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INTRODUCTION

A Moran reservoir of size k+m, with draft m and stationary independent
inflows X, , is a discrete-time and discrete-state stochastic system in which the
object of primary interest is the distribution of the volume Z, of contained
water at time t . Here k and m are integers, X, is a non-negative integral-valued
random variable, and the range of Z, is O, 1, ..., k. The model operates as
follows : Z, is augmented during the time interval (t, t 4- 1 ) by the inflow X,
and then, immediately before the epoch t 4+ 1, m units of water are instanta-
neously released ; or, if the reservoir does not at the moment of release contain
as many as m units, the total contents are released. (See Moran 1954 and(1959),
and Gani (1957) ).

In this paper we shall work in terms of a variant of this model in which
the concept of an instantancous withdrawal is not required. Instead, the supply
X, is supposed to flow in at a uniform rate during the unit time interval, and
the withdrawn water is likewise supposed to br removed at a uniform rate. We
arc thus concerned only with the net rate of inflow (which may be negative)
It turns out (Lloyd, 1963(c) ) that the defining equations differ only trivially.
from those of the genuine Moran reservoir. In fact, where the Moran model
requires a reseivoir of size K+ m units (to accomodate k units of water), the
variant requires a size of k units. The models are otherwise formally identical.
It is a slight notational advantage of the second version that one does not have
to adjust the reservoir size parameter when one alters the draft m.
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As a model for real reservoirs, which are multi-purpose systems operating
in continuous time and subject to complicated release rules, fed by continuous,
autocorrelated and seasonally-distributed inflows, the scheme that has been
outlined is clearly a rather simplified first approximation. Its departures trom
realism derive from the mathematical difficulties that arise in attempting to
construct and work with a more sophisticated model. Where one would like
to derive general results on the time-dependent distribution of Z, for a reservoir
operating with continuous time, continuous quality, and seasonal (Lloyd and
Odoom 1964, Lloyd 1970) autocorrelated (Lloyd 1963 b) inflows, one often
has to be content with the asymptotic equilibrium distribution of Z, in an un-
realistic rservoir that is a simplified special case of the Moran model. (Lloyd
1963 a, Prabhu 1964) Favoured special cases are those havingunit draft (m=1)
or infinitely high walls (k=00), or ‘both. '

If one is prepared to accept the restriction to unit draft (which means that
all volumes are measured as integral multiples of the actual draft) and a semi-
infinite wall height (which means a reserfoir working almost always at less than
maximum capacity), an explicit formula is available (Moran 1959, Prabhu 1965)
for the generating function of the asymptotic distribution of reservoir levels,
This will be referred to as the «generating function theorem». The structure
ot the equations defining this distribution is such that, by the use of a that
will be referred to as the «ratio theorem», one may deduce from this generatng
function the (asymptotic) distribution of levels in a finite reservoir.

In the Moran model, with 'mutually independent inflows, the errors attri
butable to discreteness may be reduced by using a smaller time jnterval. A
refinement of the time scale however makes it less plausible that serial correlation
in the inflows may be neglected. It would therefore be a natural development
to modify the model by attributing serial correlation to the inflows, and the
natural way of doing this would seem to be in terms of a Markov Chain structure
the basic theory of this has in fact been worked worked out (Lloyd 1963 (bs
.iand 1967), but little is known of the extent to which theorems and technique.
(Lloyd and Odoom 1964 (b)) which are valid for independent inflows remaid
valid, or may be validated in a generalized version, for Markovian inflows)
Two of the few results so far available concern the generating function theprem
and the ratio theorem, both of which have been generglised in this sense.
{Odoom and Lloyd 1965). Other relevant results have been obtained by Gani
and Ali Khan (1968).

It is the purpose of the present paper to attempt to exploit these theorems
for the investigation of the behaviour of Markovian reservoirs.
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2. The variant Moran reservoir details :
With a reservoir of size k units, mutually independent inflows {X,}, and

a desired withdrawal of m units, the distributions ot reservoir levels Z, and Z

t+1
at times t and t+41 are related as tollows :

P(Z,, =0=P0O<Z +X,<m),
P2, =s5)=P(Z, + X, —m=s), s=1, 2, ..., k—I
PZ, =k=PZ + X, —m =Kk).

or

n(C,tel) o
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u
i w(r,¢t)p(u-r)
=0

v(s,t+l) = (e, t)p(m+s-1), =1,2,...,k-1,

L ( where a = ain (k,uw+s)

v(k,tel) = ¥ E *(r,t)p(kemreu),
u=Q r=0 .
where n (s,t) = P(Z,=s),s=0, 1, ..., k,andp(r) =P (X, = 1), r = 0, 1, cua
The process {Z,} forms a finite ergodic Markov Chain possessing a non-trivial
asymptotic equilibrium distribution. = This concept will occur with sufficient
frequency in the sequel to justify the special notation P, ( . ) for Lim P { )
In the present case, writing T (s} = P_ (Z, = s), we have § == o0

7(0) =
u

goos

u
) m(r) p(u-r)
r=0

w(s) =

: v (r)p(m+s-r), o’ T S T |

gMﬂ’

w(k) = - M-+
uZO r._.).:o"'(r)p(k m-r+u),

where p (r) denotes Pa (X, = ).
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A reservoir which is managed in such a way that the probability of overflow
may be ignored might just as well have walls of infinite height. This semi-
infinite case (k = ) is worth studying since it is more tractable than the finite
case and yet may serve as a first approximation to a more realistic situation.

