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Abstract: Infrasound, which refers to low-frequency sound waves below 20 Hz, originates from various natural and 

human-made sources. These signals travel through a dynamic atmosphere that might change within minutes of an 

incident, so their classification process is challenging and sometimes time-consuming. Moreover, accurate classification 

of infrasound events is crucial for monitoring nuclear test bans and detecting natural disasters. Recently, the use of 

machine learning (ML) for complex environments and different signals has been merged. This paper presents a supervised 

ML approach to classify infrasound signals, utilizing feature selection methods - “SelectKBest” and “SelectFromModel”- 

and feature importance to identify the eight most relevant features of these signals. Traditional machine learning methods 

were selected over deep learning due to their interpretability, lower computational cost, and effectiveness in handling the 

available dataset size and variability.  The model is trained and examined by a real dataset from the infrasound reference 

event database (IRED) in time and frequency domains, which are processed using the progressive multi-channel 

correlation (PMCC) algorithm. Throughout, the system model, feature selection is adopted to use only eight features to 

reduce the complexity. To ensure the models’ robustness, we have examined them by several evaluation metrics. The 

results show the model’s effectiveness in the events classification with an accuracy of 92.87% among the benchmarks 

ensuring the capability of ML for automatic classification. The proposed framework demonstrates significant potential 

for real-world applications, particularly in nuclear monitoring and natural disaster prediction, where timely and accurate 

decision-making is critical. 
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1. INTRODUCTION 

Infrasound, which is usually known as low-frequency audio 

energy that lies below 20 Hz [1]. Its sources can vary from 

natural sources (e.g., microbaroms, bolides, landslides, 

earthquakes, volcanos, and storms) to anthropogenic (e.g., 

mining blasts, power plants, explosions, and supersonic 

flights) [2–6]. Due to its properties, infrasound is a crucial 
technique for monitoring natural hazards, chemical and 

nuclear explosions, and other anthropogenic and natural 

sources of interest at the regional and global scale [7,8]. 

 The detection of these infrasonic signals often involves using 

multiple sensors spread across an array to distinguish true 

acoustic signals from background noise caused by turbulence 

and similar non-acoustic disturbances [9]. Since background 

noise fluctuates rapidly over short distances, multiple sensors 

spaced tens to hundreds of meters apart are necessary to 

capture consistent infrasonic signals. A global infrasound 

network, established as part of the International Monitoring 

System (IMS) [10], enables worldwide detection of 

infrasound signals. The Comprehensive Nuclear Test-ban 

Treaty Organization (CTBTO) has developed IMS in order to 

monitor nuclear experiments around the world. It deploys 

infrasound technology among four different technologies to 
establish a dependable verification regime for the treaty [11]. 

Its infrasound network is under development and will reach 

60 stations worldwide as planned. The International Data 

Centre (IDC) collects, processes, and analyzes data from the 

IMS network, using the Progressive Multi-Channel 

Correlation (PMCC) algorithm [12] to detect and analyze 

infrasound signals. This technique separates small amplitude 
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coherent signals from incoherent noise even in situations 
when signals cannot be distinguished individually from the noise. 

The classification of infrasound signals has recently become 

one of the important procedures deployed to discriminate 

between different event sources [13–16]. However, 

atmospheric variability due to wind and temperature changes 

significantly complicates infrasound signal classification. 

These variations can alter signal morphology [17], duration 
[18], frequency characteristics [19], and amplitude [20].  

Although infrasound signal characteristics are affected by 

rapid atmospheric changes [18,21,22] each type of event 

originates from a distinct physical mechanism. Analysts often 

rely on seismic data for ground truth, but this approach can 

be inefficient when seismic data is unavailable or event 

locations are unknown. 

The power and effectiveness of machine learning (ML) have 

recently been demonstrated in a variety of scientific and daily 

domains. It has been applied in infrasound research to predict 

transmission loss due to propagation [23], to monitor nuclear 
reactors [24], and to categorize signals. Numerous studies 

have explored the use of ML for classifying infrasound 

signals. Most studies focus on feature extraction from 

infrasound data in either the time or frequency domain, 

comparing different methods to estimate classification 

accuracy. For instance, wavelet transform has been widely 

used for characterizing different signals [25,26], while other 

studies have combined Fourier transform with fuzzy logic for 

classification [27]. SVM has been a popular choice, often 

combined with various techniques such as Hilbert-Huang 

Transform [28,29] and spectral entropy [30] to enhance 
classification performance. Additionally, it was combined 

with various techniques to enhance classification 

performance [31–33]. Random forest (RF) and SVM were 

also deployed with several time and frequency domain 

features to classify infrasound signals from storms, power 

plants, and quarry blasts recorded by a single station [34].  

