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INTRODUCTION

Let {B,} be a sequence of real numbers satisfying the conditions :

(1.1) Be = 0,0 < P < Ba ¢ 1 — Ba < qforalln.

A summability matrix method A = (a, ,) was defined by Burkill, (1), by
means of the following equations :
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3p » = 0 for n > m.

A sequence {s } is called (C, B,, k) limitable to the limit s if

: ]
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Putting B, = n for all n in (1.2) we get the well known Cesiro means of
order k.

Burkill, considered the relation between these new methods and each of
the Riemann’s methods (R, k, B,) and the Reisz methods (R, B, , k). For
definition of (R, k, B,) and (R, B,, k) see, for instance, (2) ).

From the relations, obtained by Burkill, many properties for the (R, k, B,)
and (R, B,, k) methods, can be extended at once to the (C, B,, k) methods.
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Here we wish to discuss some properties of the methods (C, B,, k), of which
we shall obtain proofs depending, directly, on the definition of these methods.

For reference we give the proof of regularity of these methods in the follow-
ing section.

2. Regularity of the methods : From the definition of (g,) and the matrix
A, it follows that :

(2.1) a, o = 0 for all m and &.

Also we have

PP Ba < Pae: < 9 B

from which we sce that P, increases to 0©.

Using theee facts we ges .
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(2.3) \.m,n < 2\\ & .”I Qm‘\\! -'“I ﬂm.z\...\l-lnl nm-k\
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In other words, the methods (C, B,, k) defined by (1.2), with conditions (1.1)
are regular. |

3. Strong regularity of tpe methods : A sequence {Sn} is called, by Lorentz,
(3), almost convergent to s if

lim s,a.sﬂa“"'"‘g.__z o

P oo »

holds uniformly in n.

A method which sums all almost comvergent sequences is called strongly
regular.



The following theorem is due to Lorentz, (3) :
Theorem 3.1 In order that the regular matrix method A == (a_,) be strongly
regular, it is necessary and sufficient that

(3 i 'go\ S 2 gl - O

Now we prove the following theorem :

Theorem 3.2. Let the sequence {B,} satisfy, besides ths conditions (1.1),
additional condition

B,1-0.3 8, 3-8, o ¥~
i.e.

(332) 2.n,1 > .n "n.z )

Then, under these conditions, the method A = (a_,,,) defined by (1.2) 1s strongly
riegular.

Proof : To prove this theorem we first show that the condition (3.2) implies
that a_ , = a,,04; for alln << m. We have :
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For all positive integral values of k, the quantity between squarc brackets is
positive. This can be proved by induction as follows :

For k = 1 we get
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Suppose this tesult is true for k. Then we have :
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Therefor a, , == 8,4+ foralln < m

It follows that.

2 l &a,n” mn.\‘ "‘."‘ o
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So., according to theorcm 3.1, the mﬂthod is strongly regular

T e R T e e, A S TNV ISR

4, The Borel property of the methods. A summablhty method is sa1d by Hill,
to possess the Borel property if it sums almost all sequences of 0’s and 1,s to
the value 1. The following theorem, by Hill, gives sufficient condtitons for
a method to have this property :

Theorem 4.1. A summability method A = (a, ,) has the Borel property if it
satisfies the following conditions :
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Now we prove the following theorem :

Theorem 4.3. The summability methed (C,B,.k), defined by (1.2) has the Borel
property.

Preof : First, condition (4.1) is satisfied from (2.2).
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Fer sondition (4.2), we have :
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So, according to theorem 4.1, we have the required result.

5. Summability of {sn a, (¥) } : If (s,) is a given sequence, a biunique mapping
of its infinite subsequences (sp) onto the interval Y = (0 < y <C 1) may be

obtained by defining y = o, @, &, a,... (radix 2) by means of the equations:

a, =1(a = n) and a, = 0 (n 55 n).

The inverse correspondence is evident if we agree to use only the infinite
representation of y. The phrase» almost all subsequences of (s,) » will then
mean that the corresponding subset of Y has measure one.

When {s n;} is replaced by {s, &, (¥) } where «, (v) is the n ¢4 digit in the
infinite dyadic expansion of y we have the following theorem of Hill :

Theorem 5.1. Let A be a summability method satisfying the two conditions
of Theorem 4.1. Then a bounded sequence {so} is summable A if and only if
almost all of the sequences {sa @. (¥) } are summable A.
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Since we have proved that the method (C,B,,k) satisfies the two conditions
mentioned in theorem 5.1, (Theorem 4.2), we can state the following theorem:

Theorem 5.2. A bounded sequence {s,,} is (C, B,,k) summable if and only if
the sequences (s, &, (y) } are summable (C, B,, k).*
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