

Microbes and Infectious Diseases

Journal homepage: https://mid.journals.ekb.eg/

Original article

Toxoplasmosis and associated risk factors in tuberculosis patients attending the chest hospital in Beni Suef Governorate, Egypt

Nagwa Mostafa El-Sayed¹, Soha Abdel-Salam Mahmoud², Doaa Ahmed Ezzeldin³, Manar Ezzelarab Ramadan^{*4}

- 1- Medical Parasitology Department, Research Institute of Ophthalmology, Giza-Egypt
- 2- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez University, P.O.Box: 43221, Suez, Egypt
- ${\it 3- Chest Department, Faculty of Medicine, Beni Suef University, Egypt.}$
- 4- Department of Medical Parasitology, Faculty of Medicine, Suez University, P.O.Box: 43221, Suez, Egypt

ARTICLE INFO

Article history: Received 16 March 2025 Received in revised form 15 April 2025 Accepted 19 April 2025

Keywords:

Toxoplasmosis Tuberculosis Risk factors Interferon-gamma

ABSTRACT

Background: Toxoplasmosis is a significant health issue among Egyptian patients, exhibiting a high prevalence rate. Several studies have reported tuberculosis (TB)-Toxoplasma co-infection that could pose a double burden in healthcare facilities in developing countries. The present study aimed to study T. gondii seropositivity and IFNy levels among TB patients who had positive toxoplasmosis compared to those without toxoplasmosis and also identify the associated risk factors. Methods: Cross-sectional research on patients who attended the outpatient clinic at the chest hospital in Beni Suef Governorate, Egypt, from May 2023 to November 2023. Sputum samples were examined for TB positivity using Ziehl-Neelsen stain, Lowenstein Jensen culture and GeneXpert assay. Blood samples of TB patients screened for anti-Toxoplasma IgG/IgM antibodies, measuring interferon-gamma (IFN- γ) levels, and identifying the associated risk factors. **Results:** Out of 124 patients, 80 were TB positive and 44 were TB negative. Seropositivity of Toxoplasma infection was 51.25% (41/80) in TB-positive patients and 18.18% (8/44) in TB-negative patients, revealing a significant association between Toxoplasma positivity and TB (P<0.001). Statistical analysis indicated a significant association between Toxoplasma infection seropositivity in TB patients and the associated chronic diseases, taking immunosuppressive drugs, contacting pet animals, eating processed meat, washing hands and vegetables before eating and cooking meat well. Conclusion: The study findings showed Toxoplasma infection is prevalent amongst Egyptian TB patients. This gives insight into the importance of earlier identification and managing patients with TBtoxoplasmosis coinfection to avoid any serious complications.

Introduction

Toxoplasma gondii (T. gondii) and Mycobacterium tuberculosis (M. tuberculosis) are pathogenic organisms that are widespread among humans and may result in long-lasting infections

and life-threatening diseases, particularly in people with a compromised immune system [1]. *T. gondii* could infect a third of the world's population. It can be transmitted through food, water, or transplacentally [2]. Human toxoplasmosis may

DOI: 10.21608/MID.2025.368761.2633

^{*} Corresponding author: Manar Ezzelarab Ramadan

E-mail address: manarezz98@yahoo.com

result in a serious health issue, although the vast majority of cases are mild or asymptomatic, particularly if the host immune system is weakened. This is because it might enable actively reproducing tachyzoites to reactivate, which may severely damage organs [3].

Tuberculosis is one of the world's deadliest infections and may cause serious health problems. It is caused by M. tuberculosis, an intracellular bacterium primarily a respiratory pathogen. Pulmonary tuberculosis is one of the leading causes of infection-related mortality, particularly in lowincome settings and among patients who have weakened immune systems. About 15% of infections occur at extra-pulmonary sites, creating new challenges for the disease's diagnosis and management. It is thought that M. tuberculosis can disseminate out of the lungs more frequently rather than a rare occurrence throughout all infections, causing secondary lesions that can either become dormant or active [4]. Even though tuberculosis is a preventable and treatable disease, an estimated 1.6 million individuals die from it annually [5].

Co-infection of TB and toxoplasmosis is a growing problem that has received more attention in developing countries. Mashaly et al. [6] studied the effect of concomitant Toxoplasma infection on immunocompetent TB patients and evaluated the implications of each on the other regarding TB severity and latent toxoplasmosis reactivation. In China, Zhao et al. [7] proved *T. gondii* seropositivity among TB patients. According to Ali et al. [8], TB patients in Iraq have an elevated level of anti-Toxoplasma IgG antibodies. In India, Vasantham et al. [9] documented a case of pulmonary TB combined with toxoplasmosis. Also. immunocompetent case of ocular co-infection concerning T. gondii and M. tuberculosis was reported by Agarwal et al. [10].

