a vast amount of text, this presents a 

"needle-in-a-haystack" difficulty. Due to the 

memory-intensive nature of their self-attention 

processes, transformer-based models such as 

BERT can only process inputs of up to 512 sub-
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word tokens [54]. This maximum has been raised 

to 4,096 tokens by recent developments like 

Longformer [55], TransformerXL [56], and 

BigBird [57], although many clinical records still 

require more. The process is further complicated 

by the fact that clinical notes sometimes contain 

text repetition, also known as "note bloat" 

[58,59]. To solve this problem, methods like text 

de-duplication based on similarity metrics have 

been put forth, although research is still ongoing. 

4. Recent Advances and Future Directions 

Despite these challenges, deep learning models 

have made significant strides in clinical coding. 

Recent studies have explored various 

techniques to improve performance, including: 

 Text Representation Learning: Advances 

in text representation learning, such as pre-

trained language models, have enabled 

models to capture the semantic meaning of 

clinical text more effectively [19,44]. 

 Multi-Task Learning: By training models 

on multiple related tasks simultaneously, 

multi-task learning can improve 

generalization and performance [41,45]. 

 Zero-Shot and Meta-Learning: These 

approaches aim to improve the model’s 

ability to handle rare or unseen codes by 

learning from limited data [37,46,47]. 

 Multi-Modal Learning: Integrating 

multiple data sources, such as text and 

structured data, can enhance the model’s 

understanding of patient information [48]. 

However, resolving the aforementioned constraints 

is necessary to develop a complete deep learning-

based clinical coding system. Future studies should 

concentrate on utilizing external information sources 

like ontologies and coding standards, enhancing the 

processing of lengthy documents, and incorporating 

symbolic reasoning capabilities. Furthermore, 

creating more current and representative datasets will 

be essential to the field's advancement. Clinical 

coding automation has advanced significantly thanks 

to state-of-the-art deep learning models, but the work 

is still difficult and complex. Although transformer-

based multi-label classification frameworks have 

produced impressive results, they are limited in their 

ability to scan lengthy documents, handle uncommon 

codes, and carry out symbolic reasoning. A variety of 

cutting-edge strategies, such as knowledge-

augmented deep learning, enhanced text 

representation approaches, and the creation of more 

representative datasets, will be needed to meet these 

problems. We can get closer to developing automated 

clinical coding systems that are precise, dependable, 

and explicable by bridging the gap between deep 

learning and symbolic reasoning [49-55]. 

Potential Challenges: 

The task of automated clinical coding is intricate and 

multidimensional, requiring the resolution of several 

technological, pragmatic, and domain-specific 

problems. Even though deep learning models have 

shown promise, especially those built on transformer 

architectures like BERT, they still have a long way to 

go before they can perform on par with humans. 

Creating high-quality datasets, managing 

heterogeneous and noisy data, enhancing 

explainability, integrating human feedback, enabling 

few-shot and zero-shot learning, adjusting to 

terminology changes, and integrating knowledge 

representation and reasoning are some of the major 

issues that must be resolved to advance automated 

clinical coding. We also go over the function of the 

industry and the necessity of customized solutions 

for various settings and goals [56-59]. 

1. Creating Gold Standard Coding Datasets 

The absence of huge, excellent, and publicly 

accessible datasets is one of the biggest obstacles to 

automated clinical coding. Despite its value, the 

popular MIMIC-III dataset has drawn criticism for 

perhaps being under-coded, which means that many 

pertinent codes might not be present in the 

annotations [60-62]. This restricts the 

generalizability of models developed on MIMIC-III 

to other datasets or real-world situations. 
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Furthermore, MIMIC-III is unique to US critical care 

patients and might not accurately represent the 

variety of clinical notes in other countries, such as 

the UK, China, or Spain. More representative and 

varied datasets that are expert-labeled and span a 

wider range of clinical contexts and objectives are 

required to meet this challenge. For instance, datasets 

intended for billing reasons might concentrate on 

Diagnosis-Related Groups (DRGs) or Healthcare 

Resource Groups (HRGs), whereas datasets 

customized for epidemiological studies might need 

to link clinical notes to complex terminologies like 

SNOMED CT. Making such datasets available will 

aid in the creation of models that are more resilient 

and broadly applicable. 