For the semi-infinite reservoir the sequence {Zt} remains ergodic provided
E (X,) < m. When in addition m = 1 the defining equations simplity to

m(0,t+l) = {(m(0,t) + w(1,t)}p(0) + 7(0,t)p(1),
r+l

7(r,t+1) = ) 7(s,tdp(r+l-s), r=1,2,...
s=0

where T (r,t) = P(Z, =r)and p (s) = P (X, = s).

The generating function g, (6 ; t) of the probabilities P (Z, = r), r =0, 1, ...
is readily obtainable from these equations in the form

egz ( e: t+1) = gx (e)gz (e’ t)_(l—e) &x (0) gz (0’ t)

where g,( 8 ) is the known g.f. of the inflows. (Strictly speaking there is no need
here to restrict oneself to stationary inflows, and g, (6) might if desired be replaced
by a time-dependent g, (6, t) ). This recursion is not of much use, unfortunately,

because of the presence of the term involving g, (0, t) = P (Z, =0). If we write
g, (0) =lim,_, _ g, (6, 1) for the g.f. of the asymptotic equilibrium distribution
ot levels, howevere, the equations becomes

whence, on differentiating,

where p, = E (X, ). We thus have a simple expression tor the asymptotic pro-
bability ot emptiness of the semi-infinite reservoir, viz. P @Z, =0 = (—u,)
P (X = 0), and the equation for g, (6) becomes

g O =(0—u,)1-96)/{g (6)—6} 2.2)
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This is the generating function theorem referred to in § 1.

The ratio theorem referred to earlier applies to this equilibrium distribution.
For a finite reservoir of size k, with m = 1, the limiting versions of the first k
defining equations as t + —» ocoare

w(1)p(0) = w(0) {1-p(0)~p(1)}
r-1
n(r+1)p(0) = } vw(s)plr+l-3) - w(x) {1-p(xI}, r=1,2,...,k=1.
s=0

There is a (k+41)—th equation, but it is linearly dependent on its prede.
cessors and so may be discarded. The equations quoted coincide exactly with
the first k defining equations of a reservoir of size k’ ( > k) having the same
inflows and draft ; and with those of the corresponding semi-infinite reservoir,
provided p, < m (=1 in this case).

It follows that the ratios « (r) / w (0), r=1, 2, ..., k are the same for the
k-valued reservoir as for the reservoir of size k’ > k, including the semi-infinite
case k’ = . oo (See Prabhu, 1965).

Because it can be used in conjunction with the generating function theorem
(which requires that the value of m be 1) this version of the theorem is the one
of greatest «practical» importance ; but it is clear form the preceding argument
that the ratio theorem holds for a general value of m, and not merely for m=1.

As a simple illustration of the combined application of the two theorems
we may consider a semi-infinite reservoir subject to unit draft (m=1) and geo-

metric inflows for which p (r) =P (X, =) =qp,r=0,1, ..., 0 < p <1,
q = 1 — p. The inflow generating function is g, (8) = q/ (1 — p8 ), and
EX)= px = p/q, whence

g, (90)=(U0—p/q9d(1 —86)/(g—p8o ).

The asymptotic distribution of levels in this semi-infinite reservoir is thus
given by

n0) =1—(@/q)?

1LY (l‘) = (l — p/Q) (p/q)r+l 5 L= l’ 2: eee »
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a geometric distribution with a modified initial value. According to the ratio.
theorem, the corresponding asymptotic probabilities n ? (r) in a finite reservoir
of size k are given by

nt® (r) =aqp/q)*!', r=1,2, ...,k

wheie a = 1™ (0) is a constant to be determined by the noimalisation condition

3. Markovian inflows :

We now extend the (modified Moran) model discussed in the previous
section to allow the inflow distribution sequence {Xi} to have a Markov Chain
structure. That is, for a reservoir of size k, with draft m, we still assume that
a quantity X, of water enters during the interval (t, t41), both inflow and with-
drawal being uniformly spread over the interval, so that the possible values of Z,
arestill 0, 1, ..., k ; but we now assume in addition that {X‘} is an ergodic Markov
Chain, with P (X,,, =rl1 X, =s)=1,,1r,5s=0,1,...,n. We shall denote
the matrix ( 1,) by L, sometimes partitioned into columns as (/, /, ... I, ).
This carries the corollary that the possible values of X, are restricted to the set
0, 1, ..., n, where n may of course be arbitrarily large. The attribution of this
particular type of serial dependence to the X, is made in order to endow the
inflows with an auto-correlation structure that is tractable in terms of the kind
of model discussed earlier. The geophysical process which generates {X,} may
plausibly be assumed to have been going on for some considerable time before
the initiation of the reservoir, and we may assume that the {X } chain has reached
its asymptotic equilibrium phase. Thus, using (as before) p (r) to denote

n

P (xt=r), we have p(r) = Z 2 p(s), or
” s=0 rs

p = Lp (3.1)

where L = (/) is the inflow transition matrix and p the vector p (r), r=0, 1, ...,n,

It has been shown (Lloyd 1963 b) that the behaviour of reservoir levels z
may now be investigated in terms of the joint distribution of the pair @, , X),
which again forms a Markov Chain.

