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Abstract
This paper investigates the Version Number Attack (VNA), a form of Denial of 
Service (DoS) threat, within the Routing Protocol for Low-Power and Lossy 
Networks (RPL) in IoT-based Wireless Sensor Networks (WSNs). The study 
assesses the impact of VNAs across various attack scenarios, including single, 
double, and triple attacker setups, on critical network performance metrics such as 
power consumption, packet loss, and delay. Using a simulated WSN environment, 
datasets are generated under normal and attack conditions to evaluate network 
behavior. A Random Forest (RF) machine learning (ML) model is employed for 
feature selection, identifying the most significant metrics for attack detection. 
The results demonstrate that increasing the number of attackers drastically affects 
network performance, particularly in power consumption and packet loss, leading 
to significant degradation in overall network reliability. This research contributes 
to developing efficient security strategies for IoT networks operating under RPL 
protocols by providing an in-depth analysis of VNA effects and leveraging ML for 
mitigation. 
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1. INTRODUCTION
The rapid growth in wireless sensor networks (WSNs) 

deployment has revolutionized numerous industrial 
and social sectors by enabling unprecedented levels of 
connectivity and data-driven insights[1]. However, the 
increasing complexity and scale of WSNs have introduced 
significant security challenges, particularly in low-
power and lossy networks where resource constraints are                                                                                                                
typical[2]. Since wireless sensor devices are inherently 
vulnerable to cyberattacks, establishing robust security 
mechanisms is critical to ensure their functionality, 
reliability, and user trust. RPL is a foundational protocol that 
enables efficient routing in such environments. However, 
its intrinsic vulnerabilities underscore the urgent need for 
advanced security strategies to address sophisticated cyber 
threats effectively[3].

WSNs are vulnerable to cybersecurity threats such 
as eavesdropping and aggressive tampering[4]. One of 
the significant risks is Denial of Service (DoS) attacks, 
which exploit protocol vulnerabilities and compromise 
network stability and integrity[5]. A sophisticated form of 
such attack is the Version Number Attack (VNA), which 
targets the routing protocol for RPL, causing network 
disruption[6]. These attacks can result in routing issues, data 
misdirection, or network segmentation, leading to reduced 
performance and reliability of the network.

In order to protect nodes in WSNs from vulnerabilities, 
it is important to take a comprehensive approach that 
involves strengthening security features in protocols and 

implementing robust detection and mitigation strategies. 
This includes using cryptographic techniques such as 
authentication mechanisms and continuous monitoring 
as crucial elements of the defense strategy[7-9]. As attack 
techniques become more advanced, it is essential to 
understand the nature and impact of these attacks, 
particularly in scenarios involving multiple attackers. 
It is not just about safeguarding individual devices but 
also ensuring the resilience and reliability of the entire 
network. By analyzing the effects of VNAs and identifying 
effective countermeasures in multi-attacker scenarios, we 
can significantly contribute to the broader goal of securing 
WSNs against an ever-evolving array of cyber threats.

We surveyed RPL version number attacks in low-
power and lossy networks. Our analysis covers three 
perspectives, including single and multiple attackers and 
version attacks. We explored the impact of these attacks 
on power consumption, packet delivery ratio, delay, 
and control packet overhead. The survey offers valuable 
insights and enhances security measures in low-power and 
lossy networks.

The attacks that can occur on RPL version numbers 
are mentioned in[10-12]. A probabilistic attacking model 
measures the potential impact, which analyzes power 
consumption, packet delivery ratio, delay, and control 
packet overhead. The results indicated that a higher 
probability of attacks could lead to longer delays and 
increased control packet overhead. In particular, the VNA 
is found to amplify the average delay up to six times in 
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the worst case. A research paper[13] examines the impact of 
RPL version number attacks by multiple attackers on IoT 
networks. The study found that multiple attackers can cause 
issues with the packet delivery ratio. Closer attackers can 
cause longer delays and higher power consumption. The 
research also evaluated a proposed mitigation technique. 
Other studies[14,15] examine the impact of RPL Destination 
Oriented Directed Acyclic Graph (DODAG) version 
attacks on routing optimization in constrained networks. 
The study analyzed various metrics, including overhead, 
delivery ratio, end-to-end delay, rank inconsistencies, 
and loops. The research found that attackers closer to the 
root cause more loops and inconsistencies, while further 
attackers lead to worse delivery ratios.

