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Abstract

In this article, a thorough experimental investigation of three key spectral parameters is carried out to
asses their impact on spectral segmentation. These parameters are the concavity threshold, ¢, the new
segment size factor threshold, v and the number of eigenvectors, K, of the affinity. For each parameter,
experiments have been carried out to get an idea of the optimal value of the parameter, from the
perspective of both the segmentation quality and the computational efficiency. The general conclusion
of this work is that the optimal values of these parameters are model-dependent. The underlying
causes for what properties in the model specify the optimal value of the parameter need deeply involved
theoretical analysis, for which the present work has paved the way and provided intuitive pointers to

consider.
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1. Introduction

Three-dimensional mesh segmentation has
emerged as a fundamental problem in computer
graphics and geometric processing, with appli-
cations ranging from computer-aided design to
biomedical imaging and virtual reality. As 3D
scanning technologies and modeling tools be-
come increasingly sophisticated, the need for ro-
bust and efficient mesh segmentation algorithms
has grown correspondingly. Mesh segmentation
refers to the process of partitioning a 3D polyg-
onal mesh into meaningful sub-parts [1], either
based on topological characteristics, geometric
properties, or semantic considerations. Formally,
given a 3D mesh M = (V, E, F) consisting of ver-
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tices V, edges E, and faces F, the segmentation
problem aims to find a partition S = {Sy, ..., S¢}

The challenge of 3D mesh segmentation lies
in the inherent complexity of polygonal meshes,
which may contain noise, non-uniform sampling,
and various topological anomalies. Unlike image
segmentation where pixels are arranged in a reg-
ular grid, mesh segmentation must account for
irregular connectivity, varying vertex densities,
and complex surface geometries.

Early approaches to mesh segmentation relied
primarily on geometric criteria such as curva-
ture, dihedral angles, or geodesic distances [2].
While these methods achieve reasonable success
for simple objects, they often struggled with
complex shapes, where local geometric features
do not clearly correlate with semantic parts.

Traditional mesh segmentation algorithms can
be broadly categorized into five classes. First,
region-growing methods start from seed faces or



Damanhour Journal of Intelligent Systems and Informatics
Volume 2 —Issue 1

vertices and iteratively expand regions based on
similarity metrics. The expansion usually stops
when encountering sharp geometric discontinu-
ities or when certain size constraints are met [3].

Second, clustering-based approaches operate
by grouping mesh elements in feature space using
algorithms like k-means [4] or hierarchical clus-
tering [5]. The key challenge here lies in defining
appropriate distance metrics that capture both
geometric and topological properties.

Third, Watershed algorithms adapted from
image processing treat mesh curvature or other
attributes as height fields, flooding basins from
local minima until watershed boundaries emerge
at ridges [6].

Fourth, primitive fitting methods attempt to
approximate mesh regions with simple geometric
primitives (planes, cylinders, etc.), with segmen-
tation emerging from the fitting process [7].

Fifth, spectral segmentation methods, used in
the present article, have gained prominence as
they overcome many limitations of purely geo-
metric approaches by incorporating global shape
information through spectral graph theory [8].
These spectral techniques are rooted in the anal-
ysis of the mesh Laplacian matrix, which encodes
both geometric and topological properties of the
3D mesh under consideration.

A key component of spectral segmentation is
the Laplacian matrix L of a mesh, defined by

L=D-W (1)

where W is the adjacency matrix encoding ver-
tex connectivity (often with edge weights based
on geometric properties), and D is the diago-
nal degree matrix. The eigenvectors of L cap-
ture intrinsic geometric information about the
mesh, with the smallest non-zero eigenvalues cor-
responding to fundamental vibration modes of
the shape. Computing the first K eigenvectors of
the Laplacian, and projecting mesh vertices into
the spectral embedding space, then performing
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clustering in this reduced-dimensional space, are
typical activities in spectral segmentation.

The spectral approach offers several advan-
tages, such as global consistency, as spectral
methods consider the entire shape simultane-
ously, rather than relying on local decisions, and
noise robustness, as the Laplacian’s eigen struc-
ture tends to be stable under small perturba-
tions.

