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Abstract— Digital videos are among the most prevalent types of 

multimedia in everyday life. They are extensively shared on social 

media channels like Facebook, Instagram, WhatsApp, and 

YouTube via the Internet. The rapid advancements in artificial 

intelligence (AI), machine learning (ML), and deep learning (DL) 

have led to the development of sophisticated techniques and tools 

for multimedia manipulation. These technological innovations 

have facilitated the creation of falsified digital images and videos. 

Consequently, detecting these manipulated digital media has 

become a critical concern, necessitating a thorough examination of 

current forgery detection methodologies. Our extensive survey 

categorizes these methodologies across three visual, audio, and 

multimodal audio-visual domains. The survey broadly examines 

deepfake detection strategies, with a particular emphasis on 

applying recent deep learning techniques, specifically large vision 

models (LVMs). It includes an in-depth comparative analysis of 

various deep learning approaches, focusing on LVMs, and 

demonstrates their superior performance relative to earlier 

techniques. Multiple metrics and datasets support this analysis. 

Additionally, it offers new solutions and guides future research in 

multimodal deepfake detection by exploring new dimensions of 

video manipulation, such as text overlays and motion dynamics. It 

also highlights the growing importance of expanding the role of 

LVMs and underscores the importance of developing 

comprehensive and diverse datasets to enhance the robustness and 

validation of detection techniques. 

Index Terms— Deepfakes, Audio-Visual Deepfake Detection, 

Large Vision Models (LVMs), Convolutional Neural Networks 

(CNNs), Transformers, Vision Transformer (ViT), Voice 

Conversion, Mel Frequency Cepstral Coefficients (MFCC) 

I. INTRODUCTION 

igital video is characterized by a series of images that 

have been captured by a digital camera sometimes in 

conjunction with an audio track and possible additional data 

dimensions. Users are increasingly using multimedia content in 

their daily lives with a strong prevalence of digital video. 

Surveillance cameras, now commonly deployed throughout 

offices and homes and in public areas, have become a valuable 

enhancement to safety and security efforts. Video has also 

become a common source of evidence in legal cases in a in a 

number of countries. However, the availability of editing 

software    that   incorporates   advanced   algorithms  and  signal 

processing available on most modern smartphone devices has 

made it possible for individuals to also create false (or 

modified) digital images and video content for YouTube and 

social media purposes. Many of these popular editing 

applications are based on older practices involving algorithm 

creation by hand and analyzing signals on a case-by-case basis. 

More recently, with the evolution of new neural network 

architectures, comes the introduction of better methods known 

as ”deepfake tools,” that rely on deep learning to perform more 

complex and advanced changes to original digital media. 
 

 

Fig. 1: A chart depicting the annual percentage distribution of Artificial 

Intelligence (AI) deepfake tools creation. 

As shown in Figure 1, the research by humanorai [1], which 

examines over 30 deepfake tools, illustrates a significant 

evolution from 2015 to 2023. Initially, there was minimal 

development, with only 3.3% of tools emerging between 2015 

and 2017. However, by 2023, there was a notable increase, with 

60% of these tools appearing during that period. This trend 

highlights that most known deepfake tools were developed 

during 2023. 

The proliferation of various deepfake generation techniques 

has  resulted   in   significant   societal   challenges,  notably  the 

dissemination of misinformation. This phenomenon distorts 

reality and undermines the dissemination of accurate 
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information. 

In this survey, we conduct a comprehensive analysis of 

deepfake detection techniques across visual, audio, and 

multimodal audio-visual domains, with a particular focus on the 

advanced capabilities of Large Vision Models (LVMs). The 

literature reviewed for this study was sourced from prominent 

researches including Google Scholar, IEEE Xplore, and 

PubMed, covering studies published from 2019 to 2024. These 

models exhibit significant advantages over traditional deep 

learning methods, primarily due to their improved scalability, 

ability to recognize complex visual patterns, and superior 

performance with extensive datasets. While previous 

approaches often faced challenges in addressing the intricacies 

of sophisticated deepfake techniques, LVMs utilize advanced 

neural architectures that enhance their capacity to distinguish 

between genuine and synthetic media. This study highlights the 

research gap in current detection methodologies, underscoring 

the need for a deeper exploration of how LVMs can be 

harnessed to improve the effectiveness and accuracy of 

deepfake detection. 

In our survey, we also highlight significant datasets relevant 

to deepfake detection across various domains, including visual, 

audio, and multimodal audio-visual categories, such as 

DeeperForensics-1 [2], ASVspoof 2021 [3], and FakeAVCeleb 

[4]. These datasets are characterized by their size, diversity, and 

the types of manipulations involved, providing a solid 

foundation for training and validating detection models. 

 

Fig. 2: Various Deep Learning Architecture Types. 

Figure 2 illustrates that Convolutional Neural Networks 

(CNNs), Recurrent Neural Networks (RNNs), and 

Transformers are prominent deep learning techniques that are 

being increasingly employed for both the generation and 

detection of deepfakes. 

CNN is a well-founded deep learning architecture that is 

optimized for the tasks of image classification and image 

processing. CNN contains multiple layers such as convolutional 

layers, pooling layers, and fully connected layers. Notable 

applications of CNNs include architectures such as ResNet [5], 

VGG [6], Xception [7], and DenseNet [8], each of which has 

been designed to improve performance and accuracy in various 

visual recognition tasks. 

The main advantage of RNN is its ability to handle sequential 

or temporal data through the retention of information over time. 

