The Effect of Initial Surface Profile on the Surface Roughness and Roundness in Ball Burnishing Process | ||||
JES. Journal of Engineering Sciences | ||||
Article 5, Volume 53, Issue 5, September and October 2025, Page 140-157 PDF (984.79 K) | ||||
Document Type: Research Paper | ||||
DOI: 10.21608/jesaun.2025.370426.1461 | ||||
![]() | ||||
Authors | ||||
Abdalrahman Mohamed Abdallah ![]() ![]() ![]() ![]() | ||||
1Department of Design and Production Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt | ||||
2Department of Mechanical Engineering, Faculty of Engineering, Shoubra, Benha University | ||||
3Department of Design and Production Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt. | ||||
4Department of Mechanical Engineering, Faculty of Engineering, Sinai University, Egypt | ||||
Abstract | ||||
Most of investigations in burnishing field are considered the effect of burnishing process conditions on the produced surface characteristics. This work investigates the effect of surface characteristics obtained from the previous turning machining process (initial surface profile ) on the resulted burnished surface characteristics of AISI 1025 . Specimens with different surface characteristics have been prepared using a turning process with different feed rates and depths of cut. The burnishing process was applied to these specimens with a constant burnishing condition. The surface characteristics considered in this study were surface roughness (Ra) and out of roundness. These surface characteristics were measured after both turning and burnishing. Surface roughness and out of roundness were greatly improved by burnishing process. The percentage of improvement in surface roughness ranged from 67% to 91%, while the reduction in out of roundness reached 75%. Initial surface profile resulted from the previous process has a considerable effect on the surface characteristics produced by burnishing process. | ||||
Keywords | ||||
Initial surface profile; Ball burnishing; Turning; Surface roughness; Out-of-roundness | ||||
References | ||||
[1] M. J. Rao N, C. A. Kesava Reddy, and R. P. Rao V, “The effect of roller burnishing on surface hardness and surface roughness on mild steel specimens,” International Journal of Applied Engineering Research, Dindigul, vol. 1, no. 4, pp. 777–785, 2011.
[2] A. Raza and S. Kumar, “A critical review of tool design in burnishing process,” Tribol Int, vol. 174, p. 107717, Oct. 2022, Doi: 10.1016/j.triboint.2022.107717.
[3] B. Huang, Y. Kaynak, Y. Sun, and I. S. Jawahir, “Surface layer modification by cryogenic burnishing of Al 7050-T7451 alloy and validation with FEM-based burnishing model,” in Procedia CIRP, Elsevier B.V., 2015, pp. 1–6. Doi: 10.1016/j.procir.2015.03.097.
[4] M. Bourebia. A. Bouri, H. Hamdadache, S. Achouri, L. Laouar, A. Gharbi, O. Ghelloudj, K. Bouhamla, “Study of the effect burnishing on superficial hardness and hardening of S355JR steel using experimental planning,” in Energy Procedia, Elsevier Ltd, 2019, pp. 568–577. Doi: 10.1016/j.egypro.2018.11.221.
[5] M. H. El-Axir, O. M. Othman, and A. M. Abodiena, “Improvements in out-of-roundness and microhardness of inner surfaces by internal ball burnishing process,” J Mater Process Technol, vol. 196, no. 1–3, pp. 120–128, Jan. 2008, Doi: 10.1016/j.jmatprotec.2007.05.028.
[6] V. Ashish, S. Prasanna Kumar Reddy, C. Kannan, R. Oyyaravelu, and A. S. S. Balan, “Burnishing of ultra-high molecular weight poly ethylene,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 7479–7486. Doi: 10.1016/j.matpr.2021.01.140.
[7] D. A. de Oliveira, A. M. Martins, F. de C. Magalhães, and A. M. Abrão, “Characterization of the topography generated by low plasticity burnishing using advanced techniques,” Surf Coat Technol, vol. 448, p. 128891, Oct. 2022, Doi: 10.1016/j.surfcoat.2022.128891.
[8] D. Mahajan and R. Tajane, “A Review on Ball Burnishing Process,” International Journal of Scientific and Research Publications, vol. 3, no. 4, pp. 1–8, 2013, [Online]. Available: www.ijsrp.org
[9] J. T. Maximov, G. V. Duncheva, A. P. Anchev, and M. D. Ichkova, “Slide burnishing—review and prospects,” International Journal of Advanced Manufacturing Technology, vol. 104, no. 1–4, pp. 785–801, Sep. 2019, Doi: 10.1007/s00170-019-03881-1.
[10] S. Malarvizhi, A. Chaudhari, K. S. Woon, A. S. Kumar, and M. Rahman, “Influence of Burnishing Axial Interference on Hole Surface Quality in Deep Hole Drilling of Inconel 718,” in Procedia Manufacturing, Elsevier B.V., 2016, pp. 1295–1307. Doi: 10.1016/j.promfg.2016.08.101.
