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1. Let (s,) be a sequence of real numbers satisfying the conditions 0 <
s, << 1 for all n. For any interval 0 << a << b << 1 let I (x) denote its charac-

teristic function.

The sequence (s,) is called uniformly distributed if
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holds for every interval [ a, b ]. It is called well distributed if
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holds uniformly in n, for every interval [ a, b ].

From this we see that all well distributed sequences are at the same time
uniformly distributed.

The purpose of this work is to give an example to show that the converse
is not always true. To do this we shall use Cantor’s representation of real
numbers given by the following theorem, [1].

Theorem 1. Let (a,) be a given sequence of positive integers with a; > a;_,
for all i. Then any real number a can be represented uniquely in the form
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where the c; are integers with 0 << ¢; << a; —1.

2. Let {x} stands for x — [x] where [x] is the largest integer less than ¢
equal to x. Then we have the following special case of a theorem of Weyl, [2

Theorem 2. The set of «’s, 0 < « < 1, for which the sequence
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is uniformly distributed has measure 1.

We denote the above sequence by the letter S. We shall prove the follow{

ing theorem :

Theorem 3. The set of &’s , 0 << a << 1, for which the sequence S is wel

distributed has measure O.

For the proof of this theorem we need the following results in set theory

and measure.

Definition 1. Let p (E) denote the measure of a set E, and let E;, E,. ... be
measurable sets on the interval [0, 1]. Thesets E, E,, ... are called independent if
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for every finite class of distinct sets E,, k = 1, 2, ... , n.

Definition 2. Given the arbitrary sets E,, E,, ... , the upper limit of (E,); .,
if given by
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The Borel-Cantelli Lemma [3]. If (E,) is a sequence of independent sets,
then
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The law of nought or one, [4]. Suppose that E is a measurable set on [0, 1],
such that a relation of the form (X, X,, ...) € E remains true when a finite number
of the x; are replaced by others. Then the set E has either the measure 0 or
the measure 1.

In particular if E is a measurable set on [0, 1] with the property that « if
t = .b, b, b, ... is the infinite dyadic expansion of a point t € E ; then the point
obtained by altering a finite number of the b, also belongs to E » , then E has
either the measure 0 or measure 1.

We also need the following theorem due to Keogh, Lawton, and Petersen |5].

Theorem 4. The sequence S defined before is well distributed if, and only
if, the sequence

()
is well distributed.

3. Proof of theorem 3. Let (v,) be a sequence of natural numbers satisfy-
ing the condition

Vs = v, 4 [log, k] k=12,...

If the sequence S is well distributed then we cannot have, for instancs
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for infinitely many k. For if (8) were satisfied and I (x) is the characteristic
function of the interval [0, 4], we have :
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for infinitely many k and the sequence (f-) is not well distributed.
n
According to theorem 4, this means that the sequence S is not well distributed,

For a fixed integer n, it is clear that the probability for an a for which
cl‘.l

Py < 4 isequalto 4. At the same time, this probability is equal to the

c
measure of the set of a’s for which ;"— < i

n

It follows that the proba-
bility for an a for which
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This is equal to the measure of the set of a’s for; which (10) holds.

Denoting
this set by E, we have :

(e = (1/2)Elog2 (k+1 )]
(11) logz(kn)
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Fow let

According t= the choice of the sequence (v,) we have :

JA(L) = (1/2)D-°€22.] +[1°625:[+ eoe -F[:J.oga(m+1)]
n
= Q1P(Ek) ®

So that, by definition 1, the sets (E,) are independent.
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Also we have by (11)
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So, by the Boral-Cantelli lemma, we have
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That is the set of a for which (10) is satisfied for infinitely many k has
positive measure.

However, we have seen that if (10) is satisfied for infinitely many k, the
sequence S is not well distributed. If we denote by T the set of a’s for which

the sequence S is not well distributed, it follows that
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But we have proved that
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So T has also a positive measure.

Now we prove that T satisfies the hypotheses of the 0 or 1 law. If the
dyadic expansion of a point t ¢ T is changed in a finite number of places, this
means the addition (or subtraction) of a rational to the point t. But all rationals
when expanded as in (3) have only finitely many terms. That is c, == 0 for only
finitely many n. Hence when the dyadic expansion of t € T is altered in finitely
many places, the expansion (3) is altrred in finitely many places. But if t, is
obtained from t by altering finitely many terms in (3) t; e T as the sequence of

c
fractions (f) will be un-altered isave for a finite set of terms. Hence,
n

according to the particular case of the law of 0 or 1, the set T satisfies the hypo-
theses of this law and consequently has either the measure 0 or measure 1. But
we have proved that it has a positive measure. So this measure must be 1.

This completes the proof of theorem 3.
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