The LSTM (Long Short-Term Memory) [9] model was 

developed to mitigate the longstanding vanishing gradient 

problem in RNN architectures, where memory cells and gating 

mechanisms allow LSTMs to effectively model dependencies 

across long sequences. GRU (Gated Recurrent Unit) [10] is a 

simplified version of an RNN that, like LSTM, employs gating 

mechanisms. 

Transformers have been instrumental in modeling long- 

range dependencies in sequence data and were originally 

applied in Natural Language Processing (NLP). Since their 

inception in NLP, they have been adapted for vision tasks such 

as Vision Transformers (ViTs) [11], which enable the 

implementation of self-attention mechanisms to proportionally 

weight the importance of different spatial locations in input 

images. The Swin transformer [12], which can be classified as 

a ViT, is specifically able to model at multiple scales and with 

a complexity that is linear as an input image grows in size. 

Cumulatively, these aspects make the Swin transformer very 

powerful for tasks related to image classification and detection.  

Following the discussion of prominent deep learning 

architectures, we will now explore LVMs and their impact on 

deepfake detection. 

An LVM is an end-to-end Artificial Intelligence system 

created for handling, investigating, and correctly appreciating 

vision content like images or videos. These models are the 

visual equivalents of Large Language Models (LLMs) such as 

BERT [13] and GPT-4 [14], which have been designed to 

understand human language and generate it. Like the LLMs, 

LVMs hold many parameters and can therefore learn complex 

patterns from large-scale datasets. LVM development has 

greatly felt the impacts of LLM success. 

LLMs have demonstrated their capacity to scale by 

processing larger datasets with complex architecture and 

training routines. This success has prompted similar 

mechanisms in the visual domain; LVMs have adapted these to 

visual data and are informed by deep learning methods 

developed for the LLMs. 

The LVMs exploit transformer models in their architecture 

to leverage their ability, as initially demonstrated in 

transformers, to capture long-range patterns in visual data. 

Figure 3 highlights several prominent examples of LVMs, 

such as the Swin Transformer [12], CLIP (Contrastive 

Language–Image Pretraining) [15], Vision Transformer (ViT) 

[11], and DALL-E [16]. 

Our paper focuses on LVMs that are especially effective in 

deepfake detection such as Vision Transformer (ViT) and Swin 

Transformer, and organizes the research into three primary 

categories: 

• Visual-based deepfake detection 

• Audio-based deepfake detection 

• Multimodal audio-visual-based deepfake detection 
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Fig. 3: Prominent examples of LVMs. 

The paper’s structure is as follows: Section II focuses on 

deepfake generation and detection based on visual cues. Section 

III covers the audio-based generation and detection of 

deepfakes. In Section IV, we take a comprehensive approach by 

discussing the detection of deepfakes that utilize both audio and 

visual elements, reflecting the multimodal nature of 

contemporary deepfake creations. Subsequently, Section V 

provides an in-depth review of commonly utilized datasets in 

the field of deepfake detection, showcasing their importance in 

training and validating detection models. In Section VI, we 

engage in a comparative analysis of various detection models, 

highlighting the aspects that demonstrate the superiority of 

LVMs over traditional deep learning techniques. This section 

aims to elucidate the reasons behind the enhanced performance 

of LVMs in deepfake detection. Finally, Section VII concludes 

the paper by summarizing our findings and proposing future 

research directions, highlighting the ongoing challenges and 

opportunities in the evolving landscape of deepfake detection. 

II. VISUAL-BASED DEEPFAKE DETECTION 

This section reviews various approaches employed in the 

identification of fake images and videos, focusing particularly 

on advanced deepfake detection techniques that utilize LVMs. 

It analyzes the methods for both the generation and detection of 

deepfake images and videos. 

Generative Adversarial Networks (GANs) [17], though not 

classified as LVMs, remain the leading technique for generating 

synthetic images and videos after being trained on datasets. In 

addition to simply swapping faces, GANs can also swap faces 

and modify facial expressions while synchronizing lip 

movements with audio. A GAN consists of two major parts: a 

generator and a discriminator. The generator acts on data much 

like a decoder by generating synthetic data from random noise 

or latent representations. The discriminator also functions in the 

learning process but does not simply generate the audio; it tries 

to label the data as fake or real. Therefore, the discriminator’s 

role is to evaluate the validity and authenticity of the generated 

data in differentiating real from fake samples. Through the 

adversarial process, the generator consistently improves its 

ability to generate realistic outcomes, while the discriminator 

simultaneously improves its ability to invalidate fakes from the 

real data. In reality, GANs are usually used for generation 

purposes rather than detection.  

An effective LVM for visual deepfake detection is the 

Convolutional Vision Transformer (CViT), which combines 

CNNs for feature extraction with Vision Transformer [18]. This 

approach adeptly manages complex data relationships, 

facilitating the identification of deepfakes. Deressa Wodajo et 

al. introduced this approach for identifying deepfake videos. 

The CViT model comprises two main components: feature 

learning (FL) and Vision Transformer (ViT). 

 

Fig. 4: The Framework of CViT for Visual Deepfake Detection [18]. 

Like a VGG structure without fully connected layers, the FL 

component extracts facial features from frames for subsequent 

analysis rather than classification. 

The ViT component processes the feature maps extracted by 

FL. These maps are divided into seven patches and then 

embedded into a linear sequence of size 1 x 1024. Position 

embeddings are added to maintain spatial information. ViT 

utilizes a transformer with an encoder, an MLP (Multilayer 

Perceptron) block for feedforward operations, and a softmax 

layer for classification (real vs. fake). Notably, unlike the 

original transformer, ViT lacks a decoder. 