Artificial neural networks (ANN) and deep learning 

techniques, including convolutional neural networks 

(CNNs), have seen growing applications in infrasound 

research [35,36]. For instance, a study proposed the use of 

mel-frequency coefficients with ANN to classify three 

different event sources detected by one station [37]. 
Additionally, CNNs have been used to differentiate rocket 

signals and investigate using spectrograms for classification 

[38]. They have also been deployed with Fast Fourier 

Transform (FFT) to distinguish the infrasound signals 

resulting from volcanos, earthquakes, and tsunamis [39]. 

Moreover, they have been utilized to identify stationary and 

nonstationary signals in an infrasound array using the 

waveform data as input [40]. A recent study showed 

promising results of using CNNs for automatic feature 

extraction and classification of two types of infrasound 

events [41]. Besides, the augmentation technique has been 
employed with ResNet architectures to classify signals of 

chemical explosions and earthquakes and the classification 

accuracy was compared to SVM and extreme gradient 

boosting (XGB) [42]. ML techniques were also employed to 

enhance the detection accuracy of snow avalanches and 

reduce false alarms [43]. In another direction, a study used k-

nearest neighbor (KNN) to identify infrasound signals 

associated with landslides [44]. In contrast to these studies, 

which primarily focus on single-station data, our work 

extends the application of CNNs to multi-station datasets, 

allowing for a more robust classification of diverse 
infrasound events. 

The research works that have been mentioned above are 

examples of the most advanced approaches. They obtained a 

high range of accuracy, ranging from 55% to 100%. 

However, a major challenge remains the lack of 

systematically labeled, high-quality, and comprehensive 

infrasound datasets. This constraint not only affects the 

performance of supervised ML models but also restricts the 

exploration of more advanced techniques and a wider 

application of ML techniques. That is why, the development 

of large-scale, standardized, and systematically labeled 

infrasound event catalogs is a need. 
Key contributions of this research include: 

 Implemented a supervised machine learning workflow to 

classify infrasound events into four categories: 

earthquakes, explosions, mines and quarries, and 

volcanic activity, achieving a classification accuracy of 

92.87%, outperforming a previous approach on the same 

dataset. 

 Conducted feature selection and importance analysis to 

identify the eight most significant features, enhancing 

model performance while reducing complexity. 

 Utilized the IRED catalog, a global infrasound dataset 
with signals from multiple stations, addressing 

challenges related to propagation variability. 

 Explored and implemented data preparation techniques, 

including outlier management, to enhance model 

performance. 

 Provided a practical framework for automating 

infrasound classification, advancing nuclear test 

monitoring, and natural disaster detection. Also, future 

work is proposed to expand datasets and integrate 

atmospheric models for greater accuracy. 

2.MATERIALS AND METHODS 

This research utilized international data from the CTBTO. 

This infrasound data represents the largest labeled worldwide 

infrasound event catalog that is currently accessible. Our 

objective was to collect a set of features that have been used 

in different previous studies on classifying infrasound signals 

and extract them from the IRED data [30,34]. We applied a 

subset of these features and performed feature selection and 

importance analysis. After that, we trained various 

supervised machine-learning models and chose the best-
performing one. Here, the classification task discriminates 

between four classes: earthquakes, explosions, mines and 

quarries, and volcanic eruptions. This approach aimed to 

achieve acceptable classification accuracy of global 

infrasound signals and to identify the most significant 

features for this task. The proposed workflow is shown in Fig. 

1. Most of the work was done using Python [45] with all 

required packages like sklearn,obspy, pisces, and array 

processing. 
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Fig 1. Workflow diagram outlining the detailed steps in our work, from data preparation and feature 

extraction to model training, feature importance analysis, and model evaluation. 

2.1  Utilized Dataset Description 

The IDC completed (IRED) by June 2010. This bulletin 

integrates signals detected from infrasound events identified 

at the International Monitoring System IMS stations across 

the globe (see Fig. 2). At that time, 42 infrasound stations 

were operational, actively detecting and collecting 

infrasound data. This catalog serves as a vital reference point 

during routine IDC analysis and is used to test and validate 

software and atmospheric models. What is notable about this 

catalog is that all its contents are meticulously analyzed and 

verified by analysts using reliable sources such as seismic 

and satellite data. The various sources of the 772 detected 

events in this catalog are listed in Table 1. Each source with 

the corresponding number of detected signals is illustrated. 