The primary cytokines involved in the cellmediated immune response towards M. tuberculosis and T. gondii are T-helper1 (Th1) cytokines, including IFN-y which play a crucial role in the host's defense towards these intracellular microorganisms. IFN-y is considered a TB biomarker [11] and protects against tachyzoites proliferation during infection with T. gondii [12]. In newborns with suspected congenital toxoplasmosis or TB infection, IFN-γ released from mononuclear cells in the peripheral blood could be used to confirm these infections [13]. Throughout an active

tuberculosis infection, Th2 cytokines are overproduced while Th1 cytokines are decreased. As a result, this suppresses the effectiveness of cell-mediated immunity against toxoplasmosis, which may result in either a new infection being more susceptible or an old infection reactivating [6].

Even though co-infection with these two pathogens has been researched, they are few and relatively scattered. Hence, the current research studied T. gondii seropositivity and IFN- γ levels among TB patients who had positive toxoplasmosis compared to those without toxoplasmosis and also identified the associated risk factors.

Subjects and Methods

Study participants and settings

The subjects of the current cross-sectional research were 124 (87 males and 37 females) patients who attended the outpatient clinic at the chest hospital in Beni Suef Governorate, Egypt, from May 2023 to November 2023. Patients who meet the following criteria are eligible for the study: (a) those who have a fever, night sweats, coughing up sputum for more than three weeks, weight loss, lack of appetite, chest pain, hemoptysis, and/or radiological evidence of tuberculosis; (b) those who are at least 21 years old; and (c) those who voluntarily consented to participate. However, patients who had already been diagnosed or received treatment, those with AIDS, chronic obstructive lung disorders, and cancer were excluded.

According to Mashaly et al. [6], *T. gondii* seropositivity was 29/43 (67.4%) in TB patients. Our study sample size was estimated to involve a 67.4% prevalence rate of *T. gondii* among TB patients, a confidence level of 95%, and a level of precision of 10.27%.

A questionnaire was applied to all participants fulfilling the following data: age, sex, occupation, residence, having any chronic diseases and immunosuppressive diseases, taking any immunosuppressive drugs, history of blood transfusion, owing pet animals in the house, dietary habits (especially with regard to eating processed meat, cooking meat well), and personal hygiene (washing hands and vegetables before eating).

Specimens collection

Three consecutive morning sputum samples were collected from each participant under aseptic conditions. Diagnosis of TB was done by examining sputum samples by staining with Ziehl-Neelsen stain, culturing on Lowenstein Jensen

culture, and GeneXpert assay. In addition, 5 ml of venous blood samples were collected. Each sample was subjected to serum extraction after centrifugation at 1500×g for 5 min. Serum samples were kept at -20 °C until the screening of anti-*Toxoplasma* IgG/IgM antibodies and IFN-γ.

Diagnosis of pulmonary tuberculosis Direct detection of *M. tuberculosis*

Sputum samples were subjected to concentration/decontamination by N-acetyl-L-cysteine-sodium hydroxide, followed by Ziehl-Neelsen (ZN) staining. The microscopic screening was done for *M. tuberculosis*, which was acid-fast bacilli, measuring 0.2-0.5µm wide and 2-4µm long and stained bright red against a blue background [14].

Culturing on Lowenstein-Jensen medium

Within 2 hours, sputum samples were inoculated on Lowenstein Jensen culture following decontamination and neutralization, and the media was incubated in a CO² atmosphere at 37 °C for a maximum of 8 weeks. The presence of *Mycobacteria* was seen as irregular, dry, and off-white growth after 2-3 weeks. *Mycobacteria* were identified by their specific morphology after staining with Ziehl-Neelsen stain as thin pink rods in a contrasting blue background using x100 objective of the light microscope. After 8 weeks of incubation, cultures that had no growth are considered negative.

GeneXpert assay

This is an automated molecular assay to detect M. tuberculosis and rifampicin resistance. It was carried out using the MTB/RIF test platform (GeneXpert, Inc., Sunnyvale, CA, USA). All reagents required for the lysis of bacteria, nucleic acid extraction, amplification, and amplicon detection, were added into a disposable plastic cartridge for sample processing and PCR. Sputum samples were processed using sample reagents (sodium hydroxide and isopropanol), and they were placed into a multi-chambered cartridge after repeated shaking and incubation. After loading the MTB/RIF cartridge, heminested Real-Time PCR was conducted using the GeneXpert device. For a high level of specificity, 5 different molecular probes and 3 specific primers were used [15].