The authors curated their dataset, dividing 162,174 images 

into training (112,378), validation (24,898), and test (24,898) 

sets with a ratio of 70:15:15. Both authentic and fake classes are 

balanced across all sets. CViT achieved high prediction 

accuracies: 91% on the FaceForensics++ dataset and 87.25% on 

the DFDC dataset during validation, with a 91.5% accuracy on 

the FaceForensics++ dataset during evaluation. 

Earlier techniques have utilized deep learning architectures, 

including CNNs and RNNs, for detecting visual deepfakes. 

For example: 

• The CNN-based model SCnet, introduced in [19], 

effectively captures forensic features using a gradually 

hierarchical stack of convolutional layers. 

• LSTM networks were incorporated into hybrid CNN- 

LSTM models that utilized optical flow features for 

improved accuracy in video deepfake detection [20]. 

• The RCN model [21] uses CNNs and GRU cells to track 

temporal changes in video frames, leading to better 

recognition of altered faces. 

III. AUDIO-BASED DEEPFAKE DETECTION 

In audio synthesis, we begin by enumerating the deepfake 

techniques used to produce fake recordings. 

1) Voice Conversion: Using artificial intelligence, this 
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method makes one person’s voice sound like another. 

Gender-specific speech transformations are possible, for 

instance, without the need for the target speaker’s voice 

data, thanks to AI models that can change a male voice to 

sound female or vice versa [22]. 

2) Text-to-Speech (TTS): This technique uses sophisticated 

deep learning models to produce spoken words from 

textual input. For instance, Google’s WaveNet exhibits 

notable progress in TTS technology by generating 

remarkably lifelike speech synthesis from text [23]. 

3) Speech Synthesis with Emotion: Using this technique, 

artificial speech with particular emotional overtones is 

produced. To meet the contextual requirements of the 

message, it is conceivable, for example, to produce 

synthetic speech that can convey emotions like joy, 

despair, or rage [24]. 

Deepfake audio detection techniques fall into three main 

categories: waveform-based, image-based, and feature-based 

techniques. 

Feature-Based Approaches: They rely on extracting 

features from audio transformations. These are used to extract 

both long-term and short-term features, such as Constant Q 

Cepstral Coefficients (CQCC) or Mel Frequency Cepstra 

coefficients (MFCC), which is shown in Figure 5. Hassan et al. 

[25] combined RNNs and the short-term spectrum 

characteristics in for detection. 

Image-Based Approaches: these use computer vision 

algorithms to analyze audio spectrograms or mel-spectrograms 

as shown in Figure 5. Bartusiak et al. applied CNNs and 

transformer to normalized grayscale spectrograms for detection 

[26]. 

Waveform-Based Methodologies: These directly pass the 

raw audio waveform to deep neural networks. One hypothesis, 

also holds among researchers is shallow networks detect small 

artifacts and deep networks capture high-level features [27]. 

TSSDNet, where the ResNet-like and Inception blocks were 

presented alternatively [28]. 

After discussing a variety of audio deepfake generation and 

detection methods, let’s delve into a recent method for audio 

deepfake detection that makes use of LVMs. We will 

specifically examine the SpotNet methodology [29]. 

The SpotNet framework, as shown in Figure 6, is a two- fold 

method for detecting synthetic audio that targets logical attacks 

like text-to-speech (TTS) and voice conversion (VC). 

In the first fold, the raw audio signals are preprocessed to 

extract front-end spoofing features (FSF) that capture important 

temporal and spectral features, such as the spectral envelope, 

spectral contrast, and Mel-spectrogram. These features are 

intended to efficiently detect spoofing efforts that modify voice 

signal characteristics. 

In the second fold, these FSF maps serve as input to the 

Logical Spoofing Transformer Encoder (LSTE), a model that 

leverages token embedding and transformer encoder blocks to 

extract deep attentive features from the speech data. These 

features are subsequently passed through a multi-layer spoofing 

classifier, which includes five dense layers, batch 

normalization, and dropout layers, improving the model’s 

capacity to differentiate between authentic and fake audio. 

 

 

 

Fig. 5: Example of an audio signal alongside its corresponding Mel-

spectrogram and MFCC. 

 

 

Fig. 6: The Framework of SpotNet for Audio Deepfake Detection [29]. 

The SpotNet architecture also includes several convolutional 

layers for further feature extraction and employs various 

preprocessing techniques such as windowing, non-silence 

index retrieval, normalization, bandpass filtering, and pre-

emphasis filtering. This comprehensive preprocessing and 

feature extraction process guarantees that the model captures 

the most pertinent information for spoofing detection. 

SpotNet was assessed using the ASVspoof2019-LA dataset 

[30], achieving an Accuracy of 93.91% and an Area Under the 

Curve (AUC) of 94.11%. The model demonstrated robustness 

against various spoofing algorithms, outperforming several 

state-of-the-art methods. 

IV. AUDIO-VISUAL-BASED DEEPFAKE DETECTION 

In the field of deepfake detection, a recent advancement is 

the investigation of multimodal methods that can utilize visual 

and audio characteristics in video data. Recently, in the area of 

video-based deepfake detection, there have been some 
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contributions that have looked at both visual and audio aspects 

of videos in a well-rounded fashion. This is an important 

advancement in the literature because it utilizes the potential of 

synergy, and applies multiple data modalities for improved 

detection of forgeries. LVMs have been incorporated into 

multimodal audio-visual deepfake detection using multiple 

modalities with both audio-visual streams. Therefore, in this 

section, we examine an large vision approach, as a novel and 

relevant way that considers audio and visual features for video- 

based deepfake detection. AVFakeNet introduced by Ilyas et al. 