Notably, some types have few detections, so our study 

concentrated on the most abundant signals, including those 

from mines and quarries, chemical/accidental explosions, 

earthquakes, and volcanic activity, resulting in 663 signals 

from 569 infrasound events. As some events are detected at 

multiple stations, each event is represented more than once 

with the same label to ensure a substantial amount of data for 

input to machine learning models. For the most part, the 

signals were recorded at distances ranging from regional to 

global scales (15 to over 250 km), with some detected at even 

greater distances. That’s what is considerable about this 

catalog, in contrast to typical catalogs employed for training 

predictive models that work in limited geographic areas. This 

actually presents additional complexity due to dynamic travel 

paths and makes it challenging to achieve high classification 

accuracy. The IRED contains a comprehensive set of tables 

that provide information about the events and the recording 

IMS stations, as well as all the corresponding waveforms for 

each event. 

 

2.2  Data Preprocessing 

This study implemented some of the event parameters found 

in IRED data and some features extracted from the event 

waveform. Most features that came directly from the IRED 

event tables were computed using PMCC by IDC. There were 

eleven features that we decided to use directly from the 

catalog. These features include backazimuth, trace 

velocity(V_trace), duration, consistency, correlation, root 

mean square amplitude(A_rms), fundamental frequency, 

fundamental frequency skewness, Fisher Fstatistic (FSTAT), 

and family size (FAMSIZE). 

 
Fig 2: Geographical distribution of IRED events and the IMS 

infrasound stations by June 2010. 
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TABLE 1. IRED events grouped by source type. 

Type of sources No. of events 

Mines and Quarries 265 

Chemical/accidental explosions 132 

Earthquakes 104 

Rocket launch/re-entry & 73 

Volcanic activity 68 

Anthropogenic activity 56 

Bolides and meteorites 27 

Unknown 19 

Aircraft 13 

Cultural noise 8 

Avalanches and landslides 7 

 

The distance between each event and the IMS station was 

derived using the location information given in the IRED 

tables and used as a feature. These features were chosen 

based on their physical relevance to infrasound signals and 

their propagation, prior research, and classification 

significance. Other available IRED parameters, including 

date and time, were excluded since we believe that they do 

not provide meaningful classification information. In 

addition to these eleven features, an additional five features 

were extracted from the waveform in time and frequency 

domains. To prepare the waveform for this step, it passed 

through a preprocessing stage. At first, we cut each event’s 

waveforms to the detection duration. Then, beamforming was 

applied for the available waveforms corresponding to each 

event.  Beamforming is a signal processing technique used to 

enhance signals coming from a specific direction while 

suppressing noise and interference from other directions. 

This technique is particularly useful for infrasound arrays, as 

each IMS station contains multiple microphones arranged in 

an array. By aligning and summing these signals, 

beamforming helps to emphasize coherent infrasound 

arrivals while suppressing background noise. This step was 

performed using the metadata in the IRED catalog. The 

resulting beam representing each event was then filtered 

using a bandpass filter. The filter lower and upper limits were 

selected according to the sampling rate of the instruments at 

the station. This filtered beam representing the event was then 

used to extract the remaining four features. All sixteen 

features were combined with a type column to create the 

training dataset. The “type” column represents the class label, 

with values ranging from 0 to 3, where 0 for earthquakes, 1 

for explosions, 2 for mines and quarries, and 3 for volcanic 

eruptions. The four classes' signals and the corresponding 

spectrograms are represented in Fig. 3. 

 

 

2.3  Feature extraction 

Three main categories of features were utilized: time domain, 

frequency domain, and PMCC-related features. The PMCC-

related features were directly obtained from the IRED tables. 

Additionally, some time and frequency domain features were 

extracted from the available waveforms following the 

preprocessing stage, which included steps such as filtering 

and beamforming. These different features were used in order 

to evaluate the similarity between adjacent detections and to 

characterize signals’ properties. 

 The time domain features that were utilized were the 

A_rms, the signal-to-noise ratio (SNR), and the root mean 

squared energy (E_rms) which is calculated using this 

formula: 

                     𝐸𝑟𝑚𝑠 =
1

𝐿
 ∑ 𝐴𝑗

2 𝐿
𝐽=0 ,                                                 (1) 

 

where Aj represents the j-th amplitude value in the event’s 

signal and L is the number of samples. 

 Entropy-based methods quantify the uncertainty of signal 

energy distribution across different domains [30,31]. That 

is why we extracted two of them as described. 

