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ABSTRACT 

This paper presents a multi-period optimization model for strategic fleet electrification under 

conditions of fuel price volatility, time-limited subsidies, and vehicle performance degradation. 

The model is formulated as a mixed-integer linear program that allows decision-makers to 

determine the optimal timing and scale of electric vehicle acquisitions, balancing operational cost, 

environmental penalties, and investment constraints. Rather than assuming static inputs or single-

period trade-offs, the formulation captures how evolving economic and policy signals shape long-

term replacement strategies. Key features include scenario-based pricing, degradation-adjusted 

fleet capacity, and flexible treatment of emission costs. 

The model is designed to support both theoretical exploration and applied decision-making. It 

can be used with synthetic inputs to evaluate transition behavior under different assumptions. A 

numerical illustration demonstrates how policy design, cost trajectories, and degradation rates 

interact to determine investment timing. The framework is extendable to incorporate stochastic 

vehicle lifetimes, uncertain demand, and mixed-technology fleets. By structuring these 

interdependencies explicitly, the model offers a planning tool that is transparent, adaptable, and 

grounded in the real trade-offs facing fleet operators today. 

Keywords: Fleet Electrification, Multi-Period Optimization, Mixed Integer Linear 
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 INTRODUCTION 

The movement towards electric vehicle fleets is spreading from one side of logistics networks, 

municipal operations, and private mobility systems in reaction to the intersection of economic 

force, technological shift, and regulatory design[1, 2]. Although the environmental justification 

for fleet electrification is generally accepted, the operational and financial issues are still 

complicated. More than just a purchase price comparison versus energy costs from ordinary 

vehicle is replacing them with electrical types[3]. It needs well-coordinated actions over many 

years, where critical parameters such as fuel prices, government support, emissions penalties, and 

vehicle performance are changing, variable and intertwined[4]. 

Companies running fleets in this period of change, must navigate between making long term 

investment decisions and short-term operational requirements[5]. Decisions about when to bring 

on board electric vehicles, how quickly you can depreciate internal combustion assets and how to 

deal with changes in energy costs, are interdependent decisions[6]. They are for part of a closely 

coupled planning problem oriented by capex budgets, service demands, maintenance cycles and 

external policies. In many countries, these decisions are also compounded by expiring scheme 

subsidies or tax credits tied to known previous schedules of expiry, this gives rise to incentives for 

premature of investment in cluster[7-10]. On the other hand, the characteristics of performance of 

electric vehicles give rise to their own contemplations. Unlike traditional vehicles, the operational 

capacity of EVs deteriorates with time and changes the effective size and reliability of the fleet 

because of aging[11, 12]. 

Adding to such choices is the presence of uncertainty. Fuel and electricity prices differ from 

one market to another, and from one period to another, and, as such, are seldom predictable with 

any high degree of confidence[13, 14]. Policy environments are just as fluid; truncation, 

suspension, or radical redesign of incentive programs can be announced at short notice into capital 

planning. In such circumstances, running with static models or short-term projections is not 

enough[15, 16]. What is required instead is a adaptive format in which to assess strategies through 

a fact of time of uncertainness, so much as to onset the cooperation of timing, costing, and 

tradition[17, 18]. 
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This research presents a multi-period optimization model that includes these dynamics in an 

integrated manner. The model is meant to serve as a tool to assist in fleet transition planning over 

time and account for the capital costs, operating expenses, emissions penalties, expiration of 

subsidy, and degradation-adjusted fleet availability. It enables planning under a number of cost 

and policy scenarios, no need for detailed operational information or specialized simulation 

environments. By linking investment decisions to the changing cost-benefit profile, the model 

enables a more informed and flexible route to fleet electrification. 

 LITERATURE REVIEW 

Fleet electrification has been a subject of supporting research on various parallel tracks each 

tackling a different level of the decision-making challenge[19, 20]. A key area of emphasis has 

been creating models that help figure out the optimal schedule and scope for swapping out internal 

combustion engine (ICE) vehicles with electric ones[21, 22]. Early models in this space often 

emphasized total cost of ownership, treating the problem as a static comparison between operating 

cost structures[23-25]. Over time, these approaches matured into formal optimization models that 

incorporated capital constraints, vehicle lifespans, and fleet demand. In many cases, the core 

problem was cast as a variant of the vehicle replacement scheduling problem, with extensions to 

multi-period planning and emissions-based penalties[26, 27]. 