2. Coding from Heterogeneous, Incomplete, and 

Noisy Sources 

Analyzing a variety of papers, such as laboratory 

findings, radiology reports, pathology reports, and 

discharge summaries, is usually necessary for 

clinical coding. Nevertheless, the majority of recent 

research only looks at discharge summaries, which 

restricts how thorough the coding procedure may be 

[14]. Clinical data in the real world is frequently 

unreliable, noisy, and presented inconsistently. 

Discharge summaries, for instance, can be typed or 

handwritten, with differing degrees of thoroughness 

and information. Another major obstacle is managing 

lengthy papers. Clinical notes are frequently longer 

than the 512-token limit that transformer-based 

algorithms like BERT can process. This limit has 

been raised by recent developments like Longformer 

and BigBird, although they are still unable to process 

the longest documents. Furthermore, the work is 

made more difficult by the abundance of duplicated 

information, or "note bloat," in clinical notes [58]. 

Though they need further study and improvement, 

strategies like text de-duplication and summary 

could be able to aid with this problem. 

3. Explainability of Clinical Coding 

For automated clinical coding systems, 

explainability is essential since coders must 

comprehend the decision-making process. Present-

day deep learning models frequently function as 

"black boxes," making it challenging to decipher 

their results, especially those that rely on multi-label 

classification. Although some studies have 

highlighted important words or phrases in the text 

using attention processes [19,61,63], these highlights 

frequently show connections rather than causation. 

Future systems should use rule-based techniques and 

symbolic reasoning to increase explainability. These 

approaches can offer more transparent and 

comprehensible decision-making procedures. For 

instance, using knowledge graphs or formalizing 

coding guidelines into logical expressions could 

improve the model's capacity to justify its choices. 

To assess the value of explainability qualities for 

clinical coders, user studies are also required. 

4. Human-in-the-Loop Learning with Coders’ 

Feedback: 

For automated coding systems to be implemented in 

practice, clinical coders' input must be incorporated. 

Coders can offer insightful information that can be 

utilized to iteratively enhance the system, such as 

rules, highlights, and manual corrections. The 

model's performance can be gradually enhanced and 

problems like under-coding can be addressed by 

human-in-the-loop learning, in which programmers 

actively take part in the training process [9]. Another 

interesting strategy is active learning, which entails 

choosing the most instructive samples for human 

annotation. The MedCATTrainer system, for 

instance, employs active learning to find samples that 

coders can examine and utilize to update the model 

[64]. In the same vein, users can improve the results 

by adding labels for mentions in SemEHR [65]. 

These methods show how human knowledge and 

machine learning can be combined to provide more 

accurate and dependable code. 

5. Few-Shot and Zero-Shot Learning: 

A major problem for multi-label classification 

models is that many medical codes are either rare or 

completely missing from the training data. 

Approximately 5,000 codes appear less than 10 times 

in the MIMIC-III dataset, and more than 50% of 
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codes never appear [37]. Models find it challenging 

to generalize to uncommon or invisible codes as a 

result. To overcome this difficulty, few-shot and 

zero-shot learning strategies allow models to learn 

with little to no labeled input. For instance, 

knowledge-based strategies can aid in bridging the 

gap between seen and unseen codes by utilizing code 

descriptions, hierarchies, and linkages from 

ontologies [37,46,47]. When adjusting models to 

new or updated coding systems, like the switch from 

ICD-10 to ICD-11, these methods are very crucial. 

6. Adaptation to Terminology Changes: 

One of the biggest challenges for automated clinical 

coding is switching from one coding system to 

another, such as ICD-10 to ICD-11. Significant 

modifications are brought about by ICD-11, such as 

new diagnostic categories, post-coordination of 

codes, and a more intricate semantic network 

structure [24]. In addition to precise ontology 

matching and idea drift management, new paradigms 

like self-supervised learning, transfer learning, and 

meta-learning are needed to adapt models to these 

shifts. 