Power spectrum entropy (PSE): It is defined as the 

Shannon entropy of the power spectrum [46] and can be 

formulated as follows: 

𝑃𝑆𝐸 = ∑ 𝑃𝑆(𝑓)
𝑓𝑠
2

𝑓𝑠=0
. 𝑙𝑜𝑔2 𝑃𝑆(𝑓),                                (2) 

where fs refers to the sampling frequency and PS is the 

power spectrum. This feature evaluates how evenly the 

power spectrum is distributed. It reaches its lowest value 

for a monochromatic signal and rises as more frequency 

components are present. 

 
Fig 3. The four classes’ examples of signals and their 

spectrograms. 

 

Wavelet Singular Spectrum Entropy (WSSE) The WSSE 

information measure is a feature extraction technique that 

combines the singular value decomposition of the wavelet 

transform with entropy-based feature extraction. This method 
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effectively characterizes the uncertainty of infrasound signal 

energy distribution in the time-frequency domain. The 

Wavelet Singular Spectrum Entropy is formulated as follows 

[30]: 

𝑊𝑆𝑆𝐸 = − ∑ 𝑝𝑗 . 𝑙𝑛𝑀
𝑗=1 𝑝𝑗  ,                                          (3) 

where the term 𝑝𝑗 =
𝜆𝑗

∑ 𝜆𝑖
𝑀
𝑖=1

 signifies the normalized value. 

Here, 𝜆𝑗  is the j-th singular value that makes up the singular 

spectrum and M stands for the quantity of effective singular 

characteristic values that are utilized in the wavelet singular 

entropy calculation. 

 The frequency domain feature that was extracted is the 

spectral band energy ratio (BER). For the j-th frame it 

can be calculated as follows: 

𝐵𝐸𝑅𝑗 =
∑ 𝑆𝑗(𝑚)2𝐹𝑑−1

𝑚=1

∑ 𝑆𝑗(𝑚)2𝑀
𝑚=𝐹𝑑

 ,                                                 (4) 

where M is the number of frames and 𝑆𝑗(𝑚) is the 

spectrogram’s magnitude in the j-th frame at frequency 

bin m. Here, 𝐹𝑑  is the frequency value that was chosen at 

which the split is performed.  For this calculation, we set 

this value at 3 Hz, which was determined through a 

combination of empirical testing and prior research [34].  

The empirical evaluation showed that this threshold 

provided the best class separability, particularly 

distinguishing explosions and quarry blasts from other 

sources. BER was derived to be the median of 𝐵𝐸𝑅𝑗  for 

each event’s beam. 

 

2.4  Data Preparation 

At that moment, the preparation process was performed to 

handle missing values, the number of these values was small 

so they were imputed using scikit-learn’s SimpleImputer 

[47]. Outlier estimation is also an essential step in this 

process. This step is used to identify data points that deviate 

significantly from the expected pattern or distribution in a 

dataset. Several techniques are commonly employed for 

detecting outliers, such as isolation forest, local outlier factor 

(LOF), and the interquartile range (IQR) method [48–50]. To 

optimize performance, we adopted a class-specific approach 

for outlier detection. The scikit-learn LOF algorithm was 

used to identify outliers within each feature data set for each 

class. This algorithm compares the local density of a value or 

a point to the local densities of its neighbors and decides if it 

is an outlier [51]. LOF provides better interpretability and 

consistency in preserving essential data structures. It is also 

effective for datasets with varying densities or clustered 

structures, making it suitable for the used dataset. 

 

 
FIG 4. Distribution of one feature (Consistency) for all classes before and after outlier replacement. 
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Outliers were not deleted but instead replaced with the 

nearest quartiles Q1 or Q3 of the corresponding feature 

within their respective class to preserve data integrity. These 

quartiles Q1 and Q3 are statistical measures that explain the 

division of the data into four quarters. The strategy that we 
used proved effective in enhancing model accuracy. Fig. 4 

shows one of the features’ dataset distributions before and 

after outlier replacement for each class. This plot 

demonstrates that the replacement process has been 

successful in achieving a balance between improving feature 

quality and maintaining distribution consistency, thereby 

supporting better model performance. The last step applied to 

the training dataset involved normalization using the 

MinMaxScaler from the scikit-learn library. 

