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Abstract: Quercetin (QUE) is a natural flavonoid compound found in many herbal drugs. It has broad 

biopharmacological effects that are beneficial for treating liver diseases such as liver steatosis, liver fibrosis, 

and liver cancer. It can mitigate liver damage through its powerful antioxidative, anti-inflammatory, and 

antifibrotic properties. This study aimed to clarify the molecular regulatory effect of QUE on the expression 

levels of miRNA-124-3p in liver fibrosis induced by Carbon tetrachloride (CCl4). Twenty-four adult, male 

albino rats were randomly allocated into 4 groups (n=6); group I (control group), group II (QUE group; 

5mg/kg/day, p.o), group III (CCl4 group; 2mL/kg, twice a week, SC), and group IV (QUE+CCl4; received the 

same previous doses). After eight successive weeks, the rats were sacrificed and hepatic enzymes and 

oxidative stress biomarkers (MDA, SOD, and CAT) were evaluated using colorimetric methods, while IL-6, 

TNF-α, and TGF-β1 levels were measured using ELISA. In addition, the miRNA-124-3p expression levels 

were determined using qRT-PCR. Histopathological examination was performed. The results revealed that 

group IV (QUE+CCl4) treated rats exhibited a significant decrease in serum liver enzyme activities, 

histopathological alterations, hepatic MDA, and inflammatory markers (IL-6 and TNF-α), as well as a 

significant increase in hepatic SOD and CAT compared to group III (CCl4). Moreover, the hepatic levels of 

TGF-β1 were significantly decreased. In addition, there was an upregulation of miRNA-124-3p expression 

level. Furthermore, an inverse significant correlation was observed between miRNA-124-3p and TGF-β1. 

These results revealed that QUE exhibits hepatoprotective effects against CCl4-induced liver fibrosis by 

regulating miRNA-124-3p/TGF-β1 molecular axis. 
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1. INTRODUCTION 

Liver fibrosis is an abnormal wound-healing process 

secondary to a progression of chronic liver diseases 

represented by parasitic and viral infections, 

autoimmune hepatitis, alcohol abuse, non-alcoholic 

steatohepatitis, metabolic ailment, and cholestatic 

liver injury 1. Hepatic stellate cells (HSCs) are the 

central fibrogenic cell type implicated in liver 

fibrosis 2. During liver injury, HSCs are 

differentiated into proliferative myofibroblasts-like 

cells, resulting in a massive gathering of extracellular 

matrix (ECM) proteins leading to distortion of the 

hepatic physiological architecture 3. 

Interestingly, transforming growth factor-β (TGF-β) 

is a crucial fibrotic moderator tangled in liver 

fibrosis, significantly influencing its 

pathophysiology 4. It acts as a potent activator of 

HSCs 5, triggers expression of genes that link to 

fibrosis, and subsequently increases the deposition of 
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hepatic ECM components 6, 7. It also simultaneously 

inhibits matrix turnover by suppressing matrix 

metalloproteinases 8. Thus, attenuating TGF-β 

activity is an attractive target for combating liver 

fibrogenesis. 

Importantly, specific treatments for hepatic fibrosis 

are lacking. Nevertheless, natural compounds are 

suggested to slow down or reduce the advancement 

of the condition. In this context, quercetin (QUE), a 

prominent flavonoid found abundantly in vegetables 

and fruits, exhibits a variety of potential 

pharmacological and biological actions 9, 10. 

Recently several researchers have confirmed the 

effective role of microRNAs (miRNAs) in 

controlling liver fibrosis 11, 12. MicroRNAs are 

conserved, small non-coding RNAs of 

approximately 22 nucleotides in length, that function 

as regulators of gene expression after transcription. 

In this regard, miRNAs are integral to a wide range 

of biological processes, and their aberrant profiles 

are tied to the genesis and advancement of diverse 

illnesses, including liver fibrosis 13. Among these 

miRNAs, miRNA-124 has been shown to play varied 

functions in both normal and pathological processes, 

highlighting its importance in cellular regulation and 

disease mechanisms 14-16. As well as it has also been 

reported that miRNA-124 controls renal and 

pulmonary fibrosis 17, 18. 

In liver fibrosis, inflammation exhibits a principal 

role in the pathophysiology of the disease 19. 