For a tramsition Z, — Z,, , in which both levels concerned are different
from zero and from k, so that boundaries are not involved, the difference equa-
tion for the bivariate sequence is
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n
.s) . P(Z er—3+ X =3 - -l
t+l ZO t Jtm, A, J)P(xt"l Slxt 3).

3

With obvious modifications for dryness or overflow, similar equations hold
at the boundaries. It is convenient to describe the system in terms of a vector
® (t) withelements n (r,s ;) = P(Z; =71, X, =5),r=0,1, ..,k ,5=0,1, .., n-
arranged in the order

(1,8) = (0,0),(0, 1), .2, (0,0) 5 (1,0), (1, D(1, 1), oo, (1, m), ... 5 (k, O), ..., (k, n).
This lends itself to partitioning in the form

TR =(%O,"7 O .., W)

where the column vector T (1) = {® (r, 0;t), ® (r, 1;1), ..., W(r,n; 1) }’, primes
denoting matrix transposition. The Markov transition matrix R govering tran
sitions m (t) — % (t+1) may then be written in the following partitioned form,
where L, is derived from L by retaining the column /, and replacing all other
columns by zeros, so that L = >L,, and where L;, = L, + L', + ... + L, :




)

In the special case of m=1 the corresponding equations become

no(t+1) - LO’1 no(c) + Loﬂ(t)

The asymptotic equilibrium distribution vectors n,= lim x, (t), r=0; 1, ...,k
therefore satisfy the relations tes oo

T, = L
r+l1

n = L
r szo r+l-s"s r=o,1,.. o pke=1

k
f

- L

Each of these k-+1 matrix equations of course incorporates n scalar equa-
tions and the system bears a strong formal resemblance to the covasponding
system with independent inflows. There are two significant differences however
(2) the coefficient matrices L, and L. are singular and very sparse : and (b)
whereas in the case of independent inflows we may neglect as redundant (by
normalisation) one of the defining equations—the last, say—for the finite reser-
voir of size k, the situation for autocorrelated inflows is that, of the (k--1)
defining matrix equation for the finite reservoir we may neglect only one—the
last, say—of the implied n scalar equations.

The manner in which the equations determine the , will be made clear by
inspecting a few of the equations in scalar form. Here T, is the s—th element
of the vector m,, and denotes P (Z =r, X,=s5s). For the case k = 4, for
example, the first two blocks of equations (starting at the lower boundary) are
as follows :



Yoo Tor "2 o3 "o 1 "i12 My Yo "z "22 iy

to~l 1o o o "oo 0 ] o 0 0 [s] o
Lo sn-l 2 2,0 0 0 Q 0 a 0 (4]
‘20 "21 -1 o ln 0 0 o o 0 o o
tag ty, 0 -1 tyy © (o] 1] 0 0 o 0
0 0 L, O -1 L1 0 o Lo 0 (o] ]
o 0 £, ) k] TR ] tio © Q o
0 o] 1,, 9 [} 4, -1 0 tyy © o 0
0 Q iy; O 0 ty, 0 -1 tyy © 0 9

The last two blocks of equations (at the upper boundary) are as follows :

'f.

. x-3 %2 k-1 k

s 01 23 o011 2z o1 2 3 o 1 2 3
©00 1, 01, 00 “1t, o o e © o 0
000 ¢, 01, 00 °© tg,-1 0 o 6, ° o o
0 0 O 2,54 o 2,5 o o o] 2, -1 0 ‘20 Q o 0
000 t;; 01, 00 © 1,;, © -1 g, 0 o °
° ° O & 90 %2 %3 ' oy %2 ‘o3
000 o0 00 o, o0 Ly B O Bt A W
0 00 o 00 o 1, 00 Sy iy Gy M
0 0 0 o o o ] £,4 o 0 Ly, Ry, [+ ty Ly, tyy-t

The first four (in general, n) equations define the ratios 7, , ngy,, ..., T
in terms of Ty,; the second set of n equations similarly define wy,, ... , Tin » Taoe
in terms of their predecessors and hence in terms of Ty, and so on ; and the k—th
set will be seen to defme w, ,, , w® _,,, ... w_, %, The equations
involved up to this point coincide exactly with the equations that apply to a
reservoir of size k’ ~> k having the same inflow and draft : In particular they
coincide with the equations for the corresponding semi-infinite reservoir (k= ).
When however it comes to the determination of ®,, ,%,, ,%_in terms of T, —>
for the reservoir of size k, the equations no longer coincide with those applying
to a larger reservoir.

on? “10
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Thus the ratio theorem for reservoirs with independent inflows (Odoom and
Lloyd 1965) has the following analogue for Markovian inflows :

Let n™ (r, s) denote the joint probability, under asymptotic equilibrium
conditions, that Z, = r and X, = s in a reservoir of size k ; then, for any k’ >k,

ﬂ(k)(r,S) _ "(k:)(r,S) ; r=g)i)-oo’§-1 (3.2:
&) 0.0y %K ,0) FOstacccem

and this holds also when k’ = oo provided that the infinite reservoir is ergodic,
that is provided u, < m.