Simulation-based studies have contributed to this discussion by capturing behavioral 

uncertainty and infrastructure constraints[28, 29]. These methods allow for highly detailed 

representation of real-world systems, particularly in cases where vehicle routing, urban access 

restrictions, or charging station availability are of concern. However, simulation models typically 

lack the structural transparency of optimization formulations and are often built around case-

specific assumptions, which limits their transferability. In contrast, optimization-based models—

particularly those built on mixed-integer linear programming—have offered more general 

frameworks that are analytically tractable and suitable for theoretical exploration[29]. 

A second stream of literature has concentrated on how public policies and incentives influence 

fleet transition dynamics[30]. Here, the focus has been on modeling the effects of direct subsidies, 

tax credits, carbon pricing, and regulatory mandates on investment behavior[31, 32]. Some models 

introduce time-sensitive incentives, capturing how declining subsidy programs influence the 
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temporal structure of fleet conversion[33, 34]. Others explore behavioral responses to indirect 

signals, such as emission penalties or congestion pricing schemes[35, 36]. Across these studies, a 

common finding is that policy design—its duration, scale, and predictability—plays a decisive role 

in shaping not only the cost efficiency of transition strategies but also their timing and risk 

exposure[37]. 

Another thread of research has addressed uncertainty, particularly in the form of fuel price 

volatility. These studies model price uncertainty using either probabilistic distributions or discrete 

scenarios, and examine how that uncertainty interacts with fixed investment costs and maintenance 

schedules. In two-stage and multi-stage stochastic programming models, fuel cost scenarios are 

embedded into the structure of the optimization, allowing for adaptive decision-making over time. 

The introduction of energy cost volatility into planning models has significantly improved their 

realism, especially for applications in freight and logistics where energy use comprises a large 

share of operating expense[38, 39]. 

A smaller, but technically rich body of work has focused on the structural properties of 

optimization models applied to fleet planning[40, 41]. These models often draw on classical 

operations research techniques, extending knapsack-type or facility location formulations to 

include time-dependence, emissions, and degradation. Within this stream, there has been growing 

interest in performance degradation of EVs as a modeling parameter, particularly in multi-period 

settings. In these formulations, the aging of assets is not treated as a binary event but as a gradual 

decline in efficiency, introducing intertemporal trade-offs that mirror asset depreciation in other 

infrastructure planning domains[42, 43]. 

Despite the range and depth of existing studies, few models integrate all four key dimensions—

multi-period replacement, policy expiration, performance degradation, and fuel price 

uncertainty—into a single formulation that remains solvable without simulation. Most models 

emphasize one or two aspects at the expense of the others. For example, those that include detailed 

emissions policy effects often assume fixed fleet performance, while those modeling degradation 

tend to use deterministic pricing. This lack of integration leaves a methodological space for models 

that can represent long-term transition logic without sacrificing analytical clarity. That space is the 

one addressed in the current study. 
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 MATHEMATICAL MODEL 

The decision to transition a vehicle fleet from internal combustion engine (ICE) vehicles to 

electric vehicles (EVs) is no longer simply a matter of upfront cost. It involves a complex trade-

off between investment timing, operating costs, policy incentives, energy price volatility, and 

environmental impact. To address this, a multi-period optimization model that captures these 

interdependent factors in a structured and analytically tractable form were developed. The model 

is designed to support long-term planning by fleet operators who must navigate uncertain 

economic and regulatory conditions while maintaining a functional and efficient vehicle fleet at 

all times. 

This model is formulated as a mixed-integer linear program (MILP) spanning multiple discrete 

time periods. Each year (or period) is treated as a stage in which fleet decisions are made—

specifically, how many EVs to purchase, how many ICE vehicles to retire, and how to balance the 

fleet composition to meet operational requirements. The model does not assume access to high-

resolution real-world data. Instead, it is built on synthetically defined parameters and scenario-

based planning, which makes it not only implementable without extensive datasets, but also 

generalizable across contexts. 