Our study aims to analyze the impact of multiple 
VNAs in RPL-based IoT networks. We are motivated 
to undertake this analysis because we identified a gap in 
the examination of VNAs' various impacts. We explore 
the relationship between the number of attackers and the 
effects of the attacks, aiming to identify the most affected 
performance metrics. 

This work provides three key contributions. First, 
it presents a comprehensive analysis of the VNA on the 
RPL routing protocol in WSNs, assessing its impact on 
network performance. Second, a novel simulated dataset 
is generated, encompassing normal WSN conditions, 
scenarios with a single compromised node, and cases 
with multiple compromised nodes, to evaluate the varying 
effects of the attack. Third, a feature selection algorithm, 
Random Forest (RF), is applied to identify the most 
impacted metrics and features, reducing computational 
complexity and enabling efficient detection through 
machine learning (ML).

The paper follows a structured organization. Section 2 
delves into detailed analyses of various attacking scenarios, 
comprehensively exploring the intricacies associated with 
DoS threats, mainly focusing on the VNA. In Section 3, 
the simulation environment and metrics are meticulously 
presented, offering insights into the experimental setup 
and the key performance indicators for evaluating attacks' 
impact on WSNs. Section 4, dataset construction and data 

analysis, provides complete data generation by simulation 
and analysis of all the metric comber in each typical and 
attacked scenario. Section 5, the ML model generation 
phases. Finally, the conclusion section synthesizes the 
findings.

2. ATTACKING SCENARIOS
This section aims to conduct an in-depth investigation 

of 12 smart devices across three distinct usage scenarios. 
An effort has been made to evaluate performance under 
varying conditions, create a dataset comprising these three 
scenarios, and build a model based on them. The energy 
consumption is first assumed to be expected (Normal), 
where average usage would indicate "normal" behavior. 
Subsequently, the energy consumption and operational 
performance are evaluated for the scenarios involving 
Planned DoS and Network DoS (PDoS and NDoS) 
concerning their impact on the system. For this study, 
only one attack is considered to create the "worst-case" 
conditions, aimed at providing insights for designing 
energy-efficient resilience strategies.

The contribution is made in the form of a planned 
DoS attack against a version attack carried out against 
RPL security mechanisms to observe and quantify its 
effects. In the third scenario, a simulation uses two or three 
attackers in a complex environment to explore adaptability 
and responsiveness under various attack complexities. 
Note that each of the selected DoS scenarios has been 
deliberately designed to introduce modifications in the 
security mechanisms. This design emulates real-world 
threats that exploit existing vulnerabilities in the routing 
protocol for RPL.

Fig. 1 summarizes the overall process, including 
network setup, data collection, and evaluation. It illustrates 
the flow from traffic capture to the application of ML 
models. The figure highlights the simulation setup for 
normal and malicious scenarios, traffic capture, analysis of 
key performance metrics (power consumption, packet loss, 
and delay), and the detection and evaluation process using 
RF for feature importance and attack detection.

Fig. 1: Process network setup of each scenario and data 
generation 
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(a) One DoS Attack (b) Two DoS Attacks (c) Three DoS Attacks

Fig. 2: Impact of multiple DoS attacks on WSN

Fig. 2 presents three simulation scenarios: (a) one DoS 
attack, (b) two DoS attacks, and (c) three DoS attacks, 
illustrating the increasing impact on the WSN. The results 
show that more attackers significantly affect network 
performance metrics such as power consumption, packet 
loss, and delays. These scenarios allow us to evaluate the 
network's adaptability and highlight the need for effective 
mitigation strategies against multi-attacker challenges. 
Additionally, the simulation demonstrates the scalability 
of the proposed methodology, ensuring its effectiveness 
in diverse IoT environments. Insights gained from this 
research improve energy efficiency and attack detection, 
thereby enhancing the reliability and security of IoT 
networks.

Algorithm 1, "RPL Operations," is a systematic 
framework designed to efficiently manage routing 
operations in low-power and lossy networks using 
RPL. The RPL operations algorithm is based on RFC 
6550, defining the IPv6-based low-power and lossy 
networks standard. The work of inspires specific                         
implementations[16]. The algorithm begins with the RPL 
Initialize function, which configures RPL with essential 
parameters. The process starts by selecting a main node, 
known as the root node, which serves as the network's 

central hub. The root node determines that the system will 
handle two types of messages for network management. 
The Destination Advertisement Object (DAO) messages 
convey and update the routing information, specifying 
where particular data should go within the network. At the 
same time, DODAG Information Object (DIO) messages 
help nodes locate the root node and establish the network 
structure. This approach ensures a well-organized network 
and facilitates the proper transmission of information.