Numerous investigations have emphasized the 

potential effect of miRNA-124 in mitigating 

inflammation by modulating the expression pattern 

of key inflammatory target genes, thus regulating 

inflammatory responses 20-22. Additionally, the recent 

study by Zhang in 2021 indicated that TGF-β1 was a 

target of miRNA-124 which can inhibit the 

upregulation of hypertrophic scar fibroblasts 23. 

This work was designed to clarify the molecular 

regulatory effect of QUE on the expression pattern of 

miRNA-124-3p and to assess its association with 

the fibrotic marker (TGF-β1) in liver fibrosis induced 

by CCl4. 

2. METHODS 

2.1. Chemicals and drugs  

Carbon tetrachloride (CCl4), QUE, and dimethyl 

sulfoxide (DMSO) were sourced from Sigma-

Aldrich (Co. St. Louis, MO, USA). CCl4 was 

dissolved in corn oil (50% v/v), while QUE was 

diluted in 10% DMSO (10mg/2ml). CCl4 dose was 

(2mL/kg) 24, while the QUE dose was (5mg/kg) 25. 

All the other compounds were of the highest 

available commercial quality. 

2.2. Ethical approval 

The experimental protocol and animal care 

procedures followed the guidelines established by 

Al-Azhar University’s Research Ethics Committee - 

Faculty of Pharmacy (Girls) - Egypt (serial approval 

number: PhD 328/2022). 

2.3. Animals 

Twenty-four male albino rats, each weighing (200 ± 

20 g), were obtained from the Nile Company for 

Pharmaceuticals & Chemical Industries, Cairo, 

Egypt. Rats had access to both pellets and tap water 

without restriction. Rats were adapted to the lab 

environment for two weeks. They were housed in 

plastic cages (6 rats/cage) in a standard environment 

of (12-12 h) light-dark cycle, (25 ºC temperature), 

and (60%-70% humidity). 

2.4. Experimental design 

Twenty-four rats were arbitrarily allocated into 4 

groups (n= 6) as follows: I) Control group: 

subcutaneously (SC) injected with corn oil (2mL/kg, 

twice a week) and received oral 10% DMSO 

(0.1/day), 8 weeks, II) QUE group: received oral 

QUE (5mg/kg/day, 8 weeks), III) CCl4 group: SC 

injected with CCl4 (2mL/kg, twice a week for 8 

weeks), IV) CCl4 + QUE group: SC injected with 

CCl4 (2mL/kg, twice a week) and received oral QUE 

(5mg/kg/day) for 8 weeks. 

Afterward, animals received anesthesia using light 

ether, and blood samples were obtained from rat’s 

retro-orbital sinuses. These samples were then 

centrifuged to isolate sera. These sera samples were 

then kept at -80 ◦C for subsequent biochemical 

analysis. The rat’s livers were removed and 

subsequently divided into three portions. The first 

portion was used for biochemical investigations 

(oxidative stress biomarkers and TGF-β1), the 

second portion was used for microRNA analysis, and 

the third portion was assigned for histopathological 

evaluation. 

2.5. Assessment of hepatotoxicity indices 

Colorimetric determination of the levels of aspartate 

aminotransferase (AST) and alanine 

aminotransferase (ALT) in serum was assayed with 

commercial kits (Biodiagnostics Company, Cairo, 

Egypt) following the manufacturers’ instructions 26.  

2.6. Assessment of oxidative stress levels 

Spectrophotometric determination of hepatic 

malondialdehyde (MDA), Catalase (CAT), and 

superoxide dismutase (SOD) levels were evaluated 

following the protocol articulated by Ohkawa et al. 
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27, Sinha 28, and Marklund and Marklund 29, 

respectively. 

2.7. Assessment of pro-inflammatory 

cytokines  

Tumor necrosis factor- α (TNF-α) and interleukin 6 

(IL-6) levels were assessed following the 

manufacturers’ instructions using a rat enzyme-

linked immunosorbent (ELISA) kits (Bioassay 

Technology Laboratory, Shanghai, China, [Cat. # 

E0135Ra] & [Cat. # E0764Ra], respectively). 

2.8. Assessment of fibrotic marker, TGF-β1: 

TGF-β1 levels were measured in liver homogenates 

following the manufacturers’ instructions using a rat 

sandwich ELISA kit (Cat. # MBS824788, 

MyBioSource, San Diego, California, USA.). 