The model begins with two foundational sets. Let 𝑇 be the set of planning periods, indexed by 

𝑡, and 𝑆 the set of discrete future scenarios, indexed by 𝑠. Each scenario represents a distinct 

pathway of fuel and electricity prices, policy support levels, and environmental penalties. The use 

of discrete scenarios allows us to incorporate uncertainty without resorting to stochastic 

simulation, which aligns with the structure of this study. 

To describe the economic and operational environment, the following parameters were 

defined. The purchase cost of an EV in year 𝑡 is denoted 𝐶𝑡
𝑒𝑣, while 𝐶𝑡

𝑖𝑐𝑒 reflects the cost associated 

with retiring an ICE vehicle, which may include resale losses or scrappage costs. Each vehicle type 

incurs an annual maintenance cost—𝑀𝑡
𝑒𝑣 for EVs and 𝑀𝑡

𝑖𝑐𝑒 for ICEs. The per-unit cost of fuel and 

electricity under scenario 𝑠 in period 𝑡 are given by 𝐹𝑡,𝑠 and 𝐸𝑡,𝑠, respectively. To account for 

environmental impact, ICE vehicles are penalized through a fixed per-unit emissions cost 𝜆. 

Government subsidies for EV purchases are included as time-dependent values 𝑆𝑡, which may 

decrease or expire over the planning horizon. Finally, the operational requirement 𝐷𝑡 specifies the 

minimum total fleet size needed in each period to maintain service levels. 
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The model introduces several decision variables. The number of EVs acquired in year 𝑡 is 

denoted 𝑥𝑡
𝑒𝑣, and the number of ICE vehicles retired in the same year is 𝑥𝑡

𝑖𝑐𝑒. The total number of 

EVs and ICEs available and operational in period 𝑡 are represented by 𝑦𝑡
𝑒𝑣 and 𝑦𝑡

𝑖𝑐𝑒, respectively. 

Notably, electric vehicles experience efficiency degradation over time—a detail that is often 

omitted in simpler models but plays a critical role in planning. This degradation is captured through 

a parameter 𝛿, representing the annual reduction in the effective capacity of EVs as they age. 

The model seeks to minimize the total expected cost across all scenarios, combining 

acquisition, maintenance, energy consumption, and emissions. Subsidies are treated as direct 

reductions in EV purchase costs. The objective function is defined as: 

min∑𝑝𝑠
𝑠∈𝑆

∑[(𝐶𝑡
𝑒𝑣 − 𝑆𝑡) ⋅ 𝑥𝑡

𝑒𝑣 + 𝐶𝑡
𝑖𝑐𝑒 ⋅ 𝑥𝑡

𝑖𝑐𝑒 +𝑀𝑡
𝑒𝑣 ⋅ 𝑦𝑡

𝑒𝑣 +𝑀𝑡
𝑖𝑐𝑒 ⋅ 𝑦𝑡

𝑖𝑐𝑒 + 𝐸𝑡,𝑠 ⋅ 𝑦𝑡
𝑒𝑣 + 𝐹𝑡,𝑠 ⋅ 𝑦𝑡

𝑖𝑐𝑒

𝑡∈𝑇

+ 𝜆 ⋅ 𝑦𝑡
𝑖𝑐𝑒] 

This formulation reflects the reality that operational decisions cannot be made in isolation from 

economic and environmental constraints. It also recognizes that timing matters—early investment 

in EVs may be financially suboptimal if subsidies are expected to rise or energy costs are uncertain. 

To ensure feasibility, the model imposes a series of constraints. First, the fleet must always 

meet or exceed the operational demand: 

𝑦𝑡
𝑒𝑣 + 𝑦𝑡

𝑖𝑐𝑒 ≥ 𝐷𝑡∀𝑡 ∈ 𝑇 

Second, the accumulation and degradation of EVs over time is modeled as: 

𝑦𝑡
𝑒𝑣 =∑𝑥𝜏

𝑒𝑣

𝑡

𝜏=1

⋅ (1 − 𝛿)𝑡−𝜏∀𝑡 ∈ 𝑇 

This equation ensures that older EVs contribute progressively less to the available fleet, 

reflecting reduced range or performance. For ICE vehicles, the sub-fleet evolves through 

retirements: 

𝑦𝑡
𝑖𝑐𝑒 = 𝑦𝑡−1

𝑖𝑐𝑒 − 𝑥𝑡
𝑖𝑐𝑒∀𝑡 > 1; 𝑦1

𝑖𝑐𝑒 = 𝑦
ˉ 𝑖𝑐𝑒 

Initial ICE fleet size 𝑦
ˉ 𝑖𝑐𝑒 can be defined as a known constant. Optional constraints can be 

introduced to cap the number of purchases or retirements in a given year, representing budgetary 

or logistical limits. 