We are likely to be interested in the distribution of Z, rather than the joint
distribution of Z, and X,. The ratio theorem (3.2) implies that n™®(r, s) =
a,n® 4o, Where the constant of proportionally a,, depends on r and s but not
on k. It follows that for the asymptotic marginal distribution of Z,, in a
reservoir of size k, denoting Poo (Z, = r) by n® (r, . ), we have

o'’ (r,.) = Zﬂ(k)(f.S) - 'n(k)

5
& a,-‘*’<o.o> say,

(0,0) Z_‘a"

(k) ")
whence » (r,.) _ = r,l 5 » k
<000 +*o,.) (3.9
« " -~
. —— = provided uy < m, for r=0,1,.0e,k"1. .
- (0,.)

-

The generalisation of the generating function theorem proceeds as follows :

We are concerned with the equilibrium distribution of levels in a semi-
infinite reservoir, with unit draft, and with Markovian inflows for which the

n

transition matrix is L = 2 L_ . The distribution vector p = '{p () } satisfies

(o]
Lp = p, and the mean inflow rate is & < 1. Thus joint distribution vectors
w(0), n (1), ..., where n (r) = {x (r, 0), m (r, 1), ..., ®w(r, n) },! and where
n (,8) = po, (Z, =1, X, = s), satisfy the equations. '
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7(0) = (I.OH.L)‘I(O) *Lon(l)

r+l
w(r) = §

8=0

Lr+1-s"(8)’ rel,2, ..., k=]

Tl = sgo Le-g"(x+s), z=1,2,... .
Introducing the vector generating functions
H(6)= 21, 6 (3.4)

and

2., (0) =Z w()e (3.5)
we find from these equations that

bg.x (6)=(0—-DL,n,+H(6)g,, (6)

whence {H (60)—16 }g,,(0)=0-0)L, n,

= (1—8) I, T,
Using the facts that X1, = 1, and that g,, (1) = p, we find on premultiplying

this equation by 1 = ( 1, ..., 1) that

200 = l-u,

so that {H(e) - Io}gz x(0) = (l-u)(l-O).l.o.

The generating function g, (0) for the distribution of Z may be obtained
asg, (0)=1g (6) Thus

g,(8) = (1=u) (1-8)1' {H(e) - Ie}'lzo (3.6)

0 1’

0
IH@)‘EI » (3.7)
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the latter version being a consequence of the standard expression for a bilinear
rorm :

X
1a—1 - A
X'A 'y = A .

The extent to which these theorems may be applied to the evaluation of
probabilities in particular cases will depend on whether an explicit inver.e can
be tound for the matrix H (0)—10, or, equivalently, whether suitable expansions
can be obtained for the determinants

4. Application of the generating function theorcm for Markovian infiows.
4. 1 The covariance of levels with inflows :

When the inflows are independent, the generating function theorem enables
one to evaluate the mean level E, (Z) = 1lim E (Z, ) = u,, say, as g, (1). It

t—>0o0
is in fact necessary to differentiate g, (6) twice to obtain this, and one then easily
obtains the result that

BEX X —D)=0—py,
or, in an obvious notation,
v, = Y5 ( oi/(1— p) — po 4.1)
It is obviously of interest to apply the same technique to the generating function

when the inflows are Markovian. For this the convenient form of the theorem
appears to be :

{(H(0)—16}g,, (6)=(1—u)1A-9)I],
If we differentiate twice with respect to 6 we find
H ®) g, ©+:2 (HO) —1) g, O +{HOI}g, (©® =0,
where H ) = =r L6 “! etc.

Premultiply by 1’ and set § = 1, noting that 'L, = e, = (0, 0, ..., 0, 1, 0, 0)
the unit element being in the (r 4+ 1)—th position, to obtain -



-

I'H(l)gz’x(l) = gr(r-l)e; E"‘ = ); );r(r-n:sr
= B‘{xt Xt_’l }.
I'H(l)éz’x(l) = grel'_ Es:s = § g_rswsr

14, 5 (1) = &,(1) = uy,

and
It(HM—-D =0,
whence we obtain
1/2 Ew (x( (xg _"’l)) — I“'z A Ew (Z( x() (4-2)

as the generalisation of (4. 1).

The technique does not, therefore, provide a value for i,, butif g, is known
we may compute cov (Z,, X, ).

4.2 Computation of distribution of levels in a finite reservoir : a simple illustrative
example :

Suppose the inflow transition matrix to a semi-infinite reservoir with unit
draft to be

O 1 2
’\0! o 1-a o
1 0 1 Q Q<ac<gc,
! a o l-‘ »

Then the asymptotic distribution of X, is determined by the conditions

(1—)p©) +8 p(2) = p (0)
Pp(l)=1—p 0O)—p (2)
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where p (r) = Puo(X;, = 1), r =0, 1,2. We then have
Po =)\B’ P1=1——)\(a+ﬁ), Pz —Aa
for some suitable parameter A . If wechoose A = 1/( a 4+ B ) we obtain the

simple two-valued inflow distribution :
Po X, =0)=B/(a+BlrPaX,=2)=¢« /(a+B)
the mean inflow being u,= 2 a/( a + B) < 1. It is convenient in this
simple case to work with a modified generating function vector
h(0)= 5_‘: u o

where u, = ( 7, , W, )’, We find trom the generating function theorem

(1-€) (B~ 1-a—0 862 "l f1-a
b(e) = -
Bt+a a (1-B)6%-0 a
l-al 1-a—g
= a(1+b8+b202+...) - 8
a 0