7. Knowledge Representation and Reasoning in 

Coding: 

To achieve human-like performance, automated 

coding systems must incorporate knowledge 

representation and reasoning. Symbolic reasoning, 

which is essential for activities like applying coding 

principles or reconciling contradicting information, 

is frequently absent from current models. The 

model's comprehension of clinical material and its 

capacity to assign precise codes can both be 

improved by knowledge graphs, which show the 

connections between medical concepts [37-40]. 

Another crucial step is to formalize coding 

guidelines into rules that can be read by machines. To 

increase the model's precision and explainability, for 

instance, rules pertaining to hypothetical situations, 

mutual exclusion, and the precedence of particular 

codes might be incorporated [29]. Furthermore, 

using other ontologies like SNOMED CT and UMLS 

might give important context for coding choices. 

8. Tailoring Systems for Different Purposes and 

Contexts: 

Automated clinical coding systems must be 

customized for various settings (e.g., different 

countries or healthcare systems) and goals (e.g., 

billing versus health-related research). Systems may 

concentrate on predicting DRGs or HRGs for billing 

reasons because they have fewer codes and are 

frequently clustered from the entire set of ICD codes 

[66-75]. Systems may need to favor precision over 

recall and offer a broader range of terminologies, like 

SNOMED CT or ORDO, for research purposes [76-

82]. It's also necessary to consider country-specific 

elements like billing systems and documentation 

procedures. To enhance model performance, for 

instance, specific preprocessing methods are needed 

to address the "note bloat" issue in the US, where 

redundant information is copied and pasted into 

clinical notes [58]. 

9. Industry Collaboration and Proprietary 

Solutions: 

Automated clinical coding is being advanced by 

industry organizations, who frequently work with 

academic institutions to create and implement 

solutions. For instance, to decrease documentation 

time and increase coding accuracy, the CogStack 

team is collaborating with NHS Trusts in England to 

include NLP technologies such as MedCAT into the 

Epic EHR system [83,84]. Although they offer pre-

built solutions for clinical idea extraction, industry 

APIs like Microsoft Text Analytics for Health and 

Amazon Comprehend Medical frequently lack 

transparency and research access [85-87]. 

Additionally, startups like AKASA are creating deep 

learning-based automated coding solutions, 

demonstrating cutting-edge results on benchmark 

datasets [50,88]. These initiatives demonstrate the 

growing interest in automated clinical coding and its 

potential to revolutionize research and healthcare 

administration. With the potential to greatly increase 

the effectiveness and precision of healthcare data 

management, automated clinical coding is a difficult 

but exciting field of study. To advance the discipline, 
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it will be essential to address the main issues 

mentioned above, such as creating datasets, 

managing noisy data, enhancing explainability, 

integrating knowledge representation, and 

incorporating human feedback. Automated coding 

systems that satisfy the requirements of academics, 

policymakers, and healthcare professionals can be 

created by fusing the advantages of deep learning and 

symbolic reasoning and customizing solutions for 

various uses and situations. 

Overview of Medical and Clinical Coding: 

The need to decrease the time-consuming nature of 

human chart checks and increase the effectiveness 

and precision of healthcare data management has 

motivated decades of efforts to automate clinical 

coding and classification procedures. Researchers 

have investigated a number of automated system 

uses throughout the years, such as automating 

biosurveillance, applying clinical guidelines, 

structuring text for clinical decision support, and 

selecting clinical trial patients. However, this has 

proven to be a difficult effort due to the intricacy of 

clinical writing, the unpredictability of coding tasks, 

and the limits of natural language processing (NLP) 

techniques. The development of automated clinical 

coding, how well these systems perform in 

comparison to human coders, and the main obstacles 

still facing the field are all examined in this 

systematic review. 