All decision variables are non-negative, and integer constraints are applied to acquisition and 

retirement decisions: 
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𝑥𝑡
𝑒𝑣, 𝑥𝑡

𝑖𝑐𝑒 ∈ 𝑍≥0, 𝑦𝑡
𝑒𝑣, 𝑦𝑡

𝑖𝑐𝑒 ≥ 0 

The model provides a flexible but rigorous structure for analyzing strategic fleet transitions 

under policy and cost uncertainty. Unlike simulation-based approaches, which often rely on large 

datasets and parameter fitting, this formulation offers transparency and interpretability. All inputs 

can be generated synthetically within reasonable bounds, making the model suitable for theoretical 

exploration, sensitivity analysis, or policy testing without reliance on proprietary data. 

 THEORITICAL NALAYSIS 

Understanding the theoretical features of the model is also very important in terms of thinking 

about its computation structure but it is also important for the justification of its use in any 

decision-making situation in which one wants to apply interpretability and analytical rigor. In a 

slight misnomer as based on the model family is designed - mathematically - to be solveable using 

standard mixed-integer linear programming (MILP) techniques, the internal construction of the 

model captures a far more profound set of economic and mathematical relationships. This section 

explores the model’s computational complexity, guarantees of feasibility, structural behavior 

under parameter changes, and sensitivity to its economic drivers. 

The first question any operations model must address is its computational tractability. In its 

general form, this model is classified as NP-hard. To see this, consider a simplified case with a 

single planning period, fixed costs, and deterministic inputs. Even in this reduced version, the fleet 

operator must choose a subset of vehicles to purchase under a budget constraint, with the goal of 

minimizing total cost while satisfying a service-level requirement. This structure is mathematically 

equivalent to the 0-1 knapsack problem, where each vehicle represents an item with associated 

cost and contribution to fleet coverage, and the decision is binary — to purchase or not. As the 

knapsack problem is known to be NP-complete, the simplified version of our model inherits its 

hardness. The full model, which extends across multiple periods, adds temporal dependencies, 

scenario-based branching, and integer constraints. These added dimensions place the model 

squarely within the class of NP-hard optimization problems, both in theory and practice. 

Despite its hardness, the model remains usable and scalable for practical instances. MILP 

solvers are highly optimized for problems of this structure, and the number of variables and 

constraints grows linearly with the planning horizon and scenario count. More importantly, the 

model is guaranteed to admit a feasible solution under very weak assumptions. If the initial ICE 
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fleet size is sufficient to cover the entire demand in the first period and no mandatory retirement 

constraints are imposed, then a do-nothing strategy — where no EVs are purchased and only 

existing ICE vehicles are used — is trivially feasible. This fallback solution ensures that the model 

will not fail due to infeasibility, which is critical in strategic planning scenarios where decision-

makers may test multiple future assumptions. 

One of the most informative features of this model is how it reacts to changes in its key 

parameters. The relationship between fuel cost and optimal replacement timing is particularly 

illustrative. If fuel prices rise over time while electricity costs remain flat, the model gradually 

shifts investment preference toward earlier acquisition of electric vehicles. This is not merely a 

computational outcome, but a direct result of the convex cost structure encoded in the objective 

function. Since ICE vehicles incur higher variable costs in high-fuel-price scenarios, their 

continued operation becomes suboptimal relative to EVs, whose costs are largely fixed once 

purchased. As a result,  a monotonic tendency was observed which higher future fuel prices tend 

to pull the EV investment curve forward in time. 