2.9.  Assessment of miRNA-124 gene 

expressions: 

Three steps were carried out to quantify 

miRNA-124-3p gene expressions: 

2.9.1. Isolation of total RNA: 

Total RNA from hepatic tissue lysate was extracted 

with miRNeasy Mini Kit (QIAGEN®, USA, Cat. # 

217004). Then, nuclease-free water (Invitrogen, 

Germany) was utilized for the isolated RNA for 

further purification. All RNA aliquots' concentrations 

(ng/mL) and purities were measured using a 

NanoDrop®1000 spectrophotometer (ND®-1000, 

Thermo Scientific, Wilmington, DE, USA). The 

RNA samples were conserved at - 80 ºC 30. 

2.9.2. Reverse transcription and quantification of 

miRNA-124-3p expressions using qRT-PCR: 

The Complementary DNA (cDNA) synthesis and 

PCR amplification of miRNA-124 was performed in 

a single reaction tube using the miRCURY LNATM 

miRNA PCR Starter kit (QIAGEN®, USA, Catalog 

no.: 339320). The cDNA was produced efficiently 

from the extracted RNA using miRCURY RT 

Enzyme Mix containing a unique thermostable 

reverse transcriptase. The relative expression profiles 

of miRNA-124 were determined by a miRCURY 

SYBR® Green master mix (2X), SYBR Green dye, 

Taq DNA polymerases, and primers in the presence 

of ROX dye. The miRNA-124 expression was 

standardized to a small nuclear RNA RNU6 (U6). 

The amplification curve was determined from 65˚C 

to 95 ˚C. The miRNA-124 quantification relative to 

values of U6 was measured using the 2−ΔCt values, 

where ΔCt = (CtmiR-124 - CtU6). The fold changes 

of miRNA-124 were computed by using the 2−ΔΔCt 

method. The primers utilized were defined in (Table 

1). 

Table 1. The qRT-PCR primer's sequences 

Product  Primer's sequence (5′- 3′) 

miRNA-124-3p 

(target) 

Forward: 5'-GCGGCCGTGTTCACAGCGGACC-3' 

Reverse:  5'-GTGCAGGGTCCGAGGT-3' 

RNU6 (U6) 

(reference) 

Forward: 5′-CTCGCTTCGGCAGCACA-3′ 

Reverse: 5-AACGCTTCACGAATTTGCGT-3′ 

 

2.10. Histopathological examination  

Liver specimens were thoroughly rinsed and 

subsequently fixed in 10% neutral-buffered formalin. 

Following fixation, the samples were trimmed, 

dehydrated in graded alcohol solutions, cleared in 

xylene, and embedded in paraffin wax. Five μm 

sections were obtained using a rotary microtome. 

These sections were then subjected to staining with 

hematoxylin and eosin (H&E) before being 

examined under a light microscope 31. 

2.11. Statistical Analysis: 

The GraphPad Prism 9.0 (GraphPad Software, San 

Diego, CA, USA) for Windows® was used for all 

statistical analysis. The quantitative alteration among 

the studied groups will be evaluated by a one-way 

analysis of variance (ANOVA) test followed by post 

hoc Tukey's test for parametric variables. The 

correlation between parameters has been assessed via 

Pearson’s correlation coefficient. The criteria for 

statistical significance were at p < 0.05. 

3. RESULTS 

3.1. Effect of QUE on hepatic aminotransferases 

The hepatotoxicity of CCl4 was evidenced by a 3-fold 

and 4.5-fold increase in serum AST and ALT levels, 

respectively, compared to the control group. 

Interestingly, QUE (5mg/kg) co-treatment 

significantly decreased their levels by 38.1% and 

49%, respectively, relative to the CCl4 group (Fig. 1A 

and B). 

3.2. Effect of QUE on oxidative stress markers 

The effects of CCl4 and/or QUE (5mg/kg) 

administration on various oxidative stress markers 

are illustrated in (Fig. 2A, B, and C). The hepatic 

MDA levels in the CCl4 group exhibited a substantial 

elevation by 4.4-fold relative to the control group. 

Meanwhile, co-treatment with QUE (5mg/kg) 

significantly improved this surge by 36.4% in 

comparison to the CCl4 group (Fig. 2A). 

Furthermore, the CCl4 group exhibited a significant 

decrease in hepatic SOD and CAT activities by 

46.2% and 81.3%, respectively, in comparison to the 

control group. Nevertheless, as compared to the CCl4 

group, QUE (5mg/kg) co-treatment led to a marked 

increase in their activities by 1.2-fold and 3.3-fold, 

respectively (Fig. 2B and C). 
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Figure1. Effect of co-treatment with QUE (5mg/kg) on hepatotoxicity markers in response to CCl4-induced 

hepatic damage in rats. (A) AST and (B) ALT. All values are shown as mean ± SD. (a) and (b) Significance 

when compared to control and CCl4 groups, respectively at P < 0.05, as determined by the ANOVA test. AST: 

aspartate transaminase, ALT: alanine transaminase, CCl4: Carbon tetrachloride, QUE: Quercetin, ns: non-

significant. 