[31], is an end-to-end model that also employs the Dense Swin 

Transformer for audio-visual deepfake detection. 

This multimodal method consists of a dual-stream model, 

that incorporate separate models for audio and visual using 

Mel-Spectrograms for audio, and video frames for visual. The 

dense Swin transformer handles the classification of features in 

both audio and visual streams. The audio model uses Mel-

Spectrogram features, while the visual model uses facial 

features identified in each video frame, in each case to perform 

audio-visual deepfake detection. 

In terms of training, the AVFakeNet model uses the Celeb- 

DF dataset [32] to train the model on video, and ASVSpoof- 

2019 LA dataset [30] to train the audio model. Celeb-DF 

provides 590 real videos of 59 celebrities and 5,639 deepfake 

videos. The ASVSpoof-2019 LA dataset collects speech data of 

107 individuals and includes video and audio data. 

 

 

Fig. 7: Workflow of AVFakeNet for Multimodal Audio-Visual Deepfake 

Detection [31] 

Performance evaluation was conducted on the FakeAVCeleb 

dataset [33], comprising four subsets: Real Audio Real Video 

(RaRv), Fake Audio Fake Video (FaFv), Real Audio Fake 

Video (RaFv), and Fake Audio Real Video (FaRv). The 

AVFakeNet model was assessed in three stages: visual stream 

only, audio stream only, and both audio and visual streams 

combined. 

The outcomes provide evidence of the effectiveness of 

various configurations of the AVFakeNet model. The video- 

only model had a mean accuracy of 88.11%. The audio-only 

model performed significantly better with a mean accuracy of 

96.62%. Combining both models into a multimodal architecture 

achieved a mean accuracy of 93.00%. 

Additionally, there are other multimodal deepfake detection 

techniques that employ earlier deep learning architectures, such 

as EmoForen [34] and MDS [35]. 

V. DATASET REVIEW 

In this section, we will comprehensively review prominent 

datasets utilized in images, videos, and audio deepfake 

detection. 

 
TABLE I 

PROMINENT DATASETS FOR DETECTING DEEPFAKES IN IMAGES AND VIDEOS 

Dataset Name Modality Real Size Fake Size 

CASIA1 [36] Images 750 975 

CASIA2 [36] Images 7491 5123 

CoMoFoD [37] Images 4800 4800 

DeeperForensics-1.0 [2] Videos 50,000 10,000 

Celeb-DF [32] Videos 408 795 

UADFDV [38] Videos 49 49 

FaceForensics [39] Videos 1000 1000 

FaceForensics++ [40] Videos 1000 4000 

 

Prominent datasets created to assess the efficacy of deepfake 

detection models across a variety of visual media modifications 

are listed in Table I. These datasets cover a variety of synthetic 

and modified material categories and include both images and 

videos. The variety of dataset sizes, manipulation techniques, 

and realism levels offers a thorough testing ground for detection 

models and enables researchers to compare how well they 

perform over a broad range of deepfake scenarios. Here is a 

detailed examination of each dataset’s worth and features: 

• CASIA1 and CASIA2 are among the earliest datasets 

focused on image tampering. CASIA1 contains a limited 

number of tampered images, while CASIA2 offers a larger 

set. Both datasets provide images with various 

manipulations, primarily splicing and copy-move 

forgeries, making them essential for training and 

evaluating models on traditional image manipulation 

techniques. They are widely used for initial model testing, 

especially to assess a model’s ability to detect localized, 

often subtle, visual changes. 

• CoMoFoD dataset includes a balanced set of 4,800 real 

and manipulated images, providing complex and diverse 

modifications like splicing, retouching, and cloning. 

CoMoFoD is useful for testing detection models on 

intricate visual details, challenging the model to 

distinguish minute and sophisticated alterations. It is 

particularly relevant for research focused on high-fidelity 

forgeries and testing a model’s sensitivity to different 

manipulation types within a consistent dataset structure. 

• Known for its large scale and high-quality deepfake 

content, DeeperForensics-1.0 includes 50,000 real videos 

and 10,000 manipulated ones. This dataset emphasizes 

realistic facial manipulations under various lighting, 

camera angles, and occlusions, which simulates real-

world settings. It is invaluable for models focused on 

robustness, as the dataset’s diversity in conditions tests a 
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model’s adaptability to environmental variations 

commonly found in real applications. 

• With a focus on deepfake videos created using advanced 

facial manipulation techniques, Celeb-DF contains 408 

real and 795 fake videos of celebrities. It includes more 

natural facial expressions, lip-syncing, and movement, 

adding to the realism. This dataset is frequently used as a 

benchmark for models targeting video-based deepfakes, 

especially for training on realistic video manipulations 

where smooth facial transitions and lip synchronization 

are crucial. 

• Although smaller in size, UADFDV offers a balanced set 

of real and manipulated videos with carefully controlled 

synthetic samples. It is often used for testing a model’s 

performance in detecting novel and controlled tampering 

techniques in videos, which helps researchers explore 

model generalization on less common manipulation 

methods. UADFDV’s manageable size also makes it 

suitable for testing models with limited computational 

resources. 

• FaceForensics and FaceForensics++ datasets have 

become standard benchmarks in video deepfake detection 

research. FaceForensics contains 1,000 real and 1,000 

fake videos, while FaceForensics++ expands on this with 

4,000 fake videos using multiple generation techniques, 

including DeepFakes, Face2Face, and Neural Textures. 