In this paper, we build upon our previous work
9] by systematically evaluating the impact of
the key spectral parameters on segmentation out-
comes. Our goal is to highlight how specific
choices in the spectral domain can significantly
or insignificantly affect the accuracy, robustness,
and interpretability of segmentation results. By
conducting comprehensive experiments on estab-
lished 3D mesh benchmarks [10], we provide in-
sights and guidelines for selecting spectral pa-
rameters that enhance segmentation quality.

2. Related Work

Recent advances in spectral mesh segmenta-
tion have focused on improving computational
efficiency, as well as combining spectral fea-
tures with learning-based approaches [11]. The
development of scale-invariant and anisotropic
Laplacian operators has further enhanced the
method’s applicability to real-world meshes with
non-uniform sampling and varying scales [12].

The authors of [13] present a spectral segmen-
tation approach optimized for large-scale meshes.
Their methodology employs edge collapse oper-
ations within a progressive mesh framework, de-
veloping a feature-preserving simplification tech-
nique that maintains the original mesh topology
while optimally retaining geometric features dur-
ing coarsening. Similarly, In [14] the authors
propose a 3D segmentation technique based on
Medial Axis Transform (MAT) analysis. Their
method leverages the rich geometric and struc-
tural information contained in the MAT repre-
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sentation to systematically detect and classify
part junctions in complex 3D shapes through an
efficient computational framework.

The authors of [15] propose spectral mesh seg-
mentation via {y gradient minimization, con-
structing a Laplacian matrix from local geomet-
ric/topological data and using its Fiedler vector
to enforce segment uniformity through gradient
optimization. Also, in [16] the authors present
a feature-aware region fusion method, first over
segmenting meshes via adaptive space partition-
ing, then iteratively merging regions using novel
intra/inter-region difference metrics and fusion
conditions based on shape features.

Comprehensive surveys on 3D mesh segmen-
tation methods can be found in [17], [18], [19],
[1], and [20], while [21] specifically focuses on the
segmentation of 3D point cloud data.

Several other studies have focused on develop-
ing adaptive concavity thresholding techniques
that adjust the threshold based on local image
characteristics. For instance, the author of [22]
present an improved approach for mesh segmen-
tation that extracts concave and convex feature
regions simultaneously. Similarly, the authors
of [23] introduce a spectral framework where lo-
cal geometry affinities are coupled with surface
patch affinities, and the segmentation relies on
processing each eigenvector of the heterogeneous
graph Laplacian individually. The authors of [24]
also highlighted the importance of concavity, de-
veloping an algorithm that favors segmentation
along concave regions, which is inspired by hu-
man perception.

Several methods have been proposed for select-
ing the optimal number K of eigenvectors. The
authors of [25] introduce a spectral clustering al-
gorithm that employs only informative/relevant
eigenvectors for determining the number of clus-
ters and performing clustering, measuring the
relevance of an eigenvector according to how well
it can separate the data set into different clus-
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ters. More recently, The authors of [26] have
proposed an approximate spectral clustering al-
gorithm with eigenvector selection and self-tuned
K, using two relevance metrics for estimating
K. As highlighted by [27], spectral clustering is
known to be particularly sensitive to its parame-
ter choices, including the number of eigenvectors
selected during the spectral embedding process.

The size of newly-generated segments directly
affects the trade-off between over-segmentation
and under-segmentation. A small segment
size threshold may lead to over-segmentation,
where objects are divided into many small seg-
ments. Conversely, a large segment size thresh-
old may result in under-segmentation, where dis-
tinct objects are merged into a single segment.
Therefore, selecting an appropriate segment size
threshold is crucial for achieving optimal segmen-
tation quality. The authors of [28] propose a new
algorithm for image segmentation and demon-
strate that the proposed algorithm is able to seg-
ment the objects properly regardless of their size.

3. Materials and Methods

In this section we provide a description of the
underlying spectral segmentation theory, in or-
der to get a feel for the experimental work which
is the core of the present article.

Having converted a 3D mesh from face speci-
fication to patch specification, the starting point
is to construct the affinity weight matrix W¥.
Next, initial segmentation is used to create ini-
tial surfaces to be used in a heterogeneous graph,
incorporating useful geometric relations. Lastly,
spectral segmentation of the 3D mesh is carried
out using the eigenvectors of W, described next.