 

 

Figure 2. Effect of co-treatment with QUE (5mg/kg) on indicators of oxidative stress in response to CCl4-

induced hepatic damage in rats. (A) MDA, (B) SOD, and (D) CAT. All values are shown as mean ± SD. (a) and 

(b) Significance when compared to control and CCl4 groups, respectively at P < 0.05, as determined by the 

ANOVA test. MDA: malondialdehyde, SOD: superoxide dismutase, CAT: catalase, CCl4: Carbon tetrachloride, 

QUE: Quercetin, ns: non-significant. 
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3.3. Effect of QUE on pro-inflammatory indicators 

A notable characteristic of liver damage attributed to 

CCl4 is Inflammation. The CCl4 group had markedly 

elevated levels of IL-6 and TNF-α by 2.1-fold and 

2.5-fold, respectively, when compared to the control 

group. Conversely, QUE (5mg/kg) co-treatment 

significantly decreased the levels of these cytokines 

by 29.3% and 33.5%, respectively, when compared 

to the CCl4 group (Fig. 3A and B). 

3.4. Effect of QUE on fibrotic marker, TGF-β1 

The CCl4 group has a significant 3.1-fold elevation 

in TGF-β1 levels when compared to the control 

group. Alternatively, co-treatment with QUE 

(5mg/kg) significantly decreased its levels by 44.6% 

compared to the CCl4 group (Fig. 4). 

3.5. Effect of QUE on miRNA-124-3p expression 

The expression of miRNA-124-3p decreased 

significantly by 80.5% in the CCl4 group when 

compared to the control group. Conversely, QUE 

(5mg/kg) co-treatment significantly boosted 

miRNA-124-3p expression by 2.5-fold in 

comparison to the CCl4 group (Fig. 5). 

3.6. Correlation between miRNA-124-3p and 

TGF-β1 in the studied groups 

The correlation between miRNA-124-3p level and 

TGF-β1 was evaluated using the Pearson correlation 

coefficient. The results revealed a strong negative 

correlation between TGF-β1 and miRNA-124-3p, r= 

-0.9043 at p< 0.0001 (Fig. 6). Therefore, miRNA-

124-3p/TGF-β1 molecular axis may be effective as a 

therapeutic target for managing liver fibrosis. 

3.7. Effect of QUE on liver histopathological 

assessment 

Liver sections of the control and quercetin-only-

treated groups showed normal histopathological 

features, with no signs of fibrosis (Fig. 7A and B). 

On the contrary, the CCl4 group showed significant 

pathological alterations, including the presence 

of thick fibrous bands with moderate inflammatory 

infiltrate, multiple complete nodules with scattered 

apoptotic hepatocytes, and marked macro-vesicular 

steatosis (Fig. 7C). Notably, the CCl4+QUE group 

showed significant improvement in general 

histological features showed as an average central 

vein with intact hepatocytes in peri-venular area, and 

a mild degree of steatosis (Fig. 7D).  

 

 

4. DISCUSSION 
Liver fibrosis represents a major global health issue 

caused by various chronic liver diseases. 

Hepatocellular carcinoma and end-stage cirrhosis, 

the two primary contributors to liver-related 

mortality, are caused by liver fibrosis 11. CCl4 is 

recognized as a hepatotoxic agent that induces liver 

fibrosis in experimental models, and its effects 

closely resemble the clinical features of human liver 

cirrhosis, making it a preferred model among the 

different experimental approaches to studying liver 

fibrosis 32. Upon CCl4 administration, significant 

hepatic injury and dysfunction are observed, as 

evidenced by an elevation of serum liver 

transaminases due to the leaking of these enzymes 

from damaged hepatocytes into the bloodstream, a 

decrease in protein synthesis, and an alteration in 

lipid profile 33, 34. 

In the current study, serum ALT and AST were 

substantially augmented in the CCl4 group compared 

to the controls. These findings were significantly 

resolved by the co-administration of QUE. The 

inhibitory effect of QUE on aminotransferases aligns 

with prior investigations by Wang et al. and Ekpo 

et al., who reported that QUE preserves hepatic 

enzymes homeostasis by functioning 

as a membrane-stabilizing agent that attenuates liver 

cell injury 25, 35. 