Historical Context and Evolution of Automated 

Clinical Coding: 

Both environmental conditions and technical 

improvements have influenced the development of 

automated methods for clinical coding and 

classification. Beginning in the mid-1990s, there 

were early attempts to automate processes like 

selecting clinical trial participants or following 

clinical recommendations. The need to improve care 

quality and expedite healthcare procedures 

motivated these initiatives. For instance, automated 

biosurveillance systems were timed to coincide with 

actual events. Anthrax exposures in 2001 and the Salt 

Lake City Olympics in 2002 sparked further 

advancements after the first such system was tested 

at the 1996 Atlanta Olympics. In light of the twin 

goals of raising healthcare quality and cutting costs, 

the emphasis has recently switched to automating 

administrative duties including keeping problem lists 

and reporting quality metrics. 

Performance of Automated Systems: Humans vs. 

Machines: 

One of the main topics in the literature has been the 

effectiveness of automated coding and classification 

systems. Automated systems could beat laypeople 

and perform at least as well as physicians in simple 

binary tasks, including diagnosing acute bacterial 

pneumonia on chest X-ray reports, according to early 

evaluations like those conducted by Chapman and 

Haug in 1999 [88]. Although direct comparisons 

were difficult due to human perception and 

contextual understanding, both systems were praised 

for their consistency. The limitations of automated 

systems in complicated reasoning tasks were 

highlighted by Elkins et al. in 2000, who found that 

although computers could perform well on binary 

tasks, their performance deteriorated when many 

parameters were involved [89]. Researchers have 

continuously highlighted the potential of automated 

systems despite these drawbacks. Chapman et al. 

concluded in 2003 that text processing algorithms 

were getting precise enough to handle actual medical 

issues [90]. However, Kukafka et al. noted in 2006 

that complicated reasoning tasks, such as tying 

together different pieces of knowledge, continued to 

be a major issue for NLP systems [91]. Only four of 

the 113 papers that made up this review specifically 

claimed that people outperformed automated 

systems, whereas 26 claimed that automated systems 

performed on par with or better than humans. This 

implies that even while automated systems have 

advanced significantly, the task's complexity and the 

intended result greatly influence how well they work. 

Challenges in Evaluating Automated Systems: 

There are many difficulties in assessing how well 

automated coding and categorization systems 

function. One significant problem is the diversity of 
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research approaches, which makes it challenging to 

compare study findings. For instance, whereas some 

research used routine practice as the reference 

standard, others developed a gold standard for 

comparison. Furthermore, comparisons were made 

more difficult by the significant variations in 

statistical techniques employed to assess system 

performance. These investigations also differed 

greatly in the level of intricacy of the coding and 

categorization schemas employed. While some 

systems created unique coding schemes, especially 

for the study, others used pre-existing classification 

schemes like SNOMED CT or ICD. It is challenging 

to draw broad judgments regarding automated 

systems' performance because of this 

unpredictability. Simpler jobs are more likely to 

produce positive results for automated systems, thus 

further research is required to associate the coding 

task's complexity with the study's findings. 

Specific Challenges in Administrative Coding: 

Examining the seven studies that concentrated on 

administrative coding in greater detail reveals the 

difficulties in automating this particular process. 

These studies assessed different systems using 

diverse document kinds and classification 

approaches. Although some findings were 

encouraging, they also showed important drawbacks. 

For instance, Warner [92] and Dinwoodie and 

Howell [93] biased their conclusions by evaluating 

systems exclusively in situations where they could 

code with confidence. Applying evaluation and 

management (E/M) code levels, a particularly 

challenging subset of codes, was inconsistent even 

for humans, according to Morris et al. [94], 

highlighting the task's difficulty. Despite identifying 

areas for development, Lussier et al. [95] concluded 

that the system was not yet prepared for production. 

In a similar vein, Goldstein et al. [96] and Kukafka 

et al. [91] presented findings that, although 

promising, did not show appreciable advancements 

over earlier systems. The most encouraging results 

were obtained by Pakhomov et al. [97], who reported 

Type B results ranging from 90% to 95% accuracy 

and Type A results reaching 98% accuracy. As a 

possible next step for incorporating automation into 

practical applications, these authors also suggested a 

tiered approach that blends automated coding with 

human supervision. 