The patch creation algorithm ends up form-
ing set P of patches of M patches, henceforth
referred to as nodes. In the sequel, patch i will
be considered a node and represented by a posi-
tive integer p; to identify it. We search for pairs
of patch nodes which are neighbors. Then the



Datnanhour Journal of Intelligent Systems and Informatics
Volume 2 —Issue 1

mesh can then be represented by an undirected
graph G = (P, E), where P = {p;} is a set of the
M nodes and E = {¢;;} is a set of the common
edges between the neighbor nodes of the graph.

Define /;; as the length of edge e;; and [ as the
average length of all edges e;; for all i and all
J. Denote by d; ; the distance between these the
two faces i and j. Then, we can find the affinity
parameter

2 :
< ifdzc
Xij = { f v (2)

otherwise

where ¢ is the concavity threshold. The value of
¢ to result in good segmentation will be explored
in this work.

With the above in mind, we will now construct,
for the graph, G, the patch-to-patch affinity ma-
trix

wP = [wl], i=1,2,..., M,

lijxij
WLI; = 0 1

is the weight of edge e;; and represents the affin-
ity between nodes p; and p;.

A heterogeneous graph is one that contains
different types of nodes and different types of
edges. The initial segmentation is produced us-
ing the k-means clustering algorithm [4] to gen-
erate N regions, each a set of patches. Let
R = {ri,ro,...,ry} be the set of regions gen-
erated by the k-means algorithm, with each r; a
node referring to the set of patches it contains.

An illustration of the resulting heterogeneous
graph is shown in Figure (1), where there are
M + N nodes of two types, those representing
patches and those representing regions, and 3
types of arcs, those representing patch-to-patch,
those representing patch-to-region, and those

if p; and p; are neighbor
otherwise .

@

@
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Figure 1. Heterogeneous graph model with rectangular
patches and diamond-shaped regions. Three edge types
visualize different connection strengths: thin (patch-
patch), medium (patch-region), and thick (region-region).

representing region-to-region.
The region-to-region affinity matrix W« can be
constructed (3) as follows.

_ Zierm,jern (ij))

mn L ’

with L being the number of edges common to the
two neighbor regions r,, and r,.

w

Using (3) and (4), we construct for the entire
heterogeneous graph, the (M +N) X (M + N) het-
erogeneous weight matrix
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and a;; are non-zero if patch i is in region j and
is zero otherwise, i.e.

g = c if piET;
Y71 0  otherwise,

with ¢ = 0.01 found [23] to yield a reasonable
concavity threshold.

This completes the construction of the hetero-
geneous graph, which forms the foundation for
the improved spectral segmentation.

3.1. Spectral segmentation

Now, we compute K eigenvectors, arbitrar-
ily labeled Uy, Us, ..., Uk and K corresponding
eigenvalues, A1, Ao, . . ., Ag eigenvalues. The com-
putation of the U; and A; is attained by solving

L"U; = 4,U; (7)

where the ij element of L is given by

i=M+N  H ¢ _ -
- wioifi=g
Iff = {_’ . (8)

H

Wi otherwise

being the elements of the unnormalized Lapla-
cian L of the heterogeneous affinity matrix W#.
When the eigenvectors are obtained, only the
first M elements of each eigenvector U; are con-
sidered, corresponding to the M patches in the
graph. It should be noted that each element U;;
of U; corresponds to a certain patch in the mesh.

The question remains open as to what value of
K provides valid segmentation and at the same
time does not deteriorate the computational ef-
ficiency (both time and space). This question is
to be answered practically in the present paper,
in particular in the next section.

Given a segment s, to divide it into two seg-
ments g; and g9, using an eigenvector U; =
(uj,, uio, ..., u;,), we first identify the set I' of
the elements of U; that correspond to the patches
of segment s;. Next we try to partition I' into

©

two subsets I'1 and I'y obtained by

812 = argmaxz \Uier, = Ui, 16, (9)

jEFl
.1 Tk

kely

where 6 = 0 if the patches corresponding to j and
k are not neighbors, 8 = exp(-wf(j, k)) if the
patches corresponding to j and k are neighbors
and the common edge between them is concave,
and 6 = 0.01 otherwise. The value 0.01 has been
found to give good segmentation results.