where a = (B—a )/(B + a ) (1—a ), b = (1—B )/(1—a ).
Then u, , the coefficient of 6" in the expansion of h ( 6 ), is given by

tl-a’
u = a
O
a ‘rl—o.
u_ = c:brm1
I > r=1,2, L)
1-8

where ¢ = a a /(1—a).
Thus for the semi-infinite reservoir we have

My = a(l—a), Mg, =aa,
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and, forr =1, 2, ...,

and

N, =Ps (Z, =1,X, =2)=cb"" (1—8 ).
Then P (Z, = 0) =my = a,
and

Pe(Z, =) =m, =2b' (l—a+B). r=1,2,..
2

We now invoke the ratio theorem to obtain the corresponding probabilities for
a reservoir of size k subject to the same inflows and draft. We have

*n® = A n,.' r=01,..,k—1
and
‘“9.‘) = Amn,
for a suitable constant A. To determine n ) we must examine the final row-
block of the (partitioned) transition matrix for the complete vetor 1 ® of the

finite reservoir. (A typical element of this vector is 1 & = P, (Z, =, X, =s))
This produces the equations

0
rs
r k-1 k
Ry o 1 2 0 ) 2
o o 8 -1 (o) ] 0
o o (o} (4] o =10
) o 1-8 o o 1-8 0
o [
() _ (k)
Thus “'k°1 ] uk = O
0 1-8 o 8

whereu® =( n®, ®%) Using the known result that
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where A is a constant to be determined, we thus have

k . 1 -g)71
“lf ) < AcbX™? a 9 8 l-a
= acpi—2 (-g) -
B -
and thus

Pw (Z,=k) = u,® = Acb*—2 (1—B) /B .

Combining this with the earlier results

Po(Z, =1)=Acb ' 2— a— B), T = 1,2, ..., k—1

we finally have for the finite reservoir, of size k,

Po (Z, = 0) = Aa

Po (Z, =1)=Ac(2—a—8 Yot , r=12..., k—1

Pu (Z, = k)= Ac(1—B)b*2/ B
where A is the normalisation constant, and a,b, and ¢ are as defined above.
inflow tran-

4.3 Probability of emptiness in a semi-infinite reservoir with general
sition matrix

In this section we shall restrict discussion to semi-infinite reservoirs with
unit draft. ’

In the simple illustrative example considered in the previous section the
mversion of the matrix H (0) — 16 was a trivial task. For more general inflow
patterns however this is not so, and it seems more hopeful to work with the
deter-minantal version of the formula. :
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Consider a general inflow X, with possible values 0,1, ..., n, and expectation
e (< 1), generated by the trasition matrix L of ordern + 1 :

L = (Rrs) rYss = 0,1,...,n

z £rs - 1.’ r=0,1,...,n.

The generating function g, (0) of the asymptotic equilibrium distribution
of levels is

g ) =—U—u)U—6[A(O)[/|B(0)]
where | B ( O ) | is a determinant of order not exceeding n + 1, with
B(6)=H(9)—I8=3L 06" —1Ig,

and |A (8) | is the determinat of order n + 2 obtained from this by bordering thus:

0 1 ‘
A@)]| = -
lace) | l‘"‘o —_—

The first point to be noted is that g, (0) is a rational function of 8 . We
maywrite B(06) as b, (90), r’'s =1, 2, ..., n, where

bo (0)= 1, 0% r+s

and b,(08)=1,6 —86.

Thus | B (8) | is a polynomial in g, of degree 15 n (n + 1) + 1. We note that this
polynomial has (1-0) as a factor, since [B (1) |= L-I is zero, each column sum
being zero ; it also has  as a factor. Thus | B () | / (1— 8) is a polynomial of
degree 15 (n—1). We write
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4n{a-1)

8@ | = (1-8)e™ }  be.
o

The bordered determinant |A ( 0 )] is clearly a polynomial of degree 4 n
(n + 1) in 0, and it will be seen later that it has a factor 6". Let

zn(n-1)
[Ae)] = g® © 5 G5
) r

82(0) = -(1-p,)¢ ())j 2,8°}/0 § b e}
r
= -(l“ux){co + R(6)}

Thus

where ¢, is an appropriate constant (or polynomial in cases where | B (9) | has
less than maximal degree) and R (6) is a proper rational fraction in 0.

In principle, the resolution of R (8) into its partial fractions, which may
then be expanded by the binomial theorem as power series in 6 furnishes
a method by which the coefficient of 6" may be determined. From the expansion
it will be seen that P, (Z, = r), given by the coefficient of 6, is made up of a sum
of purely geometric terms 2,a; A, " corresponding to the real roots ; of the
denominator of R (8), and a sum of trigonometric terms Z2;b; p, "cos (r ¢; 4
e;) corresponding to complex roots A; = p; e, 19j . In practice this will be reaso
nably tractable only in special cases, but it will always be the case that

Pu(Z, =0 =g, (0 =— (1 —y,)a /bo.
and  Pw (Z,=1) = g 0 = — (I — p, ) (a bo—3a, b, )/ b3 (43.1)
with analogous but increasingly unwieldy expressions for P. (Z, = 1),

r=213 ..., k.