Detection of anti-Toxoplasma IgG/IgM antibodies

According to the manufacturer's instructions, the OnSiteTM Toxo IgG/IgM Combo

Rapid Test (CTK Biotech, Inc., San Diego, California, USA), lateral flow a immunochromatography test, was used to detect and differentiate anti-Toxoplasma IgG and IgM antibodies in sera samples. A mixture of 10 µl of the patient's serum and 70 µl of the kit's diluent was applied onto the sample pad. During this procedure, a recombinant T. gondii antigen that has been conjugated with colloidal gold binds to T. gondii antibodies present in the patient's serum. The resulting colored complex is captured in the test window coated by mouse anti-human antibodies. After ten minutes, the result was visually read. To ensure that the test strip is functioning, a positive control line must always be present at the strip's top. The test is considered to be negative if only this line appears. A positive response for Toxoplasma infection is indicated by the appearance of a second and/or third line.

Determination of IFN-y serum levels

According to the manufacturer's instructions, serum levels of IFN- γ were estimated by enzyme-linked immunosorbent assay (RayBio® Human IFN- γ ELISA Kit, USA), which is a quantitative sandwich enzyme immune-assay using one polyclonal antibody and another monoclonal antibody specific for IFN- γ . At 450 nm, optical density (OD) values were measured, and the concentrations of serum IFN- γ were calculated from the standard curves. The sensitivity cutoff was 20 pg/ml.

Statistical analysis

SPSS version 25 (Armonk, NY, IBM Corp) was used to analyze the collected data. Chi-square ($\chi 2$) was employed to analyze the prevalence of anti-*Toxoplasma* antibodies among suspected TB patients and the associated risk factors with *Toxoplasma* seropositivity in TB patients. Cohen's Kappa coefficient (κ) was employed to assess interrater reliability among TB diagnostic tests. The serum level of IFN- γ was expressed as mean and standard deviations (mean \pm SD) and the student t-test was employed for comparing the means between groups. P<0.05 was statistically significant and P<0.001 was highly statistically significant.

Results

This study involved 124 patients attending outpatient clinic, TB positivity was detected by examining sputum samples using Ziehl-Neelsen, Lowenstein Jensen culture, and Gene expert assay. Out of 124, 80 (64.52%) were TB positive and 44

(35.48%) were TB negative. In comparison to Gene expert assay results, Ziehl-Neelsen's results were statistically significant (P<0.001) with substantial agreement as kappa coefficient = 0.752. While Lowenstein Jensen culture results were statistically significant (P<0.001) with an almost perfect agreement as kappa coefficient = 0.947 (Table 1).

Overall, 39.52% (49/124) of participants had *Toxoplasma* antibodies. Seropositivity of *Toxoplasma* infection based on IgG/IgM was 51.25% (41/80) in TB-positive patients and 18.18% (8/44) in TB-negative patients, revealing a significant association between *Toxoplasma* positivity and TB (*P*<0.001) (Table 2).

Our results recorded that TB patients with Toxoplasma infection had higher IFN- γ concentration levels compared to those without

Toxoplasma infection (P<0.0001). Also, non-TB individuals with Toxoplasma infection have higher IFN- γ concentration levels compared to those without infection (P<0.0001) (Table 3).

Statistical analysis indicated a significant association between *Toxoplasma* infection seropositivity in TB patients and the associated chronic diseases, taking immunosuppressive drugs, owing pet animals in the house, eating processed meat, eating improperly cooked meat, consumption of unwashed or inappropriately washed vegetables, and washing hands before eating. The participant's gender and blood transfusion history were not significantly correlated with the participants' seropositivity for *Toxoplasma* infection among TB patients (Table 4).

Table 1. Validation of Ziehl-Neelsen stain and Lowenstein Jensen culture results for diagnosis of TB in comparison to Gene expert assay.

Applied tests	Gene	Gene expert assay									
	Positive		Negative		Total	5	x				#
	No. 80	% 64.52%	No. 44	% 35.48%	No. 124	Sensitivity	Specificity	PPV	NPV	κ (P)	Level of agreement
Ziehl-Neelsen Positive	66	82.5	1	2.3	67 (54.03%)	82.5	97.7	98.5	75.4	0.752 (<0.001**)	Substantial agreement
Negative	14	17.5	43	97.7	57 (45.97%)						
LJ culture Positive	78	97.7	1	2.3	79 (63.71%)	97.5	97.7	98.7	95.6	0.947 (<0.001**)	Almost perfect
Negative	2	2.5	43	97.7	45 (36.29%)					, ,	agreement

κ: Kappa test

PPV: positive predictive value NPV: negative predictive value

Table 2. Anti-*Toxoplasma* IgG/IgM positivity among tuberculosis patients.