They offer incremental levels of quality (raw, lightly 

compressed, and heavily compressed) to test models on 

different compression artifacts. FaceForensics++ has 

particularly influenced deepfake research by providing 

both high-quality and degraded video versions, allowing 

models to be evaluated on their resilience to video quality 

loss and compression – conditions common on social 

media platforms. 

A number of well-known datasets for assessing and enhancing 

audio deepfake detection systems are listed in Table II. These 

datasets exhibit significant variations in structure, manipulation 

types, and intended applications, forming a comprehensive 

foundation for training and assessing models against a wide 

array of altered and synthetic audio. Below is a detailed 

overview of each dataset, highlighting their unique 

characteristics and contributions to the field of audio deepfake 

detection.  

• WaveFake Dataset contains 117,985 audio clips 

generated through various text-to-speech (TTS) methods, 

showcasing a rich variety of TTS generation techniques. 

It is entirely synthetic, which enables researchers to focus 

on detecting fine-grained artifacts associated with 

different synthesis methods, crucial for improving 

detection algorithms. 

• FoR Dataset includes 195,000 utterances, consisting of 

both real human and computer-generated speech. It offers 

multiple versions of each audio sample, such as original, 

balanced, shortened, and re-recorded files. This diversity 

allows models to handle both synthetic and replayed 

manipulations effectively. 

TABLE II 

PROMINENT AUDIO DEEPFAKE DETECTION DATASETS 

Dataset Name Summary 

WaveFake dataset [41] 
117,985 clips from various text-to-speech 
methods. 

FoR dataset [42] 
Versions include original, balanced, short- 
ened, and re-recorded files. 

ASVspoof 2015 [43] 
Text-to-speech and voice conversion sam- 
ples, split into training, development, and 
evaluation sets. 

ASVspoof 2017 [44] 
Replay sessions from different configura- 
tions with 42 speakers. 

ASVspoof 2019 [30] Logical and physical access replay attacks. 

ASVspoof 2021 [3] 
Includes LA and PA scenarios, plus a speech 
deepfake dataset. 

 

• ASVspoof 2015 Dataset: This foundational dataset 

comprises a total of 2,500 samples, with 16,651 genuine 

samples and 246,500 spoofed samples. It provides 

insights into early voice conversion and synthesis 

methods, making it a crucial resource for training models 

to detect synthetic voices generated by those techniques. 

• ASVspoof 2017 Dataset: Focusing on replay attacks, this 

dataset features approximately 2,880 samples recorded in 

various acoustic environments and involves 42 speakers. 

It emphasizes the detection of replayed audio, where 

recorded real voices are played back to bypass 

authentication systems, enhancing its relevance in real-

world scenarios. 

• ASVspoof 2019 Dataset expands upon its predecessors 

with a total of 5,000 samples (2,500 for each category: 

logical access and physical access). This dataset 

introduces diverse challenges by combining synthesized 

and converted voices with replay attacks, addressing both 

digital and physical spoofing scenarios. 

• ASVspoof 2021 Dataset: The most recent dataset in the 

series includes 145,669 genuine samples and 1,420,604 

fake samples, providing a robust resource for training and 

evaluating models. It features dedicated segments for 

logical access and physical access, along with a speech 

deepfake segment that reflects current audio manipulation 

trends and techniques. 

In summary, each dataset offers unique advantages, whether 

through the type of manipulation, the environmental conditions 

captured, or the methods of audio generation. The extensive 

range of samples available across these  datasets enables 

researchers to develop and refine robust detection models 

capable of addressing a wide array of real-world audio spoofing 

challenges, ultimately contributing to advancements in the field 

of audio deepfake detection. 
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TABLE III 

PROMINENT AUDIO-VISUAL DEEPFAKE DETECTION DATASETS 

Dataset Name Total Size Real Size Fake Size 

FakeAVCeleb [4] 25,000+ 570 25,000+ 

DFDC [45] 128,154 23,654 104,500 

DeepFake-TIMIT [46] 620 0 620 

LAV-DF [47] 136,304 36,431 99,873 

AV-Deepfake1M [48] 1,146,760 286,721 860,039 

PolyGlotFake [49] 15,238 766 14,472 

 

The datasets utilized for detecting multimodal audio-visual 

deepfakes, as outlined in Table III, include various deepfake 

video datasets that feature manipulated visual and audio 

streams. These datasets play a crucial role in the development 

of effective algorithms for audio-visual deepfake detection, 

providing the necessary data to train and evaluate such 

systems. 

Each dataset contributes distinct features and challenges, 

enhancing the research landscape in combating audio-visual 

deepfakes. 

• FakeAVCeleb dataset consists of over 25,000 audio- 

visual clips featuring both real and manipulated content, 

with approximately 570 real and over 25,000 fake 

samples. This dataset focuses on showcasing advanced 

deepfake techniques, specifically emphasizing the 

manipulation of audio and visual streams. The variety of 

manipulation methods represented enables researchers to 

create models capable of effectively detecting a broad 

spectrum of deepfake scenarios, thereby serving as a 

crucial resource for enhancing multimodal detection 

systems. However, it does encounter the challenge of 

imbalanced data distribution, with real samples being 

significantly outnumbered. 

• DFDC dataset includes 128,154 clips, comprising 23,654 

real and 104,500 fake instances. It captures a 

comprehensive range of facial manipulation techniques, 

allowing researchers to study various types of alterations 

in depth. The balanced distribution of real and fake 

samples aids in reducing bias during model training. This 

dataset is instrumental in the evaluation and refinement of 

detection algorithms, addressing the challenges posed by 

different manipulation styles in real-world applications. 