 

2.5  Models Training and Evaluation 

After the preprocessing and preparation of the data, including 
the extraction of additional features, the workflow proceeded 

to the model training step. At this stage, we followed two 

main paths to evaluate and refine the ML models for 

classifying infrasound events, focusing on identifying the 

most efficient features and the best-performing models. The 

workflow for each path is described as follows: 

 Initially, using the full set of 16 features, we trained and 

evaluated both linear and nonlinear supervised machine 

learning models. These models, which are listed in Table 

2 and have been explained and utilized in previous 

classification research studies [52,53], were selected 
based on their proven effectiveness in similar tasks. After 

evaluating the models, a feature importance plot was 

generated using the most effective model. Feature 

importance refers to the method of assigning scores to 

features based on their contribution to the predictions of 

an ML model. These scores are relative, effectively 

ranking the features according to their impact on the 

model’s performance. Various techniques exist to 

measure feature importance, including the permutation-

based method, the coefficient method, and the decision 

trees-based method [54,55]. Although the permutation 
method is available in Scikit-Learn, it requires 

significant computational time. In our study, we utilized 

the “coef_” and “feature_importance_” attributes after 

fitting the model. These attributes provide scores that 

indicate the influence of features on the model’s 

predictions. The “coef_” attribute is used with linear 

models, while the “feature_importance_” attribute is 

applied to tree and ensemble models. This analysis 

provided insights into the relative significance of each 

feature across the models. 

 In the second path, we tried to apply feature selection 

techniques to refine the feature set. We employed two 

widely used feature selection methods, 
“SelectFromModel” and “SelectKBest”. Feature 

selection can be defined as identifying the most pertinent 

independent variables that significantly influence the 

prediction of the target variable. The 

“SelectFromModel” method is a feature selection 

technique that selects a subset of features based on their 

importance as determined by an underlying model. This 

method which is available in the Scikit-learn library 

utilizes an estimator to choose features with an 

importance score above a specified threshold or within a 

defined maximum number of features [56]. XGB was the 

underlying model that we selected, and we set 
“max_features” to nine. However, “SelectKBest” is a 

feature selection technique that uses univariate statistical 

tests to determine which k features have the highest 

scores. Then it selects the k-features with the highest 

scores based on these tests. We chose the statistical chi-

squared test and set the feature count to nine in this 

Scikit-learn library application.  To assess the robustness 

of our feature selection process, we compared the results 

of both methods to verify consistency in feature 

importance. The top features identified by 

“SelectFromModel” and “SelectKBest” were analyzed, 
and we observed significant overlap in the selected 

features. This analysis helped determine whether both 

methods identified a similar set of significant features or 

if certain features were uniquely emphasized by one 

technique. As before, we plotted the feature importance 

scores for the best model after applying both linear and 

nonlinear ML models on the same dataset. While feature 

selection methods focus on selecting the most relevant 

features, alternative dimensionality reduction 

techniques, such as Principal Component Analysis 

(PCA), could further simplify the feature space. 
However, PCA creates transformed features that may 

reduce interpretability in a geophysical context. In future 

work, we plan to explore PCA to assess whether it offers 

additional advantages for infrasound classification, 

particularly in optimizing computational efficiency. 

 

Model Abbreviation Advantage 

Light Gradient Boosting Machine LGB Efficient and scalable boosting algorithm for large 

datasets. 

Extreme Gradient Boosting XGB Powerful boosting method with high predictive accuracy. 

Gradient Boosting Classifier GBC Provides high accuracy and handles various data types 

well. 

Extra Trees Classifier ET Fast, reliable, and robust to noisy data.  

Random Forest Classifier RF Ensemble method that improves accuracy and controls 

overfitting. 
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K Neighbors Classifier KNN Simple and effective for classification problems with clear 

separation. 

Decision Tree Classifier DT Easy to interpret and good for baseline performance. 

Linear Discriminant Analysis LDA Effective for classification with linear separability. 

Quadratic Discriminant Analysis QDA Suitable for non-linear decision boundaries. 

Ridge Classifier RIDGE Useful for multicollinearity and regularization. 

Logistic Regression LR Simple and interpretable 

Support Vector Machine SVM Effective for non-linearly separable data.  

Naive Bayes NB Fast and works well with high-dimensional datasets. 

Ada Boost Classifier ADA Works with complex classification tasks and improves 

overall performance. 

Dummy Classifier Dummy Baseline model for performance comparison. 