[11] S. Swirad and R. Wdowik, “Determining the effect of ball burnishing parameters on surface roughness using the Taguchi method,” Procedia Manuf, vol. 34, pp. 287–292, 2019, Doi: 10.1016/j.promfg.2019.06.152.
[12] T. T. Nguyen, L. H. Cao, T. A. Nguyen, and X. P. Dang, “Multi-response optimization of the roller burnishing process in terms of energy consumption and product quality,” J Clean Prod, vol. 245, p. 119328, Feb. 2020, Doi: 10.1016/j.jclepro.2019.119328.
[13] J. V. Abellán-Nebot, C. Vila Pastor, and H. R. Siller, “A Review of the Factors Influencing Surface Roughness in Machining and Their Impact on Sustainability,” Sustainability, vol. 16, no. 5, p. 1917, Mar. 2024, Doi: 10.3390/su16051917.
[14] A. Skoczylas and K. Zaleski, “Study on the Surface Layer Properties and Fatigue Life of a Workpiece Machined by Centrifugal Shot Peening and Burnishing,” Materials, vol. 15, no. 19, p. 6677, Oct. 2022, Doi: 10.3390/ma15196677.
[15] L. Luca, S. Neagu-Ventzel, and I. Marinescu, “Effects of working parameters on surface finish in ball-burnishing of hardened steels,” Precis Eng, vol. 29, no. 2, pp. 253–256, Apr. 2005, Doi: 10.1016/j.precisioneng.2004.02.002.
[16] F. Kara, “Investigation of the Effect of Al2O3 Nanoparticle-Added MQL Lubricant on Sustainable and Clean Manufacturing,” Lubricants, vol. 12, no. 11, p. 293, Nov. 2024, Doi: 10.3390/lubricants12110393.
[17] A. A. Ibrahim, “An investigation for surface integrity of Al2O3/A356 composites using roller burnishing process on a milling machine,” in Applied Mechanics and Materials, 2013, pp. 37–44. Doi: 10.4028/www.scientific.net/AMM.330.37.
[18] A. Rami, F. Gharbi, S. Sghaier, and H. Hamdi, “Some insights on Combined Turning-Burnishing (CoTuB) process on workpiece surface integrity,” International Journal of Precision Engineering and Manufacturing, vol. 19, no. 1, pp. 67–78, Jan. 2018, Doi: 10.1007/s12541-018-0008-0.
[19] B. Sachin, S. Narendranath, and D. Chakradhar, “Enhancement of surface integrity by cryogenic diamond burnishing toward the improved functional performance of the components,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 41, no. 10, Oct. 2019, Doi: 10.1007/s40430-019-1918-1.
[20] V. Barahate, A. R. Govande, G. Tiwari, B. R. Sunil, and R. Dumpala, “Parameter optimization during single roller burnishing of AA6061-T6 alloy by design of experiments,” in Materials Today: Proceedings, Elsevier Ltd, 2022, pp. 1967–1970. Doi: 10.1016/j.matpr.2021.09.328.
[21] B. Tadic, S. Randjelovic, P. Todorovic, J. Zivkovic, V. Kocovic, I. Budak, D. Vukelic, “Using a high-stiffness burnishing tool for increased dimensional and geometrical accuracies of openings,” Precis Eng, vol. 43, pp. 335–344, Jan. 2016, Doi: 10.1016/j.precisioneng.2015.08.014.
[22] Y. L. Shi, X. H. Shen, G. F. Xu, C. H. Xu, B. L. Wang, and G. S. Su, “Surface integrity enhancement of austenitic stainless steel treated by ultrasonic burnishing with two burnishing tips,” Archives of Civil and Mechanical Engineering, vol. 20, no. 3, Sep. 2020, Doi: 10.1007/s43452-020-00074-6.
[23] H. Amdouni, H. Bouzaiene, A. Montagne, A. Van Grop, T. Coorevits, M. Nasri, A. Iost, “Experimental study of a six new ball-burnishing strategies effects on the Al-alloy flat surfaces integrity enhancement,” International Journal of Advanced Manufacturing Technology, vol. 90, no. 5–8, pp. 2271–2282, May 2017, Doi: 10.1007/s00170-016-9529-9.
[24] F. J. Shiou, S. J. Huang, A. J. Shih, J. Zhu, and M. Yoshino, “Fine Surface Finish of a Hardened Stainless Steel Using a New Burnishing Tool,” in Procedia Manufacturing, Elsevier B.V., 2017, pp. 208–217. Doi: 10.1016/j.promfg.2017.07.048.