The Complexity of Clinical Texts: 

The intricacy of clinical texts is one of the biggest 

obstacles to automating clinical coding. Natural 

language understanding (NLU) of narrative text 

documents is intrinsically challenging, as stated by 

Barrows et al. [98]. However, the difficulty is 

exacerbated when working with notational text 

documents. These texts may be fragmentary or 

inconsistent, frequently use terse symbols and 

abbreviations, and frequently lack punctuation and 

language. Phrases like "a [xx] y/o M w/ Hep C, HTN, 

CKD, a/w HTN emergency," for instance, may 

appear in a discharge statement and are difficult to 

correctly understand without domain-specific 

knowledge [99]. Because of this intricacy, automated 

systems find it challenging to attain the precision and 

dependability needed for practical applications. 

The Need for Generalizability and Adaptability: 

The challenge of generalizing and adapting NLP 

techniques for various purposes is another recurrent 

issue in literature. This restriction was brought to 

light by Turchin et al. [100], who pointed out that 

fresh sets of regular expressions frequently need to 

be created and verified for every unique task. 

Because it restricts their application across many 

healthcare settings and specialties, this lack of 

generalizability is a major obstacle to the widespread 

adoption of automated coding systems. Over the past 

few decades, automated clinical coding and 

classification systems have advanced significantly, 

although there are still issues. The difficulty of the 

task and the caliber of the reference standard have a 

significant impact on how well these systems 

function, even though they can do well on some 

tasks. The assessment and comparison of these 

systems are made more difficult by the diversity of 

research approaches and the intricacy of clinical 

texts. More standardized assessment techniques, 
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enhanced generalizability of NLP tools, and a deeper 

comprehension of the integration of automated 

systems with human supervision are all necessary 

going forward. Automated clinical coding systems 

can get closer to achieving their full potential in 

raising the effectiveness and caliber of healthcare by 

tackling these issues [101]. 

Conclusion: 

Automated clinical coding represents a 

transformative opportunity to enhance healthcare 

data management by addressing the inefficiencies 

and limitations of manual coding. Over the past few 

decades, significant progress has been made in 

developing AI-driven systems, particularly those 

leveraging deep learning and NLP. However, the 

journey toward fully automated clinical coding is far 

from complete, as several technical and practical 

challenges remain unresolved. One of the most 

pressing challenges is the complexity of clinical 

texts, which often contain unstructured, incomplete, 

and noisy information. Deep learning models, while 

powerful, struggle with tasks requiring symbolic 

reasoning, such as reconciling contradictory 

information or applying coding guidelines. This 

limitation underscores the need for hybrid 

approaches that combine the strengths of symbolic 

AI, with its interpretability and rule-based reasoning, 

and neural AI, with its ability to learn complex 

patterns from data. Knowledge-augmented deep 

learning, which integrates external knowledge 

sources like ontologies and coding guidelines, offers 

a promising pathway to bridge this gap. Another 

critical challenge is the handling of infrequent and 

unseen codes, which are common in clinical datasets. 

Few-shot and zero-shot learning techniques, along 

with the integration of knowledge graphs, can help 

models generalize to rare or new codes, improving 

their applicability in real-world scenarios. 

Additionally, the development of high-quality, 

expert-labeled datasets is essential to train and 

evaluate these models effectively. Current 

benchmark datasets like MIMIC-III, while valuable, 

are limited in scope and representativeness, 

highlighting the need for more diverse and up-to-date 

datasets. Explainability and human-in-the-loop 

learning are also crucial for the successful 

deployment of automated coding systems. Coders 

need to understand how decisions are made, and 

systems must be designed to incorporate feedback 

from users, enabling iterative improvements. 

Techniques like active learning and attention 

mechanisms can enhance the transparency and 

usability of these systems, fostering trust and 

adoption among healthcare professionals. Finally, 

the transition to new coding systems, such as ICD-

11, presents both challenges and opportunities. 