CatBoost Classifier CB Handles categorical features efficiently  

 Feature importance was evaluated using three different 

methods, and the top eight features that consistently appeared 

across all importance plots were selected for final model 

training. The choice of eight features was determined through 

a systematic evaluation of model performance. Reducing the 

number of features below eight led to a noticeable decline in 

accuracy, indicating that these eight features collectively 

capture the essential information required for effective 
classification. This threshold was maintained to ensure a 

balance between model simplicity and performance. This 

reduction in features was found to improve classification 

accuracy, indicating that the removal of less relevant features 

enhanced the model's efficiency. Using k-fold cross-

validation with 13 folds, the evaluation metrics of the top-

performing model were assessed. This approach ensured a 

robust evaluation of model performance and provided 

reliable insights into its generalizability. The performance 

metrics that were implied in this work are accuracy, F1-Score, 

the Cohen Kappa Score (Kappa) [57], the Matthews 

Correlation Coefficient (MCC) [58], and Confusion Matrix 
[59]. 

 

3.RESULTS 

The results of this study can be presented in three main 

stages, corresponding to the workflow: (1) evaluation of 

models using the full feature set (16 features), (2) refinement 

of features using feature selection techniques, and (3) final 

model training and performance assessment using the 

optimized feature set. Using the complete set of 16 features, 

both linear and nonlinear supervised machine learning 

models were trained and evaluated. With an accuracy of 
91.43%, GBC was the model that performed the best at this 

point. Following that, the feature importance score was 

plotted for this model, as shown in Fig. 5. 

To refine the feature set, two widely used feature selection 

techniques were applied, “SelectFromModel” and 

“SelectKBest”. Using “SelectFromModel”, LGB achieved 

the highest accuracy of 92.08%, and the corresponding 

feature importance plot is presented in Fig. 6. On the other 

hand, the “SelectFromModel” yielded an accuracy of 90.57% 

with the XGB model. The feature importance plot for this 

model is illustrated in Fig. 7. Comparing the three feature 

importance plots (from the full feature set, SelectFromModel, 
and SelectKBest) revealed a set of eight features that 

appeared across analyses. Model accuracy decreased when 

the number of features was reduced below eight, indicating 

that keeping these features is important for best results. Using 

the refined set of eight features- backazimuth, V_trace, 

duration, Distance, E_rms, WSSE, BER, and PSE - all the ML 

models were retrained and evaluated to obtain the top-

performing model. 

 

 
FIG 5, Feature importance plot of the full set of features. 

 
 

Fig 6: Feature importance plots using the feature selection 

‘SelectFromModel’ method. 
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Fig 7: Feature importance plots using the feature selection 

‘SelectKBest’ method. 

 

A comparison of their performance is illustrated in Fig. 8. 

After fine-tuning the hyperparameters of the best-performing 

classifier, the GB model, it was evaluated using k-fold cross-

validation with 13 folds. This approach ensured a robust 

assessment of the model’s generalizability and performance. 
The model achieved an average accuracy of 92.87% for the 

four classes. The evaluation metrics, including accuracy, 

precision, recall, MCC, Kappa score, and F1-score, were 

calculated to provide a comprehensive understanding of the 

model’s effectiveness, as summarized in Table 3. When 

evaluating a classification task, the confusion matrix is a 

crucial tool that shows how well the predicted classes 

perform. The confusion matrix of the final classifier is plotted 

in Fig. 9. The plot illustrates that the model showed 

acceptable classification accuracy across all categories, with 

classification rates exceeding 80% for earthquakes and 

exceeding 90% for explosions, quarries, and volcanoes. 
Earthquakes show the highest rate of misclassification 

(19.47%), primarily being confused with quarries (10.49%). 

This suggests a similarity in the feature space of these two 

event types, potentially due to overlapping characteristics in 

their signal patterns. Besides, the best classifier’s ROC/AUC 

curve which shows how well it can differentiate between the 

four classes, is shown in Fig. 10. The validation and learning 

curves are also in Figs. 11 and 12, respectively. 

 

 
Fig 8. A comparison of Metrics for linear and nonlinear 

ML models relying on 8 features. 
 

 
Fig 9. Confusion Matrix of LGB model. 

 
Fig 10. ROC/AUC curves of the optimal classifier model. 

 

Table 3: Metrics of LGB classifier. 

Metric value 

Accuracy 92.87% 

Recall 91.21% 

F1 score 91.86% 

Precision 93.83% 

MCC 90.05% 

Kappa score 89.91% 

 

4.DISCUSSION 

In this study, we explored the application of supervised 

machine learning (ML) techniques for the classification of 

infrasound events, focusing on feature selection and model 

optimization. Unlike previous studies that utilized CNNs 

[31,38,39] or focused on only one or two models 

[29,30,32,34], our approach relied solely on supervised ML 

models, including linear and nonlinear algorithms, to classify 
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infrasound signals. We utilized infrasound-labeled signals 

from the IRED catalog and extracted 16 features for analysis. 