		Anti-Toxoplasma Iş	gG/IgM		P-value	
Studied Patients	No.	Positive No. (%)	Negative No. (%)	Chi–square (χ2)		
TB +ve	80	41 (51.25%)	39 (48.75%)			
TB -ve	44	8 (18.18%)	36 (81.82%)	12.9876	0.0003**	
Total	124	49 (39.52%)	75 (60.48%)			

^{**} Highly statistically significant P< 0.001

^{**} Highly statistically significant P< 0.001

Table 3. Interferon-gamma (IFN- γ) levels among TB patients

Studied Patients		No.	IFN- γ level	T-test	P-value
			Mean±SD (IU/ml)		
TB patients	Toxo positive	41	41.98±4.36	8.5247	< 0.0001**
	Toxo negative	39	32.2±5.83		
Negative TB	Toxo positive	8	30±2.8	15.9270	< 0.0001**
	Toxo negative	36	13.6±2.6		

^{**}Highly statistically significant P<0.001

Table 4. Associated risk factors with *T. gondii* seropositivity among TB patients.

Risk factors	TB patie	nts (80)	χ2	P-value			
	Toxo pos	itive (41)	Toxo neg	gative (39)			
	No.	%	No.	%			
Gender	1.	- 1	· ·		•		
Male	33	80.49	29	74.36	0.4306	0.5117	
Female	8	19.51%	10	25.64%			
Immuno-supp	ressive dru	ıgs			<u>.</u>		
Yes	16	39.02%	3	7.6 %	9.174	0.024*	
No	25	60.9. %	36	92.4%			
Chronic disea	se	<u> </u>	•	•	•	•	
Diabetic	20 48.78% 9			23.08%	6.9414	0.031095*	
Hypertensive	4	9.76%	10	25.64%			
No	17	41.46%	20	51.28%			
Washing vege	tables	•	1	· ·	•	•	
Yes	15	36.58 %	37	94.87%	27.34	< 0.00001**	
No	26	63.42. %	2	5.13%			
Cooking meat	well	•	1	· ·	•	•	
Yes	28	68.29%	10	25.64%	12.9205	0.00325*	
No	13	31.71 %	29	74.36%			
Washing hand	ls before ea	nting	1	· ·	•	•	
Yes	11	26.82 %	33	84.61%	24.6826	0.00001**	
No	30	73.18%	6	15.39%			
Eating process	sed meat	•	1	· ·	•		
Yes	22			12.82%	13.1378.	0.000289 **	
No	19	46.34%	34	87.18%			
Blood transfus	sion	<u> </u>	•	•	•	•	
Yes	5	12.2%	9	23.08%	0.9723	0.200417	
No	36	87.8%	30	76.92%			
Contact with	Pet animals	S	· ·	•	•	•	
Yes	28	68.29%	17	43.59%	4.9563	0.025996*	
No	13	31.71%	22	56.41%			

^{*} Statistically significant P< 0.05

Discussion

Several studies reported an association between toxoplasmosis and chronic diseases, including rheumatoid arthritis [16], chronic liver diseases [17], chronic renal failure [18], and diabetes mellitus [19]. $T.\ gondii$ infection stimulates a potent and sustained Th1 response via the releasing of proinflammatory cytokines such as IFN- γ , tumor necrosis- α and interleukin-12. Effects of these cytokines in combination with other

immune mechanisms safeguard the host from consequent pathogenic effects caused by rapid multiplication of *Toxoplasma* tachyzoites. In chronic diseases, the depletion of these cells can cause latent toxoplasmosis to reactivate, which may lead to serious complications. As TB's effects on human health have increased lately with *M. tuberculosis* drug-resistant strains emerging [20], the current study estimated *Toxoplasma* seropositivity and related risk factors in TB patients.

^{**} Highly statistically significant *P*< 0.001

Regarding the diagnostic methods used in this study to detect M. tuberculosis, GeneXpert was superior to Ziehl-Neelsen staining and culturing into Lowenstein Jensen medium, in which 80 cases (64.52%) tested M. tuberculosis positive by GeneXpert compared to 79 positive cases by culture (63.71%) and 67 cases (54.03%) by Ziehl-Neelsen staining. The difference in detection rates between the three diagnostic methods may be attributed to the variable sensitivity of different diagnostic methods and technical proficiency among the persons conducting diagnostic procedures. In this study, GeneXpert was used as the gold standard due to its high level of sensitivity and specificity. This method has an increased screening capacity besides requiring minimal bacillary concentrations in the samples for the examination, and the problem of cross-contamination is eliminated due to the selfcontained cartridges [21].