Oxidative stress has emerged as a vital determinant 

in the pathogenesis of liver fibrosis. It initiates the 

fibrotic process through several mechanisms: it 

induces hepatocellular injury, stimulates the release 

of profibrogenic mediators, promotes recruitment of 

inflammatory cells, and directly activates HSCs, 

which collectively contribute to the advancement of 

fibrotic liver disease 36, 37. The hepatotoxic effects of 

CCl4 are primarily attributed to its metabolism by 

hepatic cytochrome P450 enzymes, which convert 

CCl4 into highly reactive trichloromethyl radicals. 

These radicals initiate a cascade of oxidative 

processes, including lipid peroxidation, leading to 

cellular membrane damage and subsequent release of 

inflammatory mediators 38, 39. MDA serves as a key 

lipid peroxidation product and a prominent 

biomarker for cellular oxidative damage, and an 

increase in MDA concentration reflects an 

accelerated rate of lipid peroxidation 35. In the current 

study, MDA level was markedly elevated in the CCl4 

group. This observation aligns with recent research 

by Abdelghffar et al., who reported a surge in MDA 

content in CCl4-intoxicated mice 40.  
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Figure 3. Effect of co-treatment with QUE (5mg/kg) on inflammatory markers in response to CCl4-induced 

hepatic damage in rats. (A) IL-6 and (B) TNF-α. All values are shown as mean ± SD. (a) and (b) Significance 

when compared to control and CCl4 groups, respectively at P < 0.05, as determined by the ANOVA test.  IL-

6: Interleukin-6, TNF-α: Tumor necrosis factor-alpha, CCl4: Carbon tetrachloride, QUE: Quercetin, ns: non-

significant. 

 
Figure 4. Effect of co-treatment with QUE (5mg/kg) on TGF-β1 in response to CCl4-induced hepatic damage 

in rats. All values are shown as mean ± SD. (a) and (b) Significance when compared to control and CCl4 groups, 

respectively at P < 0.05, as determined by the ANOVA test.  TGF-β1: Transforming growth factor-βeta 1, 

CCl4: Carbon tetrachloride, QUE: Quercetin, ns: non-significant. 

 
Figure 5. Effect of co-treatment with QUE (5mg/kg) on miRNA-124-3p expression in response to CCl4-induced 

hepatic damage in rats. The expression of miRNA-123-3p is based on qRT-PCR analysis. All values are shown 

as mean ± SD. (a) and (b) Significance when compared to control and CCl4 groups, respectively at P < 0.05, as 

determined by the ANOVA test. CCl4: Carbon tetrachloride, QUE: Quercetin, ns: non-significant. 
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                Figure 6. Association of miRNA-124-3p with TGF-β1 

 

Figure 7. Representative photomicrographs of liver sections stained with hematoxylin and eosin (H&E X400). 

(A) Liver tissues obtained from rats in the control group showing an average portal vein (PV) with an average 

portal tract (black arrow) and normal intact hepatocytes in the peri-portal area (blue arrow). (B) Liver tissues 

obtained from rats in the QUE-only-treated group showing an average central vein (CV) with normal intact 

hepatocytes in the peri-venular area (blue arrow). (C) Liver tissues obtained from rats in the CCl4 group showing 

thick fibrous bands with moderate inflammatory infiltrate (black arrow), multiple complete nodules (N) with 

scattered apoptotic hepatocytes (yellow arrow), and marked macro-vesicular steatosis (red arrow). (D) Liver 

tissues obtained from rats in the QUE+CCl4 group showing an average central vein (CV) with normal intact 

hepatocytes in the peri-venular area (blue arrow) and mild macro-vesicular steatosis (red arrow). 
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Additionally, CCl4 administration is strongly 

associated with a marked deficiency in antioxidant 

capacity. This correlation is observed by significant 

reductions in key antioxidant molecules and 

enzymes, including reduced glutathione, CAT, and 

SOD 41, 42. Our results revealed a substantial 

reduction in the hepatic profile of SOD and CAT 

following CCl4 administration. QUE co-treatment 

notably ameliorated these alterations, consistent with 

findings from a previous study by  El-Nekeety et 

al., who demonstrate QUE's potential to restore 

redox homeostasis due to its ability to reduce lipid 

peroxidation (MDA) and boost antioxidants 

production (glutathione peroxidase and SOD)  43. 