Automated systems must be adaptable to changes in 

terminology and coding standards, requiring 

advancements in self-supervised learning, transfer 

learning, and ontology matching. In conclusion, 

while automated clinical coding has made significant 

strides, achieving human-level performance will 

require addressing these challenges through 

interdisciplinary collaboration, innovative hybrid 

approaches, and a focus on explainability and 

adaptability. By doing so, automated coding systems 

can revolutionize healthcare data management, 

improving efficiency, accuracy, and patient 

outcomes. 
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 مراجعة محدثة –الترميز السريري والطبي: مسار جديد للأتمتة 

 الملخص

صنيف يعد الترميز السريري عملية أساسية في الرعاية الصحية، حيث يتم تحويل السجلات الطبية النصية الحرة إلى رموز منظمة باستخدام أنظمة ت :الخلفية

ث الوبائية. يضمن هذا التحويل اتساق البيانات السريرية وإمكانية مقارنتها، مما يدعم تخطيط الرعاية الصحية، وصياغة السياسات، والبحو .ICD-10مثل 

ى الذكاء ومع ذلك، فإن الترميز اليدوي يستغرق وقتاً طويلاً، وعرضة للأخطاء، ويتطلب خبرة كبيرة. ظهر الترميز السريري المؤتمت، الذي يعتمد عل

ت تتعلق بمعالجة النصوص ، كحل واعد لتحسين الكفاءة والدقة. ورغم التطورات، لا تزال هناك تحديا(NLP)ومعالجة اللغة الطبيعية  (AI)الاصطناعي 

 .السريرية المعقدة، والتعامل مع الرموز النادرة، ودمج الاستدلال الرمزي

لاتجاهات تهدف هذه المراجعة إلى استكشاف تطور الترميز السريري المؤتمت، وتقييم أداء أحدث نماذج التعلم العميق، وتحديد التحديات الرئيسية وا :الهدف

 .الترميز المؤتمتة المستقبلية لتحسين أنظمة

دراسة حول الترميز السريري المؤتمت، مع التركيز على الانتقال من الذكاء الاصطناعي الرمزي القائم على  113تستند هذه المراجعة إلى تحليل  :الأساليب

ج النهج القائمة على المعرفة، والتحديات المرتبطة القواعد إلى الذكاء العصبي، خاصة التعلم العميق. كما تناقش أداء نماذج التصنيف متعددة التصنيفات، ودم

بلية تفسير الأنظمة بمعالجة الوثائق الطويلة، والبيانات غير المتوازنة، وتغير المصطلحات الطبية. كما تسلط الضوء على أهمية التعلم بمشاركة الإنسان وقا

 .المؤتمتة

على مجموعات بيانات  %60-58تتراوح بين  Micro-F1، درجات BERTة على المحولات مثل حققت نماذج التعلم العميق، خاصة النماذج القائم :النتائج

ومع ذلك، لا تزال التحديات قائمة، مثل التعامل مع الرموز النادرة، ومعالجة الوثائق الطويلة، ودمج الاستدلال الرمزي. تظهر  .MIMIC-IIIمعيارية مثل 

راسات عرفة. تؤكد الدالأساليب الهجينة التي تجمع بين الذكاء الاصطناعي الرمزي والعصبي نتائج واعدة، كما هو الحال مع أساليب التعلم العميق المعززة بالم

 .ICD-11أيضًا الحاجة إلى مجموعات بيانات عالية الجودة، وقابلية تفسير النماذج، والتكيف مع أنظمة الترميز الجديدة مثل 

دلال ولكنه لا يزال مهمة معقدة تتطلب المزيد من البحث. تشمل الاتجاهات المستقبلية دمج الاست كبيرًا،أحرز الترميز السريري المؤتمت تقدمًا  :الخلاصة

ز السريري ضرورياً الرمزي، وتحسين قابلية التفسير، وتطوير مجموعات بيانات أكثر تمثيلًا. يعد التعاون بين الباحثين في الذكاء الاصطناعي وخبراء الترمي

 .لدفع هذا المجال إلى الأمام

، الرسوم البيانية المعرفية، قابلية التفسير، الذكاء ICD-10الطبيعية،  الترميز السريري، الترميز المؤتمت، التعلم العميق، معالجة اللغة :الكلمات المفتاحية

 .الاصطناعي الهجين

 