Compared to GeneXpert, Ziehl-Neelsen staining method's sensitivity and specificity were 82.5% and 97.7%, respectively. This finding agrees with the results of Al Olimey et al. [22], who recorded similar sensitivity and specificity for the Ziehl-Neelsen staining method. However, it contradicts the results of Salam et al. [23] which indicated lower sensitivity and specificity. Lowenstein Jensen medium's sensitivity was 97.5%, which is higher than the sensitivity recorded in an earlier study by Kumari et al. [24]. However, our findings are similar to Al Olimey et al. [22] who reported 100% sensitivity for the Lowenstein Jensen medium. These varying results could be the consequence of a variety of causes, like sample processing.

Overall, 39.52% (49/124) of the study participants had Toxoplasma antibodies. Toxoplasmosis is regarded as a serious health issue amongst the Egyptian population, having high seroprevalence levels ranging from 30% among patients with chronic liver diseases [17] to 54% among those with rheumatoid arthritis [16]. In the current study, 51.25% of TB-positive patients also had T. gondii infection. According to various research on this topic, there's a substantial association between infection with T. gondii and M. tuberculosis, and each infection may influence the progression and severity of the other one. tuberculosis Pulmonary severity may exacerbated by concurrent toxoplasmosis, as well as TB may enhance vulnerability to new infections and could contribute to the reactivation of latent

toxoplasmosis [1]. The recorded *T. gondii* seropositivity among TB patients in the present study was less than the reported results of Mashaly et al. [6] (67.4%), Ali et al. [8] (86.2%), Parsaei et al. [25] (71.1%) and higher than that found by Li et al. [26] (17.07%) and Zhao et al. [7] (13.2%). The variations in *T. gondii* infection results between this study and prior research studies could be attributed to varying housing circumstances, economic and social status, climatic circumstances, management systems for cats, eating behaviors of research subjects, and diagnostic strategies, as well as the level of host immunity.

While our findings, as well as those of several other studies, suggested a significant association between TB and toxoplasmosis, it is important to highlight that not all studies have identified this association. Ledru et al. [27] observed no significant relationship between *Toxoplasma* serology and TB-infected patients in Burkina Faso. Similarly, a recent study by Jafari-Shakib et al. [28] in Northern Iran found no significant co-infection between toxoplasmosis and active tuberculosis.

The cytokine IFN-γ has a variety of roles within various components of the immune system. It is essential for the development, maintenance, and regulation of both innate and adaptive immune cells. By activating macrophages, IFN-γ enhances their ability to perform pinocytosis and receptormediated phagocytosis and effectively eliminate mycobacteria and other microbes [29]. Our results recorded high IFN-y levels in TB patients having Toxoplasma infection in comparison to those without Toxoplasma infection. The obtained result indicated that the higher release of IFN-y may be due to the immune system activation by Toxoplasma infection, which might lead to a higher immunological response to TB. It is essential in avoiding T. gondii transmission [30] and has a significant role in TB's pathogenesis [31]. The results obtained are in line with earlier research that revealed high IFN-y levels in Toxoplasma patients [32] and TB patients [33]. It may be necessary to investigate the underlying mechanisms that could explain the high IFN-y levels in TB patients with Toxoplasma infection.

Toxoplasmosis/Tuberculosis co-infection in the present study is significantly associated with some risk factors, including the presence of chronic diseases, taking immunosuppressive drugs, owing pet animals in the house, eating processed meat,

eating improperly cooked meat, consuming improperly washed or unwashed vegetables, and washing hands before eating. The findings of an earlier study done by Mashaly et al. [6] are in agreement with these findings. Existing chronic diseases or taking immunosuppressive drugs probably increase the complications in TB patients. In those patients, T. gondii is regarded as an opportunistic and potentially fatal parasite due to immune breakdown, which might change the course of the disease and induce more severe and frequent complications [34]. In addition, consuming improperly washed vegetables is a significant contributor to T. gondii oocysts dissemination [2]. Regarding this, the probability of acquiring Toxoplasma infection was considerably decreased by salt and detergent washing of vegetables [35].