The coordination at the overall level is done in the RPL 
Operations function, which allows for the smooth running 
of RPL protocols, with energy efficiency in focus, keeping 
network stability. Similarly, the algorithm provides a 
security feature in the Algorithm 2 version attack function, 
which emulates a version attack against RPL. The function 
launches an attack, looking for malicious versions in the DIO 
messages received and performing appropriate logging of 
the attack or processing of legitimate DIO messages. This 
makes the algorithm more reliable regarding its resistance 
to potential adversarial actions. In general, the algorithm's 
modular design and strategic organization make it efficient 
and adaptive to deal with the challenges brought by the 
low-power and lossy network environments.
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3. SIMULATION ENVIRONMENT AND 
METRICS

Our simulation setup is chosen for its practicality. 
It utilizes Contiki Cooja version 3.0 and its simulator, 
Cooja. Contiki is open-source and a comprehensive 
implementation of the standardized protocol stack[17]. 
The setup featured Sky motes as nodes, running the RPL-
UDP application. In this scenario, UDP clients on nodes 
transmitted temperature readings to the UDP server running 
on the root node every minute, mirroring real-world IoT 
applications. We employed a distance-based loss model 
for the radio medium, with transmission and interference 
ranges set at 50 m and 100 m, respectively. The simulated 
topology covered an area of 150 m × 150 m.

For each attacking scenario, we conducted five 
independent simulations to ensure the reliability and 
consistency of the results. Each simulation is performed 
under identical network and environmental conditions, 
including the same topology, transmission ranges, and 
attack configuration. The simulations are executed 
sequentially, with each run lasting 5 minutes. This duration 
allows sufficient time for the network to stabilize and for 
performance metrics to be accurately measured under the 
specified conditions.

The results from these simulations are aggregated and 
analyzed to derive statistically significant metrics, with 
a 95% confidence interval applied to ensure robustness 
and reduce the impact of outliers. The primary focus of 
the analysis is on performance metrics, including average 
power consumption, which measures the overall energy 
usage across nodes; instance power, representing the 
instantaneous power usage during specific time intervals; 
and duty cycle evaluation, which assesses the percentage of 
time nodes spend in active states versus idle or low-power 
states. These metrics are crucial for comprehensively 
evaluating the network's behavior under different attacking 
scenarios, highlighting the system's stability and resilience. 
The experiments are executed on a Dell Inspiron laptop 
equipped with a 15.6-inch display powered by a Windows 
10 64-bit operating system, ensuring a stable and consistent 
computational environment for the simulations.

The computer specifications are outlined in                                                                      

Table 1 below. In a Wireless Sensor Network (WSN), 
power consumption during regular operation remains 
constant, reflecting the typical energy usage of the network 
when it is not under attack. However, when an attack 
occurs, there is a noticeable increase in power consumption. 
This surge results from the disruption to normal network 
operations caused by the attack. As the number of attackers 
rises from one to two or three, the impact on power 
consumption becomes even more significant. The attack 
disrupts the network’s routing table, leading to frequent 
retransmissions. When the number of attackers increases, 
their manipulation further intensifies the disruption to the 
routing table, causing an even more substantial increase in 
power consumption.

The standard radio duty cycle in a WSN operates 
normally under regular conditions, representing the typical 
duty cycle without any attacks. However, when an attack 
occurs, it disrupts the system, increasing the average radio 
duty cycle. This disruption becomes more significant 
when the number of attackers increases from one to two. 
Consequently, the attack has a greater impact on the 
network's expected functioning, resulting in an even higher 
average radio duty cycle. The increased duty cycle is due 
to the attack interfering with the regular communication 
patterns, causing nodes to remain active for longer periods.

The power consumption in a WSN usually remains 
steady during normal conditions. This level reflects the 
typical power usage without any attacks. However, the 
average power consumption increases during a DoS 
attack. The attack causes network disruptions, which leads 
to higher power usage than in normal conditions. The 
impact becomes even more significant when the number of 
attackers increases from one to two or three. The intensified 
attack further escalates power consumption because of its 
effect on the network’s routing table. Due to the attack’s 
effect on the routing table, the data retransmissions get 
repeated, resulting in a continuous cycle of increased 
power consumption. Furthermore, the escalation in attacks 
from one to two makes the situation worse, amplifying the 
impact on the routing table and causing a more significant 
increase in power consumption.
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4. THE PROPOSAL DATASET AND DATA 
ANALYSIS

The proposal dataset is carefully constructed by 
emulating a WSN comprising 12 nodes in each scenario. 
The traffic is captured under four marked scenarios: normal 
operation, single attack, double and triple attack. Each 
scenario is indicated by a data label, which categorizes 
the data as normal, malicious (single attack), or severely 
malicious (double or triple attack). The proposal dataset 
encompasses 22 network metrics collected under these 
varied conditions. Each row corresponds to a unique 
node in the network, providing a comprehensive view of 
network performance and behavior.