The interplay between oxidative stress and cytokine-

mediated inflammation is a crucial step in the 

progress of liver fibrosis 44. Elevated oxidative stress 

leads to the secretion of TNF-α, IL-6, and IL-1β 45. 

In particular, IL-6 has been linked to the severity of 

liver fibrosis, it can increase HSC survival, 

proliferation, and activity 45. Additionally, TNF-α 

exacerbates hepatocyte injury, promotes the stellate 

cell’s activation and proliferation, enhances the 

deposition of ECM components, amplifies 

inflammatory and fibrotic responses, and hence, 

contributes to liver fibrosis 46-49. In this research, the 

CCl4 group presented a notable inflammatory 

response confirmed by the upsurge of both IL-6 and 

TNF-α profiles. However, QUE displayed a 

distinctive anti-inflammatory function via lowering 

their levels, similar to previous studies 50, 51.  

TGF-β1 is a major contributor to liver fibrosis, which 

induces the transdifferentiate of stellate cells into 

fibrogenic myofibroblasts. It plays a role in all phases 

of disease progression, from the initiation of liver 

damage via inflammation and fibrosis to excessive 

hepatocyte apoptosis, cirrhosis, and cancer 2, 38, 52. In 

this work, it was found that the level of TGF-β1 was 

substantially elevated in the rats that were injected 

with CCl4 only and its level was decreased with QUE 

co-treatment, protecting against hepatic fibrosis. 

These results align with the prior research findings 

indicating that QUE can attenuate liver fibrosis in 

LX-2 cells (human immortalized HSC line) by 

reducing TGF-β1 expression 53. 

MicroRNAs represent another significant factor in 

hepatic fibrosis pathogenesis. The expression 

patterns of miRNAs offer a further precise reflection 

of pathophysiological conditions compared to 

mRNA expression patterns. Consequently, miRNAs 

have the potential to function as valuable diagnostic 

and prognostic biomarkers in hepatic fibrosis, while 

concurrently acting as targets for antifibrotic agents 
54, 55. Several recent research have displayed that 

QUE has beneficial effects on miRNA expression in 

fibrotic models 11, 56, 57. Therefore, we proceeded with 

our investigation by assessing the expression pattern 

of miRNA-124-3p in CCl4-induced liver fibrosis and 

QUE co-administration. MiRNA-124 was found to 

be downregulated in different fibrotic models 58, 59, as 

well as in hepatocellular carcinoma (HCC) 14. 

Moreover, miRNA-124 is known as an anti-

inflammatory miRNA and recently, it was reported 

that miRNA-124 overexpression can diminish HSCs 

cytokines secretion including TNF-α, IL-6, and IL-

1β, consequently decreasing the inflammatory 

responses 60.  

This finding demonstrated the anti-inflammatory 

role of miRNA-124-3p in liver fibrosis. 

Furthermore, a recent research study by Mahmoudi 

et al. verified the impact of miRNA-124 

overexpression on the TGF-β1 expression in the 

pathogenesis of non-alcoholic fatty liver disease. 

Real-time PCR results revealed that overexpression 

of miRNA-124 after transfection significantly 

reduced TGF-β1 expression 61. Another recent 

supportive investigation demonstrated that miRNA-

124-3p-enriched exosomes (ExomiRNA-124-3p) 

treatment reduces collagen accumulation, 

attenuates inflammation, and inhibits TGF-β1 

activity 45.  

In line with these studies, our findings showed that 

miRNA-124-3p expression decreased in CCl4-

intoxicated rats, but co-treatment with QUE leads to 

upregulation of its expression. Moreover, it should 

be noted that an inverse substantial association was 

observed between the expression of miRNA-124-3p 

and TGF-β1 level, showing that miRNA-124-3p 

can potentially prevent the progress of hepatic 

fibrosis via modulating the TGF-β1. As a result, 

therapeutic strategies focused on restoring the 

inappropriate expression of miRNAs are considered 

novel treatments for liver fibrosis 62, 63. Thus, the 

restoration of miRNA-124-3p expression can be a 

promising strategy for ameliorating liver fibrosis.  

5. CONCLUSION 

QUE alleviates liver fibrosis by inhibiting TGF-β1 

expression through overexpression of miRNA-124-

3p. Therefore, the regulation of the miRNA-124-

3p/TGF-β1 axis is a promising therapeutic approach 

for liver fibrosis. 
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