Human toxoplasmosis is commonly linked to eating raw or improperly cooked meat that contains infected T. gondii tissue cysts. It was proven that Toxoplasma cysts retain infectiousness for 30 days at a temperature of 4 °C [36]. This study showed that raw meat consumption the considerably increases probability Toxoplasma infection in TB patients. Results from previous research support our study's conclusion [37]. Moreover, there was a significant association between having pet animals, especially cats, and T. gondii seropositivity in this research. This conclusion seems to be compatible with findings from another research [38]. This could be caused by frequent contact with cat waste and accidental T. gondii oocysts intake. Additionally, the oocysts could survive in sandy soil for a long time, posing a risk of environmental contamination [39].

Despite the fact that several studies have documented TB and toxoplasmosis coinfection, several aspects remain unclear such as whether toxoplasmosis poses a risk for developing tuberculosis or vice versa, how TB-toxoplasmosis manifests clinically, and the impact of the coinfection disease and how the infections will progress. The study's limitations include the geographic and sample size constraints, which limit the generalizability of the findings. The use of the OnSiteTM Toxo IgG/IgM Combo Rapid Test as the sole diagnostic tool may result in potential false positives or negatives without additional testing. Furthermore, the cross-sectional design does not allow for determining causality or examining the long-term impact of coinfection.

Conclusion

This study found a significant association between Toxoplasmosis and *Mycobacterium tuberculosis* infections, with 51.25% of TB patients being positive for *T. gondii*. Co-infection may worsen TB severity and reactivate latent toxoplasmosis, as indicated by increasing IFN-γ levels. Key risk factors include chronic diseases, immunosuppressive drugs, pet contact, and dietary habits. This gives insight into the importance of earlier identification and managing patients with TB-toxoplasmosis coinfection to avoid any serious complications.

Disclosure of potential conflicts of interest

The authors declared that they have no conflicts of interest.

Funding

The authors didn't receive any funding support

Ethical approval

The study protocol was approved by the institutional review board (IRB) at the Faculty of Medicine, Suez University, Suez, Egypt (Approval Number 111222, Dec 2022). The study was conducted according to the Helsinki Declaration's guidelines in 2013. All participants in the study received enough information about the study's purpose, and informed written consent was obtained from each one after making a voluntary decision to participate while maintaining the confidentiality of their data.

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors' contribution

N.M. El-Sayed and M.E. Ramadan proposed the research idea and the study design, S. A-S. Mahmoud and D. A. Ezzeldin collected the study samples. All authors are equally contributed in laboratory performance of the work, interpreted the results, wrote the manuscript and approved the final version of the manuscript.

References

1- Ifijen IH, Atoe B, Ekun RO, Ighodaro A, Odiachi, IJ. Treatments of Mycobacterium tuberculosis and Toxoplasma gondii with

- selenium nanoparticles. BioNanoScience 2023; 13: 249–277. doi.org/10.1007/s12668-023-01059-4.
- 2- El-Sayed NM, Ramadan ME, Masoud NG. A step forward towards food safety from parasite infective agents, in: Babalola, O.O. (Ed.), Food Security and Safety. Springer, Cham, 2021; pp. 807–832.doi.org/10.1007/978-3-030-50672-8 40.
- 3- Nourollahpour Shiadeh M, Rostami A, Pearce BD, Gholipourmalekabadi M, Newport DJ, Danesh M, et al. The correlation between Toxoplasma gondii infection and prenatal depression in pregnant women. Eur J Clin Microbiol Infect Dis 2016; 35: 1829–1835. doi.org/10.1007/s10096-016-2734-9.
- 4- Moule MG, Cirillo, JD. Mycobacterium tuberculosis dissemination plays a critical role in pathogenesis. Front Cell Infect Microbiol 2020; 10: 65. doi.org/10.3389/fcimb.2020.00065.
- 5- World Health Organization. Tuberculosis fact sheet. 2023. https://www.who.int/newsroom/fact-sheets/detail/tuberculosis (accessed 4th Feb. 2025).
- 6- Mashaly M, Nabih N, Fawzy IM, El Henawy AA. Tuberculosis/Toxoplasmosis co-infection in Egyptian patients: A reciprocal impact. Asian Pac J Trop Med 2017; 10: 315–319. doi.org/10.1016/j.apjtm.2017.03.012.
- 7- Zhao YJ, Zhao YH, Zhang XY, Sun XJ, Liu YQ, Hou YJ, et al. First report of Toxoplasma gondii infection in tuberculosis patients in China. Vector Borne Zoonotic Dis 2017; 17(12): 799-803. doi: 10.1089/vbz.2017.2151.
- 8- Ali EN, Majeed SZ, Kadhem AA, Alubadi AE. Prevalence of toxoplasmosis as coinfection in Iraqi patients infected with tuberculosis. Biomed Res 2019; 30(3): 401-405.