A similar logic applies to subsidy policies. When the subsidy 𝑆𝑡 is scheduled to decrease or 

expire after a known number of periods, the effective net cost of EVs rises in later years. In 

response, the model adjusts by favoring earlier purchases in order to lock in more favorable 

conditions. This intertemporal substitution of investment reflects basic economic intuition, but 

here it is formally embedded in the model’s optimal structure. The same principle holds in reverse, 

if future subsidies are expected to increase — for example, under delayed policy implementation 

— the model may delay purchases to benefit from greater incentives. 

The model also takes into account an important physical feature of electric vehicles which is 

performance decay. By adding a degradation rate δ the model adjusts the contribution of aging 

effect on the operational fleet of EVs. This feature enhances the planning logic with layer of 

realism. If degradation is low, the model will probably prefer early bulk purchases as the EVs will 

maintain barring operational value over long. If deterioration is high the model will instead pace 

buying in, keeping a younger common fleet in order to maintain effective capacity. This generates 

a normal cycle of investment to reflect real-world fleet asset replacement patterns. 

Another interesting analytical component are the emission fees λ, which acts as soft constraint 

to use of ICEs. Differing from fixed costs, λ is a linear function of ICE usage. As this parameter 

increases, the overall cost of running on ICEs also increases – not due to technical capacity, but 
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because of environmental policy issues. The model’s result is easy to guess. High λ numbers bend 

the trade-off towards electrification, even when electricity is not significantly cheaper than fuel. 

Thus, the emission cost becomes a policy handle within the optimization — way for regulators to 

steer decision makers toward more sustainable choices without dictating fleet changes. 

These properties show that the model is computationally robust and analytically meaningful. 

It intuitively adapts to changes in the economy and environment and provides more value than just 

the lowest possible costs. The trade-offs that it identifies are all universally known in the industry: 

timing vs price, maintenance vs degradation, policy support vs operational flexibility, and they are 

all critical to the strategic challenge of electrification. By codifying these relationships, the model 

represents a framework in which theory exploration and decision practice can occur. 

 NUMERICAL ILLUSTRATIONS 

The proposed model undergoes numerical evaluation for internal behavior analysis through a 

five-year planning simulation with synthetic data. The analysis aiming to determine how different 

cost patterns and policy programs and degradation settings affect optimal fleet selections occurs 

under multiple economic circumstances. The illustrative case assumes a fixed minimum 

operational demand of five vehicles per year and a maximum allowable fleet size of fifteen. The 

initial ICE fleet comprises ten vehicles, with no EVs at the outset. 

Table 1 summarizes the primary input data used across the five-year horizon. The purchase 

cost of an electric vehicle is held constant at $40,000, while the retirement of each ICE vehicle is 

assigned a fixed cost of $5,000. EVs are assumed to incur a lower maintenance cost ($800 

annually) compared to ICE vehicles ($1,200 annually). A degradation rate of 5% per year is 

applied to the effective operational capacity of EVs. Subsidies begin at $8,000 per EV in year one 

and decrease linearly to zero by year five. An emissions penalty of $1,000 per ICE vehicle per year 

is also included. 

Table 1. Synthetic Input Data Across the Planning Horizon 

Year 

Fleet 

Demand 

EV 

Purchase 

Cost 

ICE 

Retirement 

Cost 

EV 

Maintenance 

ICE 

Maintenance 

EV 

Subsidy 

EV 

Degradation 

Rate 

Emissions 

Penalty 

(λ) 

1 5 40,000 5,000 800 1,200 8,000 5% 1,000 

2 5 40,000 5,000 800 1,200 6,000 5% 1,000 

3 5 40,000 5,000 800 1,200 4,000 5% 1,000 
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Year 

Fleet 

Demand 

EV 

Purchase 

Cost 

ICE 

Retirement 

Cost 

EV 

Maintenance 

ICE 

Maintenance 

EV 

Subsidy 

EV 

Degradation 

Rate 

Emissions 

Penalty 

(λ) 

4 5 40,000 5,000 800 1,200 2,000 5% 1,000 

5 5 40,000 5,000 800 1,200 0 5% 1,000 

To reflect cost uncertainty, three discrete fuel price scenarios are defined, while electricity 

prices remain stable. Table 2 presents the scenario-based unit costs for fuel and electricity. 