L0 I )
truc-
o B(O)_;IIB(O)I has a struc

ture to which an expansion theorem of Schweins is applicable. The Schw-
einsian expansion is exemplified by :

Now theratio | A(8) | /| B(8) | =



e BT

la,bc;d,1 /1] bc,d, ] = a,—a,b,/b,—13a,b,| |bc,| |
b, | bc, | —1ab;¢c, | | b,c,d, 1/ I b,c; 1 | bc,yd, |

(4.3.2)
where, for example, | b, ¢, d, | denotes the third order determinant
b, b, b,
d, d, d, |
In our case the determinant | A ( 0) | of order n+2, is
0 1 b | 1 Ty 1
00 200"t %o ©%252 ... 6"t
Y0 to or,,-8 o, ... L (6.3.3)
0 850 o, e22,,-8 ... a":Zn
I,w lw .'-nl Oztnz cee en‘“-e

For our purpose it is convenient to write this in an alternative form obtained

by multiplying the first row by 6 and then adding all the other rows to it. This
altors the first row to

6 (1 1 6 6 e 09,

leaving the other rows unaffected. We may now remove a factor 8 from each
eolumn other than the first two, whence

lA(®)] = 6 | C(o)l

whore |C (8)] differs from (4.3.3) in that its first row is (1, 1, 1, 0, 62, ..,0%0)
and in that its columns, from the first on, excluding their first entries, have each

had a factor O removed. Likewise | B (0) | , the minor of the leading term in
€4.3.3), may be written as

IB(®)l =6 ID(0)],
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where | D () | is the minor of the leading terms in | C(6) | . We then have

(1-0) c(e8)
g, (0) = -(l-uy) =5 ln(e)i s

and a Schweinsian expansion applied to the determinantial ratio produces

GRS 1 200-8 201

2. L.

Q 00

3533 =1 - 250/(25570) = ¢ (250~ i = =
216 410 |loo™® *oa Yo ™

whence, after a little straightforward manipulation,

. 1 _ 9% b 2 %2 -
gz(e) Q ux)(l e) W + Om + 0O WO...#» ) m

1 1 L. -6 ¢ |
vhere Q0 * l » Qp0) = e % ’
%0 1172 _ Yo 27?
[ zn-al 1 1 1
q, *
L0 %21 00”® 01 202
%0 1270 %4y
200-% top %00~ o1 822
(8) =
Q " t L. -1 ez .
8o 10 11 12 |
L 2 62,271
1 1 o :
10 7l o4y,
2..—0 3 ar 2
o=t a7 00 o1 02 03 i
L £ -1 ez t
Vs, Bn gy 10 11 12 13
120 % 02,272 154
. -8 2
. e o too=® L1 Oty  ©%gs
R0 v t ¢, -1 o2 e2e ,
10 W 12 12
M t,.-1 6t ]
Qe ={*10 *n 12 . . o1 -1 622
20 ‘a1 22 23
~ ‘0 fa ®t227 L 1 or e?s. -1
30 a1 %3 337



and so on, with finally,

‘B“ - llo (ll"l cee B ll.ﬂ‘l 1 1 -] 1 ese %
n-2
20 ' see 00 TR o1 too™®  toy LY o3 ton
. ; . 1o 8,3 o8y, 3 trm
. . . 2 1 62,1 1ty e |
n-2
L L 8 I | . - .
n~1,0 “m-i,1 n-1,n-1 ) 2 A .
- - -
: z =2, L t o2 t L
o0 nl T n,n~1 a~1,0 'n-1,1 a~1,2 o-1,3 °*** =1,
< n-2 -1
Q- (8= |2ogm¢ 1o, ot,, e 8 T0g 0y 25070 o, ot , ces 0T T2
o2 a1
Y10 "t ety eee 07 R a2 to 7 0% * Y
»
- - - @ o -
- - L ] - L J
- - . - . . . L ]
n-2 e A=l, .
tar0 tmeln) %fee1,2 ¢ Boinel 1] e o 1 oL, vee 87T 1

It is true that the expansion of g, (0) given above in is not a power series
in @ : it is not a formula from which one may readily obtain the distribution
of Z, , but it is in a form which makes it easily possible to obtain g, (0), the
probability of emptiness, thus :

P (Z,=0) = (1-ug)q,/Qn(0)
_—— 1 1 00 201
= -\.lx _ _ .
to Ml 12 7t

It will be noted that this probability depends on the inflow distribution
through its mean value and the leading 2 x 2 submatrix of L only.

We may similarly evaluate.

P_(z,=1) = g}(0) =

O -2
1 - -
N ){ X too 141 |, |t0 1 200 *or
X " ” : t
e T 2y 2z |fo0 "or foz(§[e o e, -1
L, -1 1
10 ™t hi2

A similar formula is available for P, (Z=2), but the expressions thereafter
become rather cumbersome.
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4.4 Mean level, for a highly specialised inflow transition matrix :

In the previous section, dealing with a general inflow transition matrix,
it was possible to obtain little more than the probability of emptiness. Here,
by way of contrast, we examine the drastically simplified ( indeed quasi-
deterministic ) transition matrix of order n 4 1.

[ 1 o 0 o}
O o l O [ Y N ] 0
o o 0 l ® &6 @ o

. q o (o) o —_ 0 |

0 < p <1, q = I—p, for which the equilibrium inﬁow.distribution is
PX, =0)=a,PX, =r)=qa,r=12..,n

where

which is a uniform distribution with a modified first term. The mean inflow is
we = lon (n+1) q / (1+nq).