Initially, we examined all features, and the corresponding 

feature importance plot revealed that eight features were 

particularly significant. Following the application of feature 

selection techniques, we compared their performance and 

corresponding feature importance plots with one. This 

comprehensive and comparative analysis enabled us to 

identify the optimal model and the most impactful features, 

which included distance and duration. These features 

highlight the influence of propagation on infrasound signals. 

Upon evaluating the performance of the best classifier, LGB, 

earthquakes were the most frequently misclassified class, 

with a higher rate of false positives and false negatives 

compared to other classes. This misclassification likely stems 

from the shared characteristics between earthquakes and 

other event types. This trend likely stems from overlapping 

feature distributions, particularly in the frequency content, 

and propagation characteristics, which can exhibit 

similarities among these event types.  

 
Fig 11: The learning curve of the best classifier 

 
Fig 12: Validation curve of the best classifier. 

These similarities may arise from atmospheric variability that 

can alter the morphology of earthquake signals, causing them 

to resemble other event types. To further investigate, we 

analyzed the ROC/AUC curve, which indicated lower 

discrimination performance for earthquakes compared to 

other classes. This aligns with the observed misclassifications 

and suggests that certain extracted features may not be 

sufficient to fully distinguish earthquakes from other sources. 

In contrast, quarry events achieved the highest accuracy, 

likely due to their occurrence at shorter or local distances, 

which simplifies their detection and classification and lowers 

the effect of propagation. Despite this, the model metrics  

demonstrate robust overall performance. Additionally, the 

learning and validation curves suggest that increasing the 

volume of data, particularly from international stations, could 

further enhance model performance. These findings suggest 

that augmenting the dataset with more earthquake samples, 

particularly from diverse stations and propagation conditions, 

could improve classification accuracy. Additionally, 

exploring more advanced feature extraction techniques or 

using deep learning may enhance the separation between 

earthquakes and other event types and this is targeted in 

future work.     

 A previous study that utilized the same IRED dataset focused 

on classifying infrasound events using both SVM and CNN 

[31]. The study evaluated binary classification (earthquakes 

vs. volcanic activity) and multi-class classification tasks. For 

binary classification, SVM achieved an accuracy of 75%, 

while CNN achieved 74%. In the multi-class classification 

task, SVM achieved 55% accuracy, and CNN achieved 56%. 

The SVM models relied on time and frequency domain 

features, while the CNN models used spectrograms as input. 

Before training, the authors selected eight important features 

using random forests, with the top two features being the 

distance between the source and receiver and waveform 

duration, indicating a range dependency in classification. In 

contrast, our study focused exclusively on supervised ML 

models and achieved an accuracy of 92.87% using a refined 

set of eight features. Unlike the previous study, which 

employed CNNs and spectrograms, our approach relied on 

feature selection techniques such as “SelectKBest” and 

“SelectFromModel” to identify the most impactful features. 

We also used a different method for calculating feature 

importance scores, in which distance also showed high 

importance. Additionally, we incorporated features that were 

not included in the previous study. Furthermore, our 

workflow included preprocessing and outlier management 

steps, which allowed us to achieve significantly higher 

accuracy without the need for complex deep-learning 

architectures. Although this accuracy may be lower than 

some research works mentioned in the introduction section, 

we believe that our goal is to address a more complicated 
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issue. Unlike some prior studies, which often relied on single-

station recordings or used the same station for all event 

classes, our approach incorporates waveforms from multiple 

stations that may capture the same event. This approach 

introduces greater variability and complexity, as it accounts 

for diverse source-station combinations. In contrast, studies 

using single-station signals or limited source station 

configurations simplify the classification task, which may 

lead to higher reported accuracies. However, such approaches 

limit the model’s applicability and reduce its generalizability 

to different event catalogs. By incorporating multi-station 

data, our work aims to enhance the robustness and 

generalizability of the model. 

During this work, the initial step of applying all features was 

to gain a comprehensive understanding of the ML models’ 

behavior with all features and their impact on performance or 

prediction. This approach also provided insights into how 

preprocessing steps and data preparation can effectively 

improve the ML model’s accuracy. Replacing outliers proved 

to be more effective in enhancing model accuracy without 

significantly reducing the data size than removing them. 

Subsequently, the implementation of the “SelectFromModel” 

and “SelectKBest” methods, along with Scikit-learn’s feature 

importance attributes, enabled us to optimize the best 

discriminative parameters from the available data. Among the 

various ML models applied, the LGB model demonstrated 

the best performance with this dataset.  