Table 2. Energy Prices Across Fuel Price Scenarios (USD per unit) 

Year Fuel Price (Low) Fuel Price (Medium) Fuel Price (High) Electricity Price 

1 1.20 1.50 1.80 0.20 

2 1.30 1.60 2.00 0.21 

3 1.40 1.80 2.30 0.22 

4 1.50 2.00 2.60 0.23 

5 1.60 2.20 2.90 0.24 

In the medium fuel price scenario, the optimal strategy initiates EV adoption in year two. The 

subsidy is still significant at that stage, and the expected rise in fuel cost begins to outweigh the 

residual value of operating ICE vehicles. The model recommends spreading EV acquisition across 

years two to four, completing most of the transition before the subsidy expires. ICE retirements 

occur in parallel, beginning modestly in year two and accelerating as the EV fleet becomes 

sufficient to meet demand. 

Under the high fuel price scenario, early transition becomes more attractive. EV purchases 

begin in year one, coinciding with both the highest available subsidy and the earliest signs of 

operational fuel cost divergence. The fleet becomes predominantly electric by year three, as the 

model shifts decisively away from ICE operation to avoid escalating fuel and emissions penalties. 

In contrast, the low fuel price scenario delays the shift toward electrification. ICE vehicles 

remain economically viable throughout the first half of the horizon. The model postpones EV 

purchases until year three and completes the transition more gradually. This slower adoption path 

results in lower capital expenditures early on, but higher cumulative fuel and emissions costs in 

later years. 

The example also supports structural sensitivity analysis. When the emissions penalty 𝜆 is 

increased from $1,000 to $2,000, the model responds by accelerating ICE retirement and 

advancing EV investment. Likewise, lowering the EV degradation rate from 5% to 2% leads to 
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earlier bulk purchasing, as the longer effective lifespan of each vehicle improves the return on 

investment. Extending the subsidy window beyond year five causes the model to smooth out the 

acquisition pattern, deferring some purchases to later periods where cost savings are still available. 

These responses are consistent with the analytical insights discussed earlier and demonstrate 

that the model does not merely react to parameter changes but internalizes them in structured, 

interpretable ways. Each shift in timing, quantity, or composition is traceable to an underlying 

change in cost-benefit balance, validating the model’s function as a decision-support tool under 

uncertainty. 

 MANAGERIAL INSIGHTS 

The model developed in this study does more than offer a numerical solution to a constrained 

optimization problem. It provides a structured way to understand how real-world decisions in fleet 

electrification evolve under economic pressure, regulatory intervention, and technological 

limitations. Numerous direct observations stem from the model structure which provides useful 

insights for decision makers who handle fleets or construct public incentive programs and conduct 

market policy forecasts. 

The main emphasis in this situation centers on timing. The objective function structure and 

subsidized price decrements and predicted fuel price swings establish an economic balance 

between implementing electric vehicles sooner or later. Economical advantages occur when 

incentives provide upfront benefits during periods where future fuel expenses are anticipated to 

rise so early investments seem favorable regardless of increased short-term funding needs. The 

same decision-making process should be applied between upgrading purchases when EV 

performance begins to deteriorate fast because the cost structure stays stable. The model 

demonstrates these intertemporal decision stresses in a transparent way since subtle external 

condition changes result in shifting optimal purchase timing. 

The model introduces EV performance degradation as an important variable and generates 

predictable patterns in related investment decisions despite its early planning omission in industry 

practice. A minimal product degradation level drives the model toward choosing extensive early 

purchases. When vehicle deterioration rates rise into the higher range the fleet management 

strategy shifts to delayed and restrained purchasing which extends vehicle procurement duration 
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to hold a youthful well-performing vehicle collection. The management approach follows the same 

patterns observed in industries with both high capital investments and uncertain asset lifespans. 

The analysis indicates that organizations should base their EV acquisitions through financial 

rewards in combination with scarce real-world fleet performance information that modern markets 

presently lack. 

The approach demonstrates how emissions penalties serve as incentives instead of absolute 

limits which affect behavior. The emissions parameter functions as an absorbed cost between 

operators and regulators which serves as a motivational incentive for quick ICE vehicle 

replacement. High levels of the cost result in operators making decisive changes to their energy 

systems with only small increases in the penalty regime. The model allows operators to continue 

using ICE vehicles during periods when the penalty level remains low. The variable response 

pattern generates a mechanism that allows regulators to shape fleet results while avoiding stringent 

regulations. Incentive design approaches do not require absolute binary force to be competent in 

their results. 