For an ergodic semi-infinite reservoir we must have 0 < p, < 1,

whence q < 2/n(n —1).

The generating function theorem requires the evaluation of | H(@) — I 6 |,
of order n-1, which in this case is ' '
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“ jp-¢ 1 o0 o . © ©
0o ~«1 o o o ¢
o o -1 e o ©
© 0o 0 -1 c o

o (=1)%"™ (p-6 + qe}N(®71)y

(4] )
The bordered determinant

l i3 not quite e

lo H{g)- 18

transparent, but by row and column manipulations it may be shown to be equal to
— | H(0)—-10] — (—1)°0"(0+qh,)

where h,, is the determinant of order n having 1’s in the first row,8'(r =0,1, ..,

n—1) in the r—th diagonal position, —1°s in the sub-diagonal , and zero every-
where else ; it will bz seen that

n-1
hn e hn_l-tl

whence

-

B = 1+ nil ol (0=X) (ner+1)
n

r=1

-

We finally obtain for the bordered determinant the value

,-‘,-ox..(l"'i‘ gdr(20-r-1)
=1

)

n
nte - (n—u,)u-»uoq';lo""""""nr- o qelttl)y

-Using the quoted vahle of u, we note that g, (1) = 1 as is required and then
obtain for this reservoir (a) the probability of emptiness
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Po (Z, =0) =g, O)=(0—u,)/p
= {1—¥%n @—1) ¢} / p (1+nq)
and (b) the average level Ew (Z,) — g_ (1) =
(n—1) n (n+1) q {3n+2—n(n+2)q} / 12 (1+nq) (2 — n {n—1) g}.
The variance may be obtained from the formula
a(n) g”(1) = (@+Dnm@—1) (1—2)q(4@+2) (5n°+1) + n(Sn*—14n>—29n
—42)q + n? (n—1) ( n2+ n2 4 8) q2).

where  a(n) = 120(1 + nq) {2 —n (n—1) q }?

This is a case in which, knowing p,, we may invoke (4.2) to detrmine
Es (Z, X)), hence the covariance of Z, and X,. The foregoing formulae deter-
mine o2, so that if required the correlation coefficient between Z, and X, may be

obtained.

It was remarked in § 4.3 that for the reservoirs under consideration the
storage distribution has a rational generating function which in principle may be
resolved into its partial fractions and hence expanded in powers of 6. In the
present example the generating function is of a rather simple structure and is
to some extent amenable to this treatment, or rather to the following approxi-

mation to it.
Let R ( 6 ) be a rational function of the form

R(6)=T(0)/V(6)=Q(8)+U(6)/V(H)

where the degree of T is at least equal to that of V, the polynomial Q (6) is the
quotient of T by V, and U (0) is the remainder obtained on dividing T by V, so
that U (8) / V (8) is a «proper» rational fraction, that is , the degree of the
numerator is less than that of the denominator. .

Now consider the zeros of V (8), and let 0, be the one with smallest absolute
value, assumed to be a single root, and positive. It is well-known (Feller, 1959)
that U (8)/V (6) is well approximated by the single partial fraction A,/ (0 —6, ),
all other zeros being neglected. Here A, = V (8;) / V/ (6)).
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By definition, T(8) =Q@®) V(0) 4+ U(0) sothat U(68) = T (6, )
(sinoe V(6,) = 0). Thus

A =T (8,)/V7/(08)
and our approximation becomes
R(8) = T(8)/V s o r, r+l
(8) = Q(e) + X Z 0 /eo .
r=0
In our case we note that the denominator of R ( 0 ) is
P—0 +q0=0-0){t —q(+ 0+ 62+ ... +0<)}

where k = 15 n (n — 1). On removing the common factor (I — 6) between
numerator and derominaior we have

8, (6)
T R(8) say
- I(8)
V(o)
n
where T(8) = 1 + q Z elr(Zn =1 _ 1+..,+qek
r=1
k-1 r
and  V(6) =1-gq J o =1-.., -qe*L.
r=0 .
Thus, Q( 8 ) = 06 4 ¢, for some suitable constant c.

The foregoing theory requires that V (6) should have a unique positive
root 6, of minimal absolute value, and our V () does indeed have such a root.

For consider the polynomial (1—8) V (8) = p—9 + gf*. Its zeros satisfy
the equation

P + qof = .
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This certainly has a root 6 = 1. Since p + q 0* is convex it will in general
have a second positive root 8, with0 < 6, < 1if kq > 1and 6,>> 1
ifkq < 1(and 6, = 1ifkq = 1).

lope = kq

%

The root g, is of course arootof V(@) =1 —q (1 + 0 + ... + 6 and it
is in fact the unique positive root of minimal absolute value, since

V(O | € a1 + |8 +...+ |0}

<al + 65+ ...+ 85) if [o] < o

O 0

= ]

so that no number § for which | 6 | < 6, can be a zero of V (0).

As regards the value of 0, if p is small a first approximation will be O,
a second one, using the iteration 6 (j41) = f (69), will be p, and a third p-qgp*.
This will be adequate for most purposes. (But will fail when p > 1 —1/k,
when 0, = 1).