Network Setup, this initial phase involves configuring 
a WSN with 37 rows. Each node is set up to communicate 

with its neighbors, creating a robust mesh network 
topology. Essential network parameters, such as node IDs, 
beacon intervals, and initial power levels, are configured.

Traffic Emulation. Normal operation, the network 
functions under standard conditions without any malicious 
activities. The traffic patterns, including data transmission 
and reception, are continuously monitored and recorded. 
Single attack, one node in the network is compromised to 
simulate a malicious attack. This could involve activities 
like injecting false data, jamming signals, or creating 
routing loops. The impact on network metrics due to 
this attack is documented. Double and triple attacks, 
two or three nodes are simultaneously compromised to                                                                                                       
simulate a more severe attack. The combined 
effects on network performance and metrics are                                                             
meticulously captured.

Table 1: Computer, virtual machine, simulation, and experimental specifications

Computer Specifications
Intel® Core™ i7-5500U CPU @ 2.40 GHzProcessor
8 GBRAM
1 CPUVirtual Machine Specifications
10 GBProcessor
2 GBStorage

RAM
Simulation and Experimental Details

Contiki Cooja (version 3.0)Simulator
Tmote Sky motesNode Type
12 per scenariosNumber of Nodes
1Number of Sink Nodes
11Number of Sender Nodes
1, 2 & 3Number of Malicious Nodes
RPL-UDPApplication
50 mTransmission Range
100 mInterference Range
150 m × 150 mTopology Dimensions

Experimental Runs
5Number of Simulations
5 minutesDuration of Each Simulation

95%Confidence Interval

Data Preprocessing 

1. Data Collection, throughout each scenario, various 
network metrics are gathered. These metrics include packet 
statistics (received, duplicates, lost), network dynamics 
(hops, routing metrics like Rtmetric and ETX), node churn, 
beacon intervals, reboots, and power consumption metrics	
(CPU power, LPM power, Listen power, Transmit power). 
Additional metrics related to packet timing (average, 
minimum, and maximum inter-packet times) and duty 

cycles (listening and transmitting duty cycles) are also 
collected.

2. Data Labeling, the gathered data is labeled according 
to the scenario it is captured in normal operation, single 
attack, or double attack. This labeling is crucial for 
developing and evaluating ML models for anomaly and 
intrusion detection in WSNs.
3. Dataset Compilation, raw data undergoes preprocessing 
to eliminate variations and normalize the metrics for 
better comparison. This step involves handling missing 
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values, scaling the data, and transforming the metrics 
into a format suitable for analysis. preprocessed data 
from all three scenarios is compiled into a single dataset. 
Each row represents a unique node's metrics at a specific                                                       

time. The dataset is structured to facilitate analysis                                                      
and modeling, with columns representing various                      
metrics and rows representing individual data points                
from the nodes.

Table 2: Dataset metrics description

DescriptionMetric
Unique identifier for each nodeid
Total number of packets received by a nodereceived
Count of duplicate packets receiveddups
Number of packets lost (not received by the destination)lost
Number of intermediate nodes a packet passes throughhops
Routing cost associated with a particular routeRtmetric
Expected number of transmissions required to successfully deliver a packetETX
Frequency of nodes joining or leaving the networkchurn
Time interval between successive beacon signalsbeacon_interval
Number of times a node has rebootedreboots
Power consumption of the node's CPUcpu_power
Power consumed by the node in low-power modelpm_power
Power consumption while the node is in listening modeListen_power
Power consumption while the node is transmitting dataTransmit_power
Total power consumption encompassing all activitiespower
Total time the node is active (not in sleep mode)on_time
Ratio of time the node spends in listening mode to the total timelisten_duty_cycle
Ratio of time the node spends in transmitting mode to the total timetransmit_duty_cycle
Average time interval between consecutive packetsavg_inter_packet_time
Minimum observed time interval between consecutive packetsmin_inter_packet_time
Maximum observed time interval between consecutive packetsmax_inter_packet_time

Operational status of the network (no_attack, attack, double_attack, triple_attack)status

4.1 Average Routing Metric
In RPL, the average routing metric is a key measure of 

the overall quality of routes inside the network. It takes into 
account aspects such as hop count, connection quality, and 
energy usage. The calculation process involves collecting 
metrics for all available routes to a location, adding them 
together, and then dividing the total by the number of 

routes. This average routing metric is instrumental in route 
selection and sustaining efficient network performance, 
particularly in resource-constrained contexts where load 
balancing and reliable communication are critical. The 
dataset has three labels in node status (no attack- attack- 
double attack- triple attack) as in Fig. 3.