- 9- Vasantham V, Singh G, Jahan A, Saini A, Saini V. Codetection of pulmonary tuberculosis and toxoplasmosis in a pediatric bronchoalveolar lavage specimen: A cytologist's assistance to clinical management. Diagn Cytopathol 2021; 49: E20-E23. doi: 10.1002/dc.24562.
- 10- Agarwal M, Patnaik G, Khetan V, de-la-Torre A. Ocular co-infection with Mycobacterium tuberculosis and Toxoplasma gondii in an immunocompetent patient A case report. Ocul Immunol Inflamm 2022; 30: 1022-1026. doi: 10.1080/09273948.2020.1849738.
- 11- Januarie KC, Uhuo OV, Iwuoha E, Feleni U. Recent advances in the detection of interferongamma as a TB biomarker. Anal Bioanal Chem 2022; 414: 907-921. doi: 10.1007/s00216-021-03702-z.
- 12- Alexander J, Hunter CA. Immunoregulation during toxoplasmosis. Chem Immunol 1998;70: 81-102. doi: 10.1159/000058701.
- 13- Siegel SAR, Cavanaugh M, Ku JH, Kawamura LM, Winthrop KL. Specificity of QuantiFERON-TB Plus, a new-generation interferon gamma release assay. J Clin Microbiol 2018; 56: e00629-18. doi: 10.1128/JCM.00629-18.
- 14- Kang H, Sung N, Lee S, Kim D, Jeon D, Hwang S, et al. Comparison of smear and culture positivity using NaOH method and NALC-NaOH method for sputum treatment. Tuberc Respir Dis 2008; 65: 379-384. doi: 10.4046/trd.2008.65.5.379.
- 15- Zeka AN, Tasbakan S, Cavusoglu C. Evaluation of the GeneXpert MTB/RIF assay for rapid diagnosis of tuberculosis and detection of rifampin resistance in pulmonary and extrapulmonary specimens. J Clin Microbiol 2011; 49(12): 4138-4141. doi: 10.1128/JCM.05434-11

- 16- El-Sayed NM, Kishik SM, Fawzy RM. The current status of Toxoplasma gondii infection among Egyptian rheumatoid arthritis patients. Asian Pac J Trop Dis 2016a; 6: 797-801. doi: 10.1016/S2222-1808(16)61133-7.
- 17- El-Sayed NM, Ramadan ME, Ramadan ME. Toxoplasma gondii infection and chronic liver diseases: Evidence of an association. Trop Med Infect Dis 2016b; 1: 7. doi: 10.3390/tropicalmed1010007.
- 18- Babekir A, Mostafa S, Obeng-Gyasi E. The association of Toxoplasma gondii IgG antibody and chronic kidney disease biomarkers. Microorganisms 2022; 10: 115. doi: 10.3390/microorganisms10010115.
- 19- Soltani S, Tavakoli S, Sabaghan M, Kahvaz MS, Pashmforosh M, Foroutan M. The probable association between chronic Toxoplasma gondii infection and Type 1 and Type 2 diabetes mellitus: A case-control study. Interdiscip Perspect Infect Dis 2021; 2021: 2508780. doi: 10.1155/2021/2508780.
- 20- Allué-Guardia A, García JI, Torrelles JB. Evolution of drug-resistant Mycobacterium tuberculosis strains and their adaptation to the human lung environment. Front Microbiol 2021; 12: 612675. doi: 10.3389/fmicb.2021.612675.
- 21- Gawish M, Mahgoub F, Salah El-Dien I, AbdElkhalek H. Gene Xpert/RIF assay: A new era in rapid detection of pulmonary tuberculosis. Egypt J Med Microbiol 2019; 28: 103-107. doi: 10.21608/ejmm.2019.282439.
- 22- Al Olimey R, AbdElSamie S, Kamel M, Khamis A. Gene Xpert MTB/RIF assay as a new tool for tuberculosis diagnosis and detection of rifampin resistance. Suez Canal Univ Med J 2019; 22: 179-186. doi: 10.21608/scumj.2019.110680.