• Celeb-DF dataset contains 620 high-resolution videos, 

focusing entirely on manipulated celebrity faces, with all 

samples being fake. This dataset is characterized by its 

high quality and realistic alterations, providing a 

challenging environment for detection models. By 

featuring a variety of backgrounds and lighting 

conditions, Celeb-DF serves as a critical benchmark for 

developing advanced detection systems capable of 

identifying subtle manipulations, thus pushing the 

boundaries of current deepfake detection methodologies. 

• LAV-DF dataset offers a total of 136,304 audio-visual 

clips, including 36,431 real and 99,873 fake samples. This 

dataset highlights the importance of replay attacks and 

synthetic manipulations, providing diverse examples for 

training detection algorithms. Its structured approach to 

varying audio-visual conditions equips researchers to 

create more robust models capable of discerning 

manipulated content across different scenarios. 

• AV-Deepfake1M dataset features an extensive collection 

of 1,146,760 clips, including 286,721 real and 860,039 

fake samples. This dataset aims to provide a large-scale 

resource for deepfake detection, allowing for the 

exploration of different manipulation techniques. Its 

significant size enables researchers to develop and 

validate their detection models on a wide range of data, 

addressing the challenges presented by high variability in 

deepfake characteristics. 

• Finally, PolyGlotFake dataset comprises 15,238 audio- 

visual clips, with 766 real and 14,472 fake samples. This 

dataset is designed to explore the nuances of language 

and cultural differences in deepfake detection, offering a 

diverse range of manipulated audio-visual content. By 

incorporating different languages and accents, it helps 

researchers understand how language variations can 

affect detection performance, making it an essential tool 

for developing globally applicable deepfake detection 

systems. However, it also faces the challenge of 

imbalanced data distribution. 

VI. COMPARATIVE RESULTS AND ANALYSIS 

This section offers an extensive comparative analysis of 

diverse deepfake detection methods within visual, audio, and 

audio-visual domains, including both traditional deep learning 

models and LVMs. 

Table IV offers a comparative examination of key visual 

deepfake detection methods applied across various datasets, 

categorized by technique type, best results achieved, and 

modality. This table underscores the advancements in detection 

methods from early CNN and RNN approaches to models 

incorporating LVMs. 

• Traditional CNN and RNN-Based Techniques: 

Techniques like RCN (CNN + GRU) and standalone 

CNNs achieve good performance on datasets such as 

UADFV and Celeb-DF, but struggle with generalization 

on diverse datasets like Face-Forensics++, affecting their 

robustness despite computational efficiency. 

• MobileNet and Random Forest: 

This lightweight combination is suitable for real-time 

applications but has lower accuracy (90.2%) compared to 

transformer-based models, illustrating the trade-off 

between efficiency and accuracy. 

• Yolo-face, Bi-LSTM, and EfficientNet: 

Integrating Bi-LSTM with EfficientNet provides 

reasonable accuracy (85.12%) on composite datasets but 

incurs higher computational costs and may require 

significant data preprocessing for better generalization. 

• CNN with Vision Transformer (CViT): 

This early LVM integration improves accuracy to 91.5% 

on datasets like Face-Forensics++ and DFDC, effectively 
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capturing global context, but faces challenges in real-time 

application due to processing demands. 

TABLE IV 

COMPARATIVE ANALYSIS OF METHODS FOR DETECTING VISUAL DEEPFAKES 
 

Ref. Year Technique Dataset Best Result Modality 

[21] 
2019 

RCN (CNN 
and GRU) 

Face- 
Forensics++ 

AUC: 97.5% Videos 

[50] 
2020 

MobileNet 
+ Random 
Forest 

DFDC Acc: 90.2% Videos 

[51] 
2020 CNN 

UADFV, 
Face- 
Forensics++, 
Celeb-DF 

Acc: 
UADFV 
(98.73%), 
FaceForensics++ 
(91.32%), 
CelebDF 
(98.85%) 

Videos, 
Images 

[52] 
2021 

Yolo-face, 
Bi-LSTM, 
EfficientNet 

A combination 
of Face- 
Forensics++ 
and Celeb- 
DF 

Acc: 85.12% Videos 

[18] 
2021 

CNN + ViT 
(CViT) 

Face- 
Forensics++ 
and DFDC 

Acc: 91.5% Images 

[53] 
2022 

CNN, 
Transformer 
Encoder 

Face- 
Forensics 

AUC:  99.93%, 
Acc: 99.67% 

Images 

[54] 
2023 

Local  and 
Global 
Feature 
Maps 

Face- 
Forensics++, 
Celeb-DF, 
DFDC 

AUC: 97.66% Videos 

[55] 
2023 

Encoder- 
Decoder 
Transformer 

Celeb-DF, 
Face- 
Forensics++ 

AUC: 99.0% Videos 

 

• CNN with Transformer Encoder: 

Achieving the highest performance (AUC: 99.93%, 

Accuracy: 99.67%), this model utilizes a Transformer 

Encoder for enhanced feature extraction but may require 

optimization for scalability. 

• Encoder-Decoder Transformer: 

This architecture (AUC: 99.0%) efficiently handles 

temporal inconsistencies in deepfake videos but may be 

limited by high computational requirements for real-time 

use. 

Table V provides a comparative review of key methods 

in audio deepfake detection, organized by technique, feature 

type, best performance, and dataset. This overview illustrates 

the progression from earlier CNN-based approaches to more 

complex architectures integrating Transformer models, 

highlighting the diverse strategies and challenges within audio 

deepfake detection. 