The method of subsidizing plays a similar impact on transitioning. The model allocates its 

investments within specified time frames of incentive availability when those incentives have clear 

expiration dates. The concentration of procurements happens during the subsidy period thus 

creating strain on charging infrastructure networks and supply chain systems. Gradual subsidy 

reductions through time show better results for operational flexibility while reducing costs during 

the transitional phase. The definable form of subsidy programs significantly impacts policy 

outcomes but achieves maximum effectiveness when policy stability also exists. Lack of extended 

certainty causes the model to either aggressively invest with elevated risks or to postpone 

everything which produces operational inefficiencies in both investment stages. 

Among all external economic factors fuel price volatility stands out as the most perceivable 

element that significantly impacts the model outputs. The ongoing price increases of fuel across 

various scenarios push ICE operation costs toward amounts beyond nominal maintenance and 

depreciation levels. The combined economic pressure generates additional reasons to choose 

electricity even if electricity prices show mild fluctuation. This sensitivity is not linear. The model 

outputs show challenging boundary conditions due to which minor adjustments in fuel costs will 
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not affect the investment timeline substantially. Past this particular threshold the transformation 

strategies experience sudden and significant changes in their makeup. The inflection pattern allows 

both operators and analysts to easily identify cost conditions that force strategy reevaluation. 

One significant feature of the model involves structural sensitivity which produces 

synchronized modifications that affect numerous decision variables when altering input 

parameters. A modification in the degradation rate affects every aspect of the retirement and 

acquisition operations and operational equilibrium throughout the complete time span. Fleet 

decisions demonstrate integrated behavior through coordinated effects because an analytical 

framework expresses these logical connections mathematically. 

The model behaviors show that the system operates under economic boundaries while being 

directed by the ordering and nature of uncertainty. The system reaches its cost minimum point 

when a dynamic adjustment process is used to adapt to the changing conditions that surround 

decisions. The parameters provide insufficient information to determine what represents the best 

choice. These components of fuel trends, policy shapes, degradation profiles and emission 

penalties determine together the decision maze through their combined effects. The model creates 

an adaptable visual representation showing how each variable distributes across the area it depicts.  

 CONCLUSION and FUTURE WORK 

Planning the shift from the traditional to electric cars fleet is no longer about separate cost 

benefit analysis. It is evolved into complex decision-making process from the meter of timing, 

uncertainty, policy design, and operational reliability. The model investigated in this paper is the 

model that directly addresses that complexity, providing a mathematical structure that enables the 

all these influencing factors to be taken into account at the same time rather than in isolation. Its 

power is in its ability to grab the conditions that change character fleet management over the 

longer-term—how much to invest, but when, and under which of conditions. 

Through integrating the application of scenario-based pricing, variations-aware execution 

modelling, pollution beating specifics and time-sensitive incentives for the policy, the framework 

designs a place were real world constraint and strategic operations crossroads. The model is 

undeveloped to any virtue apparatus or geography, which donations to its relevance in both 

theoretical and practical contexts. It offers a straightforward structure for academic researchers to 

expose temporally distant resource allocation under uncertainty. For practitioners it is a tool 

enabling strategy design be tested without having to rely on full data or unrealistic assumptions. 
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Also, several Appendices can develop from this basis. Introducing stochastic representations 

of vehicle lifetimes, as an example, is a way to better represent uncertainty around asset 

performance and failure rates. Including uncertain or time-varying demand may more accurately 

model the operational issues faced by logistics networks or public transportation systems, in which 

capacity needs are not fixed. A possible extension would be to simulate mixed fleets that include 

not only BEVs but also other alternatives, like hydrogen fuel cell ones, with mileage costs and 

infrastructure required different from those of BEVs. 

All of these extensions will require extra panache, but none would dismantle the basic 

structure. This current formulation was intended to allow instead for layers to be feasible to go on 

without rewriting the core logic of it.  That flexibility makes it well-suited for future work in both 

the academic and policy-facing dimensions of transport planning. 
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