- 23- Salam D, Rehman S, Munir M, Iqbal R, Saeed S, Khan S. Importance of Ziehl-Neelsen smear and culture on Lewenstein Jensen medium in diagnosis of pulmonary tuberculosis. Pak J Chest Med 2014; 50: 19-31.
- 24- Kumari P, Thakur JK, Kumar P, Kumar R, Parekh D. Comparison of LJ medium and BACTEC MGIT 960 culture system for the diagnosis of tuberculosis. J Clin Diagn Res 2020; 14: DC09-DC13. doi: 10.7860/JCDR/2020/46890.14304.
- 25- Parsaei M, Spotin A, Matini M, Mahjub H, Aghazadeh M, Ghahremani G, et al. Prevalence of toxoplasmosis in patients infected with tuberculosis; a sero-molecular case-control study in northwest Iran. Comp Immunol Microbiol Infect Dis 2022; 81: 101720. doi: 10.1016/j.cimid.2021.101720.
- 26- Li YX, Wei CY, Zhang XY, Duan YH, Zhang PN, Guo MJ, et al. Toxoplasma gondii infection in patients with lung diseases in Shandong province, eastern China. Acta Trop 2020; 211: 105554. doi: 10.1016/j.actatropica.2020.105554.
- 27- Ledru E, Diagbouga S, Ledru S, Cauchoix B, Yameogo M, Chami D, et al. A study of Toxoplasma and Cytomegalovirus serology in tuberculosis and in HIV-infected patients in Burkina Faso. Acta Trop 1995; 59: 149-154. doi: 10.1016/0001-706X(95)00073-N.
- 28- Jafari-Shakib R, Sadeghi A, Majidi-Shad B, Atrkar-Roshan Z, Sharifdini M. Seroepidemiological study on coinfection of toxoplasmosis and active tuberculosis in Northern Iran: A case-control study. J Parasit Dis 2024; 48: 247-252. doi: 10.1007/s12639-024-01657-3
- 29- Gao XF, Yang ZW, Li J. Adjunctive therapy with interferon-gamma for the treatment of pulmonary tuberculosis: A systematic review.

- Int J Infect Dis 2011; 15: e594-e600. doi: 10.1016/j.ijid.2011.05.002.
- 30- Verhelst D, De Craeye S, Dorny P, et al. IFNγ expression and infectivity of Toxoplasmainfected tissues are associated with an antibody response against GRA7 in experimentally infected pigs. Vet Parasitol 2011; 179(1-3): 14-21. doi: 10.1016/j.vetpar.2011.02.015.
- 31- Berns SA, Isakova JA, Pekhtereva PI. Therapeutic potential of interferon-gamma in tuberculosis. ADMET DMPK 2022; 10: 63-73. doi: 10.5599/admet.1078.
- 32- Rudzinski M, Pardini L, Bernstein M, Moré G, Khoury M, Duarte SC, et al. Interferon-γ and IL-10 release assay for patients with ocular toxoplasmosis. Am J Trop Med Hyg 2020; 103: 2239-2243. doi: 10.4269/ajtmh.20-0124.
- 33- Yamauchi M, Kinjo T, Parrott G, Miyagi K, Haranaga S, Nakayama Y, et al. Diagnostic performance of serum interferon gamma, matrix metalloproteinases, and periostin measurements for pulmonary tuberculosis in Japanese patients with pneumonia. PLoS One 2020; 15(1): e0227636. doi.org/10.1371/journal.pone.0227636.
- 34- Wang ZD, Liu HH, Ma ZX, Ma HY, Li ZY, Yang ZB, et al. Toxoplasma gondii infection in immunocompromised patients: A systematic review and meta-analysis. Front Microbiol 2017; 8: 389. doi: 10.3389/fmicb.2017.00389.
- 35- Khabisi SA, Almasi SZ, Zadeh SL. Seroprevalence and risk factors associated with Toxoplasma gondii infection in the population referred to rural and urban health care centers in Zahedan, primary referral level, in southeastern Iran. J Parasitol Res 2022; 2022: 7311905. doi: 10.1155/2022/7311905.
- 36- Tenter AM. Toxoplasma gondii in animals used for human consumption. Mem Inst

- Oswaldo Cruz 2009; 104: 364-369. doi: 10.1590/s0074-02762009000200033.
- 37- Abdelbaset AE, Hamed MI, Abushahba MFN, Rawy MS, Sayed ASM, Adamovicz JJ. Toxoplasma gondii seropositivity and the associated risk factors in sheep and pregnant women in El-Minya Governorate, Egypt. Vet World 2020; 13: 54-60. doi: 10.14202/vetworld.2020.54-60.
- 38- David S, Kela S, Nkup J, Cirfat N. Seroprevalence and risk factors associated with toxoplasmosis among women of childbearing age in Gombe metropolis, Gombe state, Nigeria. Microbes Infect Dis 2023; 4: 681-694. doi: 10.21608/mid.2022.147764.1342.
- 39- CDC. Centers for Disease Control and Prevention. 2024. About toxoplasmosis. Available at: http://www.cdc.gov/toxoplasmosis/about/inde x.html. Accessed February 8, 2025.