Fig. 3: Evaluation of average routing metric in no attack, single, double, and triple attack scenarios.
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4.2 Average transmit duty cycle
The average transmit duty cycle, expressed as a 

percentage, measures how often a node transmits data 
relative to its total available time. For example, a device 
transmitting for 10 seconds every 100 seconds has a duty 
cycle of 10%. This metric is crucial in energy-limited 
environments like IoT networks, where optimizing the 

duty cycle enhances battery life and network efficiency. 
However, Denial of Service (DoS) attacks significantly 
impact the duty cycle. Under normal conditions, the duty 
cycle is low at 0.12%. During a single-node attack, it 
increases 20-fold to 2.11%, and in a triple-node attack, it 
rises 30-fold to 3.16%. This highlights the severe strain on 
network resources caused by malicious activities.

Fig. 4: Evaluation of average transmits duty cycle in no attack, single, double, and triple attack scenarios.

4.3 Average Transmit power
The average transmit power is the average amount of 

power utilized by a node during transmission operations 
during a certain time. It is commonly measured in watts 
or milliwatts (mW) and represents the device's power 
consumption during data transmission. For example, 
if a device transmits at different power levels but has 
an average power usage throughout time of 50 mW, its 

average transmit power is 50 mW. This statistic is critical 
for evaluating energy economy and maintaining battery life 
in wireless communication networks, especially in battery-
powered or low-power devices as the attacks happen the 
transmit power is changed from 0.1 to 1 and above 1.2 
these increases in the consumption power is affect the 
sensor lifetime and battery make the sensor vanishing very 
quickly as in Fig. 5

Fig. 5: Evaluation of average transmit power cycle in no attack, single, double, and triple attack scenarios.
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4.4 Average inter packet time
When addressing network, the average time interval 

between two subsequent packets is referred to as inter-
packet time (IPAT). An IPAT can be measured through 
network monitoring tools or from packet capture data. 
Understanding the components of IPAT enables network 
engineers to reduce congestion and latency. Fig. 6 
illustrates that the average IPAT rises as more nodes in the 

network are targeted by attacks. When there are no attacks, 
the average is approximately 55,000 microseconds. If a 
single node is compromised, the average IPAT increases to 
60,000 microseconds. When three nodes are compromised, 
the average IPAT increases to 90,000 microseconds. This 
implies that as more nodes are targeted, the time gap 
between packets reaching the network lengthens, resulting 
in reduced responsiveness.

Fig. 6: Evaluation of average inter packet time in no attack, single, double, and triple attack scenarios.

4.5 Average Packets lost  

Average packet loss rate is an important metric for 
measuring network performance and represents the 
percentage of packets that do not reach their destination. 
Network monitoring analyzers are important for measuring 
this parameter because they track the number of packets 
sent against the number of packets received. It is worth 

noting that the average packet loss rate will increase 
during a DoS attack. This is because DoS attacks flood the 
network with large amounts of traffic, causing congestion 
and causing many packets to be lost, thus increasing the 
average packet loss. As in Fig.7 the no attack case has no 
lost packet where the number of the lost packet increases as 
the number of target node increases.

Fig. 7: Evaluation of average packet loss in no attack, single, double, and triple attack scenarios.
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4.6 Average CPU Power 
During a DoS attack, the average CPU power or CPU 

utilization of the affected network equipment or server is 
often significantly impacted. DoS attacks flood the system 
with heavy traffic or high-cost requests, causing the CPU 
to work harder to process and manage incoming requests. 
As a result, the average CPU power increases due to the 
additional computational demands, as illustrated in Fig. 8. 
High CPU utilization can lead to performance degradation, 
slower response times, and even system crashes if the CPU 

becomes overloaded. Monitoring changes in centralized 
CPU power is, therefore, essential to understanding 
the source of DoS stress in the network structure and 
implementing timely corrective measures. The figure 
shows that the average CPU power increases substantially 
as attack severity escalates. In a no-attack scenario, the CPU 
power remains low at 0.34, but this value nearly triples to 
0.94 in a triple-attack scenario, highlighting the critical 
impact of DoS attacks on network resource utilization and 
performance.