• Traditional CNN-Based Techniques: 

Early methods like Light CNN and ResNet-34 achieved 

Equal Error Rates (EER) between 0.04 and 0.05 on 

ASVspoof 2019 but struggle with complex audio forgeries, 

impacting their robustness across diverse datasets. 

 

 

 

TABLE V 

COMPARATIVE ANALYSIS OF METHODS FOR DETECTING AUDIO DEEPFAKES 
 

Ref. Technique Features Best Result Dataset 

[56] Light CNN 
Genuineness 
Features 

EER = 0.04, 
t-DCF = 0.102 

ASVspoof 
2019 

[57] ResNet-34 
Log Mel- 
spectrogram 

EER = 0.05 
ASVspoof 
2019 

[58] 
ResNet- 
189 

Log Mel- 
spectrogram 

EER = 0.06, 
t-DCF = 0.157 

ASVspoof 
2019 

[59] 
Squeeze- 
Excitation 

Low-level 
acoustic 
and whole 
utterance 

EER = 0.59, 
t-DCF = 0.016 

ASVspoof 
2019 

[60] 
Transformer 
Encoder 

LFCC 
EER = 0.087, 
t-DCF = 37.67 

ASVspoof 
2019, 
ASVspoof 
2021 

[61] 

Light 
CNN, 

Trans- 
former 

Genuenization 
features 

EER = 0.018, 
t-DCF = 0.102 

ASVSpoof 
2019 

[62] 

ResNet 
189 with 
Trans- 
former 
Encoder 

Direct feature 
extraction via 
deep learning 

EER = 0.03 
FoR, 
ASVSpoof 
2019 

[29] 
CNNs, 
Trans- 
former 

Direct feature 
extraction via 
deep learning 

Acc = 93.91%, 
AUC = 94.11% 

ASVSpoof 
2019 

 

• Enhanced CNN Variants: ResNet-189 and Squeeze- 

Excitation Networks: 

ResNet-189 shows improved feature extraction with a 

slightly higher EER on ASVspoof 2019, while Squeeze- 

Excitation networks capture essential features but have 

limited generalization, indicating a need for further 

enhancements. 

• Transformer-Enhanced Models: Transformer Encoder 

and Light CNN + Transformer: 

Integrating Transformer Encoders with CNN models 

improves accuracy, with the Transformer Encoder 

achieving an EER of 0.087 and Light CNN + Transformer 

reaching 0.018 on ASVspoof 2019, though requiring 

higher computational resources. 

• Advanced CNN-Transformer Hybrids: ResNet-189 with 

Transformer Encoder: 

This combination delivers high performance (EER = 0.03) 

on datasets like FoR and ASVspoof 2019 but may be 

computationally intensive, limiting real-time applications 

without optimization. 

• Comprehensive CNN and Transformer Models: 

SpoTNet (CNNs + Transformer): 

SpoTNet achieves 93.91% accuracy and 94.11% AUC on 

ASVspoof 2019, balancing spatial and temporal feature 

extraction, but its computational cost may hinder 

scalability in practical applications. 

In summary, both traditional techniques in visual and audio 

deepfake detection offer computational efficiency and 

simplicity for real-time applications on less complex datasets. 

These benefiting from their straightforward architecture, which 

aids in implementation. 
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TABLE VI  

COMPARATIVE ANALYSIS OF METHODS FOR DETECTING AUDIO-VISUAL DEEPFAKES 

 

• Pros: 
– Resource-efficient for real-time applications. 

– Simple architectures facilitate implementation. 

– Effective for basic manipulations in both audio and 

visual domains. 

• Cons: 
– Limited generalization on complex datasets. 

– Reduced effectiveness for advanced manipulations 

across diverse datasets. 

– Lower accuracy when compared to more advanced 

models, such as transformer-based architectures. 

 

Conversely, LVMs, which are augmented by transformers, 

significantly enhance detection accuracy by effectively 

capturing complex patterns and dependencies. Despite their 

strong performance on advanced datasets, these models are 

often hindered by high computational demands, which can 

challenge their real-time usability. 

• Pros: 
– High accuracy for complex manipulations in both 

audio and visual tasks. 

– Strong capability in capturing global context and 

intricate features. 

– Robust performance on more challenging datasets. 

• Cons: 
– High resource requirements limit usability for 

real-time applications. 

– Complexity in implementation and optimization 

can be a barrier. 

– May necessitate resource optimization for 

practical scalability in deployment. 

 

Table VI presents a comparative overview of audio-visual 

deepfake detection techniques evaluated on prominent datasets 

such as the DeepFake Detection Challenge (DFDC) and 

FakeAVCeleb. This table highlights performance metrics 

including AUC and Accuracy (ACC) to illustrate advancements  

 

 

in detection methodologies, particularly with the integration of 

transformers in multimodal contexts. 

• Traditional CNN-Based Multimodal Approaches 

(EmoForen and MDS): 
Early multimodal methods, such as the MDS that 

combines CNNs for image data and RNNs for sequential 

audio data. While computationally efficient, these 

approaches often struggle to capture complex intermodal 

relationships, resulting in limited generalizability on 

challenging datasets like DFDC, with their accuracy 

generally falling short of transformer-based approaches 

due to a reduced capacity to process high-level contextual 

information. 

– Transformer-Augmented Models (MIS-
AVoiDD and AVA-CL): 

The incorporation of transformers in models like 

MIS- AVoiDD and AVA-CL enhances performance 

by capturing long-range dependencies in audio 

and visual streams. These models achieve higher 

accuracy on DFDC, effectively leveraging 

transformers for robust feature fusion, though their 

computational demands may limit real-time 

applicability unless optimized. 