Despite the growing popularity of deep learning, our 

traditional ML-based approach outperformed CNN-based 

methods as follows: 

 Traditional ML models are more data-efficient than CNNs, 

which require large amounts of labeled data to achieve 

optimal performance. 

 Traditional ML models offer greater interpretability 

compared to CNNs. By identifying and analyzing the 

importance of specific features, we gained valuable insights 

into the factors influencing infrasound classification and this 

is crucial for practical applications. 

 The preprocessing steps improved data quality, leading to 

better classification performance compared to the CNN-

based method on the same dataset. 

In spite of its advantages, our approach encountered a number 

of restrictions and difficulties while conducting. It was 

difficult to find and choose the most pertinent features. 

Feature selection techniques significantly enhanced 

interpretability and improved accuracy while also reducing 

training time by eliminating redundant features. Although 

feature selection introduces an initial computational 

overhead, the reduction in feature dimensionality ultimately 

optimized training efficiency. This study was conducted 

using a PC with an Intel Core i7-1165G7 @ 2.80 GHz 

processor and 16 GB RAM. Despite this modest hardware, 

our best-performing model (LGB) achieved 92.87% 

accuracy, demonstrating that our feature selection strategy 

effectively balanced model complexity and computational 

efficiency. Training time for this model was approximately 

0.4300 seconds using 13-fold cross-validation. As the dataset 

size increases, in future studies, computational demands are 

expected to grow, however, strategies such as parallelized 

training can mitigate these challenges. The size of the dataset 

was one of the difficulties, which might have made it more 

difficult to fully validate the model’s efficiency. For this 

reason, cross-validation was employed to a certain degree to 

address this problem; nevertheless, larger-scale validation 

using separate datasets will be employed in further studies to 

validate the findings’ robustness. The quality of the data 

presents another difficulty, which was addressed during the 

preprocessing phase and in the management of outliers that 

can affect the performance of the model. Further, Infrasound 

signals are highly influenced by atmospheric changes, such 

as temperature variations, wind patterns, and pressure 

fluctuations, which highly affect signal propagation and 

detection. These changes make it essential to combine or 

integrate atmospheric models with ML techniques to 

accurately analyze and predict the behavior of infrasound 

signals. 

 To sum up, although our approach achieved higher accuracy 

than the CNN-based model held on the same IRED catalog, 

we acknowledge that deep-learning techniques still hold 

potential, particularly if larger datasets become available. 

Future work could explore hybrid approaches, integrating 

feature-based ML with deep learning to combine the 

advantages of both methodologies. Additionally, expanding 

the dataset by using new labeled data or augmentation 

techniques, and including atmospheric modeling could 

further improve classification performance. 

 

5.CONCLUSION 

In this paper, we conducted a comprehensive comparative 

analysis to evaluate the effectiveness of ML techniques for 

infrasound signal classification on a global scale. The 

proposed workflow involved data preprocessing, feature 

extraction, the application of both linear and nonlinear ML 

models, the use of feature selection methods, and the 

calculation of feature importance for effective infrasound 

classification. Although the lack of systematically labeled, 

and sufficient infrasound dataset quality, the promising 

obtained results prove the effectiveness of the proposed ML 

approach for infrasound classification. To ensure the model’s 

robustness, we have evaluated it by several evaluation 

metrics (accuracy, precision, recall, MCC, Kappa score, and 

F1 score). Our model achieved significant classification with 

an accuracy of 92.8%, outperforming a previous study that 

utilized the same IRED catalog. This improvement comes 
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from our broader feature exploration, the application of 

feature selection techniques, and the integration of multiple 

ML models. These refinements enhanced classification 

accuracy and model robustness, demonstrating the 

effectiveness of our approach for infrasound signal 

classification and its application in nuclear test monitoring 

and natural disaster detection. 

In future work, we aim to expand the dataset by integrating 

infrasound signals from the past ten years and comparing 

them with seismic catalogs to construct a new large-scale 

labeled infrasound event catalog. This catalog will be 

incorporated with the existing dataset used in this study to 

create a more comprehensive global dataset suitable for 

advanced classification tasks. Additionally, we plan to 

investigate deep learning-based classification techniques by 

applying raw waveform analysis instead of feature extraction. 

This approach will allow deep learning models, such as 

transformers, to autonomously learn feature representations 

and enhance classification accuracy. By developing a more 

extensive and diverse dataset, we expect to improve model 

generalization and achieve higher classification performance 

for real-world applications. This effort will require 

substantial data collection and preprocessing, forming the 

foundation of our next research phase. 
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