N

We thus have
82(9) 20 +c + ..}.9...
1- e—eo
T .r,.r+l
=@+c-2%, ) O/0
= =0 9
vhere Oo - p + qpk
and : n
ir (2n-r-1)
1+q] 65
xo = - r:}
k=2 -1 b
q E reo
r=0
so that, to our degree of approximation,
Po Z=1=(0—p /0 .
4.5.—A more general inflow tramnsition matrix
Consider the (n x n) inflow transition matrix
r — — d
1 fo i | “'1 1 £2 oo l-fn_l 1
fo 0 0 vae 0 4]
L - 0 fl 0 e ee 0 o
0o o fz e 0 o
L o o o L fn-l OJ

This will generate an inflow distribution P (X; = r) = P,,r=0,1, ..
such thas



whence
p. = £, f fi 1 Po, =12 » N
n-1
where 1 =
/pg =1 + IZO Fofy «or £,

This, although far from possessing any generality, is a useful matrix to
work with, partly bzcause of its adaptability, and partly bscause under suitable
condition it allows us to remove the restriction of the inflows to a finite set of
values.

The mean inflow ., must satisfy u, << 1, where

n n
My = g rp. = pq g r £,£, ..o £,

whence, we must have

n-1

g rfof, ... f <1

for ergodicity. If we allow n —w o0 we must then ensure that the | are such that
aK
%r Ofl & fr < 1.

For the finite inflow case we obtain the following results for the determinantal
evaluations :

| H(6) —-I6] = (—1)"0"Q (6).
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where
n-1 ¢ £ .{:(r'l)
1-£ )1 eer Ty
ote) = -8 « (1~fy) * :zl( b il T
jo(a-1)
* to‘} ae !rl' .
° ¥ l - ¥ e%E(®
-16
fo ® {rix-1)
/ n r{r~
s Eofe o Eual .
where P(e) = 1 * ‘El Y -1

so that the generating function for the distribution of reservoir levels is

8.0 =(1—u, )(1—0O)P(6)/Q(0)
4.4.1 : Geometric inflows :

We now consider the special case of this model when
fop =f, = ... = f, = a. We then have for the inflows.
Po X, =r1)=a"p;,, =0, 1, ..., n,
a finite geometric distribution, which becomes a standard geometric distribution
when n = oo , For this case

Pe=Bax", r=0,1,..,,B=1—a«a

ane e = a/B.

whence, for ergodicity, o <I 5.

For such a geometric inflow distribution we find that

g,(8) = (B-a) (1-8)J(8)/B{pJ(0)-0}

I creir(r—l).
r=0

where J(6) =

From this formula we readily obtain the mean levet :



N7
Fo (Z) =gl (1) = 2+ &) /B2 (B— a )-

(It is interesting to compare the corresponding result in the absence of auto-
correlation in the inflow distribution : It is «*> (1—a) /B? (B—a). With somewhat

greater effort we may similarly obtain the variance of Z,

vare (Z) = @ (1+7a) /B*+ 2 a’(15 a+B) /B* (B—a) + 3¢° (1+a)
/B*(B—a).

To obtain the distribution of Z, we need to expand g, (6) as a power seties in@.

We have

g,(0) {q3(6) - 8} = (1-1y) (1-0)J(0).

Suppose
g o
g,(0) = gcre .

Differentiating repeatedly and setting § = 0 , we obtain the following

ecurrence Jelationship for the c,

paore_ + (B3P ©) - 1)e_; + 83 (o) cm2 2/2 !
+ 01Oy r3t +oir 83D @)c /-1

- =Amud o) /-, n=1,2,...

vhete  J(O) = 1+a, 3P = a2, 3P0 =0,
i) = 31a3, 3P0y =0, 1) =0, 3@ =6,

and, in general,

HD) 0) = (ar@+1)) ! e, r=1,2, ...
H ®@©0) = 0  otherwise.
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co = (B-a)/B%, ¢; = (B-a)a?/B3(1+a),
¢y = (B~0)a?/p*(1+e)2,
¢y = (B-a)a3(1-Ba?)/B%(1+0) 3,

C, = (B-a)a" (1-Ba“) /B8 (1+a)%,... .

4.5.2 : Poisson inflows.

If in the adaptable matrix of (4.5) we set

fo=a,f, =a/2,f, =a /3, .., f,_, = a/n we obtain for the equilibrium inflow
distribution a truncated Poisson distribution. On allowing n — <« we obtain
the Poisson distribution with parameter a. (& < 1).

In this case the generating function for the levels may be expressed in the

form

g.0)=(1—a) (1) Kk (6a)/{k®,a) —K(®, a)—8}

where

K(8,a) = ) ct*leir(r-l)/(l""l):.
r=0

and k’ = dK/d «.
After suitable manipulations we find for the probability of emptiness
g 0 =010—-=})/(1—Y a?)
and mean storage
g, () =d/2(1—0).

(it may be noted that in the corresponding reservoir with independent
aflows the probability of emptiness is (1—z) <, and the mean storage a%/2 (1—a).)
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SUMMARY

After drawing attention to the contrast between the assumptions made in
simple resevoir theory and the requirements of a realistic model the paper
concentrates on a compromise model involving (as a simplification) semi-infinite
capacity and (as a step towards realism) Markovian inflows, and considers for
this model a number of applications of the Odoom-Lloyd matrix generating

function for the asymptotic storage distribution.
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