– Advanced Cross-Attention Mechanisms 
(AVT2- DWF): 

AVT2-DWF employs cross-attention mechanisms 

for deeper audio-visual feature fusion, achieving 

high accuracy and AUC on datasets like 

FakeAVCeleb. This model highlights the 

importance of cross-attention for analyzing 

temporal and spatial inconsistencies but faces 

scalability challenges due to its complex 

architecture, necessitating a balance between 

accuracy and processing speed. 

In summary, traditional multimodal approaches based on 

CNNs, such as MDS and EmoForen, deliver efficient 

computation but face challenges in capturing intricate 

Model Year 

DFDC FakeAVCeleb 

AUC (%) ACC (%) AUC (%) ACC (%) 

EmoForen [34] 2020 84.4 80.6 79.8 78.1 

MDS [35] 2021 87.80 86.51 81.80 82.65 

JointAV [63] 2021 82.5 83.3 90.2 91.9 

AVFakeNet [31] 2022 82.8 86.2 78.4 83.4 

BA-TFD [64] 2022 79.1 84.6 80.8 84.9 

AVoiD-DF [65] 2023 91.4 94.8 83.7 89.2 

MIS-AVoiDD [66] 2023 — — 97.3 96.2 

AVA-CL [67] 2024 84.20 88.64 86.55 89.47 

AVT2-DWF [68] 2024 87.57 88.32 88.02 89.20 
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intermodal dynamics, resulting in limited adaptability to 

more complex datasets like DFDC. 

• Pros: 
– Highly efficient for real-time processing. 
– Straightforward architecture supports easy 

implementation. 
– Capable of addressing basic deepfake 

manipulations effectively. 

• Cons: 
– Struggles to generalize on more sophisticated 

datasets. 
– Less proficient in modeling complex intermodal 

relationships. 
– Performance lags behind that of transformer-

based models. 

 In contrast, LVMs, which incorporate transformers and 

attention mechanisms, such as MIS-AVoiDD and AVA-CL, 

significantly improve detection accuracy by capturing long- 

range dependencies in audio and visual streams, particularly on 

challenging datasets like DFDC. However, their high 

computational demands can restrict real-time use. Models like 

AVT2-DWF further enhance audio-visual feature integration 

and achieve notable accuracy and AUC metrics on datasets like 

FakeAVCeleb, but their complex architecture presents 

scalability issues. 

• Pros: 
– Superior accuracy for intricate audio-visual 

manipulations. 
– Strong capabilities for effective feature 

integration using transformers. 
– High performance in identifying temporal and 

spatial anomalies. 
– Efficiently integrates audio and visual information 

in complex scenarios. 

• Cons: 
– Elevated computational needs can restrict real-

time deployment. 
– Complexity in architecture may pose scalability 

challenges. 
– Implementation often necessitates careful 

optimization for efficiency. 
– Balancing detection accuracy with processing 

latency can be problematic. 

Despite advancements in LVMs for deepfake detection, 

several areas require remaining research to maximize their 

potential. Improving generalization across diverse datasets is 

essential, as current models often perform well on specific 

datasets but struggle with others. Optimizing LVMs for 

realtime performance is also crucial due to their high 

computational demands. 

Incorporating temporal dynamics into LVMs can enhance 

the detection of manipulated videos by analyzing the evolution 

of audio and visual features over time. While attention 

mechanisms aid in multimodal data fusion, further refinement 

is needed to improve the integration of audio and visual streams 

for detecting subtle manipulations. 

Scalability poses another challenge, underscoring the need 

for remaining research on lighter model versions and 

techniques like pruning to enhance resource efficiency. 

Additionally, LVMs must improve robustness against evolving 

evasion tactics from deepfake creators, necessitating research 

into adversarial training methods. 

By addressing these remaining research challenges, LVMs 

can significantly advance deepfake detection. 

VII. CONCLUSION AND FUTURE WORK 

This paper provides a comprehensive analysis of various 

deepfake detection techniques across visual, audio, and 

multimodal audio-visual domains, placing a significant 

emphasis on the latest advancements in deep learning, 

particularly with respect to LVMs. The findings of this study 

underscore the transformative potential of LVMs in enhancing 

deepfake detection capabilities, demonstrating their ability to 

efficiently process complex visual patterns and effectively 

manage large- scale datasets. Furthermore, this work includes 

a thorough survey of existing datasets commonly utilized in 

deepfake detection, which serves to contextualize the 

comparative analysis presented. Our comparisons highlight the 

notable superiority of LVMs over traditional deep learning 

methods, showcasing their advanced architectural features that 

enable them to outperform older techniques in distinguishing 

between real and synthetic media. 

Exploring the following research avenues holds promise 

for significant advancements in deepfake detection, helping 

researchers develop more effective and reliable solutions: 

1) Expanding the Role of LVMs: LVMs, with their ability 

to capture intricate visual patterns and contextual 

information, have significantly improved detection 

accuracy. Further advancing the use of LVMs in deepfake 

detection and developing more specialized architectures 

could lead to even more effective and adaptable detection 

systems. 

2) Datasets and Benchmarks: Advance the creation of 

comprehensive, diverse, and publicly accessible datasets 

for assessing deepfake detection systems, particularly since 

many existing multimodal datasets suffer from imbalanced 

data distribution. 

3) Expanding Detection Scope: Improve detection methods 

by incorporating the analysis of text overlays, motion 

patterns, and video context to identify more comprehensive 

manipulations. 
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