[25] A. Saldaña-Robles, H. Plascencia-Mora, E. Aguilera-Gómez, A. Saldaña-Robles, A. Marquez-Herrera, and J. A. Diosdado-De la Peña, “Influence of ball-burnishing on roughness, hardness and corrosion resistance of AISI 1045 steel,” Surf Coat Technol, vol. 339, pp. 191–198, Apr. 2018, Doi: 10.1016/j.surfcoat.2018.02.013.
[26] A. J. Alshareef, I. D. Marinescu, I. M. Basudan, B. M. Alqahtani, and M. Y. Tharwan, “Ball-burnishing factors affecting residual stress of AISI 8620 steel,” International Journal of Advanced Manufacturing Technology, vol. 107, no. 3–4, pp. 1387–1397, Mar. 2020, Doi: 10.1007/s00170-020-05119-x.
[27] B., K. J. Zabkar, “An Investigation into Roller Burnishing Process,” Journal of Production Engineering, vol. 16, no. 2, pp. 45–48, 2013.
[28] G. V Duncheva, J. T. Maximov, V. P. Dunchev, A. P. Anchev, T. P. Atanasov, and J. Capek, “Single toroidal roller burnishing of 2024-T3 Al alloy implemented as mixed burnishing process,” Int J Adv Manuf Technol, no. 111, pp. 3559–3570, 2020, Doi: 10.1007/s00170-020-06350-2.
[29] T. Dyl, D. Rydz, A. Szarek, G. Stradomski, J. Fik, and M. Opydo, “The Influence of Slide Burnishing on the Technological Quality of X2CrNiMo17-12-2 Steel,” Materials, vol. 17, no. 14, p. 3403, Jul. 2024, Doi: 10.3390/ma17143403.
[30] T. A. El-Taweel and S. J. Ebeid, “Effect of hybrid electrochemical smoothing-roller burnishing process parameters on roundness error and micro-hardness,” International Journal of Advanced Manufacturing Technology, vol. 42, no. 7–8, pp. 643–655, Jun. 2009, Doi: 10.1007/s00170-008-1632-0.
[31] L. Hiegemann, C. Weddeling, N. Ben Khalifa, and A. E. Tekkaya, “Analytical prediction of roughness after ball burnishing of thermally coated surfaces,” in Procedia Engineering, Elsevier Ltd, 2014, pp. 1921–1926. Doi: 10.1016/j.proeng.2014.10.257.
[32] R. Bharti, A. Banerjee, R. K. Ranjan, and M. Kundu, “Experimental Analysis of Surface Roughness of Steel by Considering Variable Cutting Parameters for Turning,” International Journal of Applied and Structural Mechanics, vol. 04, no. 42, pp. 8–17, Mar. 2024, Doi: 10.55529/ijasm.42.8.17.
[33] O. Zurita, V. Di-Graci, and M. Capace, “Effect of cutting parameters on surface roughness in turning of annealed AISI-1020 steel,” Rev. Fac. Ing., vol. 27, no. 47, pp. 109–116, Jan. 2018, Doi: 10.19053/01211129.v26.n46.2017.7309.
[34] J. Zaghal, V. Molnár, and M. Benke, “Improving surface integrity by optimizing slide diamond burnishing parameters after hard turning of 42CrMo4 steel,” International Journal of Advanced Manufacturing Technology, vol. 128, no. 5–6, pp. 2087–2103, Sep. 2023, Doi: 10.1007/s00170-023-12008-6.
[35] C. Bandapalli, B. Mohanbhai Sutaria, D. Vishnuprasad Bhatt, and K. Kumar Singh, “Experimental Investigation and Estimation of Surface Roughness using ANN, GMDH & MRA models in High-Speed Micro End Milling of Titanium Alloy (Grade-5),” in Materials Today: Proceedings, 2017, pp. 1019–1028. [Online]. Available: www.sciencedirect.comwww.materialstoday.com/proceedings
[36] F. Kara, A. Takmaz, Ö. Erkan, and S. Filiz, “Response Surface Method Optimization of Hard Machining with Cryogenically Treated Cutting Tools: Surface Roughness, Cutting Force, Tool Wear, Rietveld Analysis, and Metallurgical Properties,” Steel Res Int, p. 2400850, 2024, Doi: 10.1002/srin.202400850.
[37] Z. Yuan, Z. Zhou, Z. Jiang, Z. Zhao, C. Ding, and Z. Piao, “Evaluation of Surface Roughness of Aluminium Alloy in Burnishing Process Based on Chaos Theory,” Chinese Journal of Mechanical Engineering (English Edition), vol. 36, no. 1, Dec. 2023, Doi: 10.1186/s10033-022-00828-8. | ||||
Statistics Article View: 1,385 PDF Download: 332 |
||||