Fig. 8: Evaluation of average CPU power in no attack, single, double, and triple attack scenarios.

4.7. Average expected transmission count ETX
The average expected transmission count (ETX) is 

a metric used to evaluate the performance of wireless 
networks by estimating the number of transmissions 
required to successfully deliver a packet from a source to 
a destination. ETX serves as an indicator of connection 
reliability by accounting for factors such as packet loss 
and retransmissions. An increase in the ETX value often 
occurs when Denial of Service (DoS) attacks flood the 

network with excessive traffic. Such attacks can lead to 
higher packet collision rates and increased packet loss, 
necessitating additional retransmissions to successfully 
deliver packets. Consequently, the average ETX value 
rises, as illustrated in Fig. 9. Monitoring ETX is crucial 
for identifying network failures caused by attacks or other 
issues. It facilitates enhanced network management and 
troubleshooting, enabling timely interventions to maintain 
network reliability and performance.

Fig. 9: Evaluation of average expected transmission count (ETX) in no attack, single, double, and triple attack scenarios.
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4.8 Average Listen duty Cycle 

The Average Listen Duty Cycle measures the percentage 
of time a device spends actively listening for signals in a 
wireless network. During a DoS attack, this duty cycle 
may increase due to the high volume of incoming traffic, 
leading to higher power consumption and reduced network 
efficiency. Conversely, network congestion from the attack 
might also lower the duty cycle if devices struggle to receive 

signals effectively as in Fig 10. The figure demonstrates 
that the Average Listen Duty Cycle increases significantly 
under attack scenarios. While the duty cycle is relatively 
low in the no-attack condition at 0.69, it rises sharply to 
1.82 under a single attack and reaches 2.73 during a triple 
attack, indicating the heightened demand on devices to 
process incoming traffic during attacks. This escalation 
reflects the additional strain imposed on network devices 
in the presence of malicious activities.

Fig. 10: Evaluation of average listen duty cycle in no attack, single, double, and triple attack scenarios

4.9 Average power consumption 

Average power consumption measures the typical 
amount of energy used by a device or network component 
over time. During a DoS attack, average power consumption 
often increases because the device must process a higher 
volume of traffic or handle excessive computational tasks. 

This heightened activity can lead to greater power use, as 
the system works harder to manage the attack's impact, 
potentially affecting overall efficiency and operational 
costs. The Fig. 11 show that the power increases triple time 
just when one node is compromised and as the target node 
increases the overall consumption power increase which 
make the network lifetime is very short.

Fig. 11: Evaluation of average power consumption in no attack, single, double, and triple attack scenarios.

In Table  3, the no Attack scenario results in 
performance metrics that show the expected behavior of the 
network in the normal case. This provides useful context 
for evaluating the impact of subsequent attacks. These 
results show the direct impact of an attack on network 
performance, revealing vulnerabilities that attackers can                                                                    

exploit. Gain insight into multiple attacks at once.                                                                                                                       
This comparison shows the reduction in network 
performance in terms of a combination of metrics                             
such as energy efficiency and overall reliability.                                   
Increasing challenges in the context of development                    
phase threats. 
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Table 3: The proposal dataset metric average score comparison 

Triple AttackDouble AttackAttackNo AttackMetric Average score
32.28.933321.466714.0667Received
1.41.1330.9330Lost

3.14212.62352.09472.1333Hops
1872.911425.541248.6665.18Rtmetric
65.9556.0443.9728.77ETX

9.72.26.4670Churn
19081.613066.0712721.07675331.1Beacon Interval
0.94440.65220.62960.3437CPU Power
0.21670.14380.14440.1531LPM Power
1.63711.24011.09140.4145Listen Power
1.67761.24181.11840.0621Transmit Power
4.47583.27782.98390.9734Power
2.72852.06681.8190.6908Listen Duty Cycle
3.15942.33862.10630.1169Transmit Duty Cycle
89795.162243.259863.454951.53Avg Inter-Packet Time
2690025066.6717933.3318933.33Min Inter-Packet Time

5. MATHEMATICAL MODEL FOR ATTACK 
DECISION ANALYSIS

This section presents a mathematical model to identify, 
classify, and optimize network performance amid various 
attack scenarios. The model incorporates key components, 
including characterizing different attack scenarios, their 
potential impacts on network behavior, and the mechanisms 

for detecting and classifying these attacks. The model uses 
mathematical formulations to quantify critical performance 
metrics such as throughput, delay, packet loss, and energy 
consumption under different attack conditions. This model 
aims to understand network vulnerabilities and implement 
effective countermeasures to mitigate attacks. Let A 
denotes the attack scenario as a discrete set:

(1)

Define the following performance metrics as a vector M:

(2)

Where:
	 RA: Packets received.
	 LA : Packets lost.
	 HA: Average hop count
	 PA: Total power consumption (mW)
	 BA: Beacon interval (ms)
	 CA: Churn rate
	 T avg,A : Average inter-packet time (ms)

Performance index formula, for each attack A, the 
index is expressed as a function of the non-attack event:

Packets Received:

(3)

(4)

(5)

(6)

(7)

(8)

(9)
Churn Rate:

Beacon Interval:

Average Inter-Packet Time

Total Power Consumption:

Average Hop Count:

Packets Lost:
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Where ki (0 < i  ≤ 6)  represents the sensitivity coefficients 
for each metric under attack conditions, and fx (A) where 
x ϵ {R,L,H,P,S,T,B,C}, denotes nonlinear functions 
characterizing the impact of the attack on the respective 
metrics. The changes in metrics can encapsulated by:

(10)

Where:

(11)

The attack Classification function C(A) is defined as:

(12)

To classify attack scenarios, define a composite 
performance impact function ΦA:

(13)

Where, ΔMi represents the change in metrics, and wi 
denotes the weight assigned based on the importance of 
each metric, determined using optimization methods such 
as linear programming or ML. θΦ represents a threshold 
that defines the boundary between attack and no attack 
scenarios based on overall performance impact. θL  signifies 
the threshold for packet loss that signals a potential attack.

6. ML MODEL SELECTION AND EVALUATION
This section is structured into two subsections. The 

first subsection involves a comparative analysis of several 
well-established ML algorithms to identify the model 
that performs best across various evaluation metrics. This 
comparison is essential for selecting the most suitable 
model for the task at hand. In the second subsection, 
the selected model is applied to different dataset, with 
efforts focused on optimizing its performance to achieve 
high accuracy tailored to the specific application. This 
systematic approach serves as a comprehensive guideline 
for choosing and implementing ML techniques, ultimately 
improving the efficiency and accuracy of the solution.

6.1 ML Model Selection
The evaluation of the ML models on the CICD-

DoS2019 dataset reveals promising results across 
various metrics[18].  The Fig. 12 is shown the overall 
testing and training operation for all models and Table 4 
summarizes all model metrics, Logistic Regression (LR) 

achieves a training accuracy of 99.12% and a testing 
accuracy of 99.14%, demonstrating its consistency in data 
classification. Both K-Nearest Neighbors (KNN) and RF 
models achieve perfect training accuracy of 100%, with 
testing accuracies of 99.94% and 99.96%, respectively, 
highlighting their effectiveness in classification tasks. The 
Decision Tree (DTree) model also performs well, with 
a training accuracy of 99.99% and a testing accuracy of 
99.95%. Linear Discriminant Analysis (LDA) achieves 
slightly lower accuracies of 98.85% (training) and 98.87% 
(testing), while Naive Bayes (NB) lags behind, with 
96.35% training accuracy and 96.20% testing accuracy. 
These results underline the superiority of models like KNN 
and RF in accurately detecting patterns in network data, 
making them suitable candidates for further use in network 
security applications.

Fig. 12: Comparison accuracy of various ML models 

Table 4: Machine learning Models on CICD-DoS2019

Test 
Recall

Train 
Recall

Test 
Prec.

Train 
Prec.

Test 
Acc.

Train 
Acc.Model

99.1499.1299.1499.1299.1499.12LR
99.9410099.9410099.94100KNN
99.9610099.9610099.96100RF
99.9599.9999.9599.9999.9599.99DTree
98.8798.8598.8798.8598.8798.85LDA

96.296.3596.2796.4196.296.35NB

The RF model stands out as the most effective technique 
among the algorithms evaluated, consistently delivering 
superior accuracy thanks to its ensemble learning approach 
and inherent robustness. By constructing multiple decision 
trees using bootstrapped datasets and employing random 
feature selection at each split, RF effectively minimizes 
overfitting while enhancing generalization across 
diverse datasets. This ensemble strategy aggregates the 
outputs of weaker learners, resulting in robust and stable 
predictions, which makes RF particularly resilient to 
noise and outliers. Moreover, its capability to efficiently 
handle large, high-dimensional datasets positions it as a 
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formidable candidate for intrusion detection and anomaly 
detection tasks. Additionally, the computation of feature 
importance within RF aids in identifying critical features, 
improving interpretability without sacrificing accuracy. 
These qualities render RF an ideal choice for complex 
classification challenges, especially in network security 
and IoT applications, where scalability, reliability, and 
adaptability are essential.

6.2 Performance Evaluation
In this analysis, RF is selected as the primary model 

for further refinement. The model is trained and tested on 
a dataset where the network state is categorized into two 
binary categories: "no attack" and "attack" (with multiple 
attack types combined into a single category). The dataset 
is divided into training and testing subsets to rigorously 
evaluate the model's classification performance.

The performance is measured using accuracy scores, 

confusion matrices, Receiver Operating Characteristic 
(ROC) curves, and Area Under the Curve (AUC). 
Accuracy scores assess the overall effectiveness of the 
model during training and testing phases. Confusion 
matrices provide insight into classification errors and 
help identify misclassified cases, enabling iterative 
improvements. The ROC/AUC scores evaluate the model’s 
ability to discriminate between attack and non-attack states 
effectively. Additionally, precision-recall curves analyze 
the balance between precision and recall, offering deeper 
insights into the model’s performance on imbalanced 
datasets.

Feature importance analysis is also conducted, 
particularly for the RF model, to determine the factors most 
critical to its predictive accuracy. As highlighted in Fig. 13, 
this analysis aids in refining the model’s decision-making 
process, ensuring optimal performance by focusing on 
relevant features.

Fig. 13: Feature importance analysis using RF classifier

Fig. 14: Confusion matrix for training and testing
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Fig. 15: Receiver operating characteristic testing and training 

Table 5: Comparison analysis of proposed work and existing work

AccuracyDatasetML Model Ref.
94%RPL-DoS DatasetRF[20]
91%CICIDS-2017SVM[21]
92%IoT-IDS DatasetGBM[22]
90%Bot-IoT DatasetCNN[23]
91%CICD-DoS2019KNN[24]

99.14%

CICD-DoS2019

LR

proposed work

99.94%KNN
99.96%RF
99.95%DTree
98.87%LDA
96.20%NB
100%The proposal datasetRF

proposed work 99%SVM
100%DT

7. FUTURE WORK
While this research has provided valuable insights 

into VNA detection and mitigation, several areas warrant 
further exploration:

1. Real-world validation, future studies should 
implement the proposed methods in real-world IoT 
deployments to validate their effectiveness under practical 
conditions, including dynamic network topologies and 
heterogeneous devices.

2. Advanced attack scenarios, expanding the analysis 

to include more sophisticated attack types, such as 
coordinated multi-vector attacks, would provide a broader 
understanding of network vulnerabilities and enhance the 
robustness of mitigation strategies.

3. Integration with emerging technologies, investigating 
the integration of the proposed techniques with blockchain, 
federated learning, or zero-trust architectures could further 
improve security and scalability in RPL-based networks.

4. Energy optimization, developing energy-aware 
machine learning models to minimize computational 
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overhead while maintaining high detection accuracy is 
critical for extending the lifetime of IoT devices.

5. Generalization across protocols, extending the study 
to other IoT routing protocols, such as AODV and DSR, 
would help generalize the proposed approach and provide 
a comprehensive framework for securing IoT networks.

8. CONCLUSION
This study provides an in-depth analysis of the VNA, a 

critical DoS threat targeting the RPL protocol in IoT-based 
WSNs. The research evaluates the impact of VNAs across 
single, double, and triple attacker scenarios, highlighting 
their detrimental effects on network performance metrics 
such as power consumption, packet loss, and inter-packet 
time. Results show that the severity of these attacks 
increases significantly with the number of attackers, 
leading to degraded network reliability, increased 
energy consumption, and reduced operational efficiency. 
The study leverages RF machine learning techniques 
for feature selection and attack detection, effectively 
identifying critical network metrics influenced by VNAs. 
By employing a novel dataset encompassing normal and 
attack conditions, the proposed approach demonstrates 
the capability of RF to optimize attack detection and 
mitigate the adverse effects of VNAs. This contributes to 
developing robust, scalable, and energy-efficient security 
solutions for RPL-based IoT networks, particularly in 
resource-constrained environments.
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