After partitioning a segment s; into two seg-
ments g1 and g9, it should be ensured that the
two segments meet these two segmentation con-
ditions:

e Size condition: For a segment to be valid, its
size, i.e. the number of patches it contains
must be no less than a certain threshold,
vM. That is, both |g1| > vM and |go| > vM
should hold.

o Connectedness condition: The patches in a
segment must be all connected, i.e. neigh-
bors to one another.

It is unclear in the existing literature what
value for the size factor v provides for good seg-
mentation results, which has motivated us to ex-
plore the impact of this factor on segmentation
quality.

4. Experimental Work

In this section, the impact of three key spec-
tral parameters on the segmentation will be in-
vestigated. These parameters are the concavity
threshold, ¢, the size factor threshold, v and the
number of eigenvectors, K. For each parameter,
experiments will be carried out to get an idea of
the optimal values of these parameters from the
perspective of both the segmentation quality and
the computational efficiency. The main objective
of this experimental investigation is lay the foun-
dation for a meticulous theoretical analysis. All
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the experiments of the present work have been
carried out on a computer with an Intel Core i7
processor, 2.4 GHz, equipped with 8 giga bytes
of RAM.

4.1. Concavity Threshold, ¢

To investigate the impact of the value of the
concavity threshold, ¢, an arbitrary model will
be chosen and the value of ¢ will be changed, till
an accurate segmentation evolves and beyond.
The model chosen for this experiment is that of
a hand. The aim of the experiment is to show
that there is an optimal value of ¢, where values
above and below result in segmentation errors.
The results of this experiment are displayed in
two figures. Figure (2) shows a visual assess-
ment of the impact of different values of ¢ on
the segmentation of the hand model. As can
be seen, the optimal value of ¢ for this model
is 0.08. Values above and below this value result
in segmentation errors as can be seen. Besides
the visual display of the impact of ¢, Figure (3)
shows two quantified measures of the quality of
segmentation for all the values of ¢ used in this
experiment, Rand index and cut discrepancy er-
ror. Both measures indicate that ¢ = 0.08 pro-
vides the optimal segmentation.

4.2. Newly-generated Segment Size Factor
Threshold, v

To investigate the impact of the value of the
size factor threshold, v, an arbitrary model will
be chosen and the value of v will be changed, till
an accurate segmentation evolves and beyond.
The model chosen for this experiment is that of
a pair glasses. The aim of the experiment is to
show that there is an optimal value of v, where
values above and below result in segmentation
errors.

@

(¢) ¢=0.079 (d) ¢ =0.080

(e) ¢ =0.081

(f) ¢ =0.085

Figure 2. Hand segmentation using different values of
concavity threshold, ¢. The optimal is ¢ = 0.08.
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Figure 3. Rand index and cut discrepancy error for dif-
ferent values of the concavity threshold, ¢, used in the
segmentation of the hand model.
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\

(¢) v=0.10

Figure 4. Glasses segmentation using different values of
size factor threshold, v. The optimal is v = 0.05.
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Figure 5. Rand index and cut discrepancy error for dif-
ferent values of the size factor threshold, v, used in the
segmentation of the glasses model.

The results of this experiment are displayed
in two figures. Figure (4) shows a visual assess-
ment of the impact of different values of v on
the segmentation of the glasses model. As can
be seen, the optimal value of v for this model is
0.05. Values above and below this value result
in segmentation errors as can be seen. Besides
the visual display of the impact of v, Figure (5)
shows two quantified measures of the quality of
segmentation for all the values of v used in this
experiment, Rand index and cut discrepancy er-
ror. Both measures indicate that v = 0.05 pro-
vides the optimal segmentation.

4.3. Number, K, of Figenvectors

To investigate the impact of the value of the
number of eigenvectors, K, three arbitrary mod-
els will be segmented and the value of K will be
changed, till an accurate segmentation evolves.
Unlike the above two parameters, ¢ and v, here
once the accurate segmentation is obtained, no
higher values of K are used. That is because
the segmentation will remain accurate no matter
how bigger K is made. However, the larger the
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K the worse the computational efficiency (time
and space).

The results of this experiment are displayed in
three figures. Figure (6) shows a visual assess-
ment of the impact of different values of K on
the segmentation of an octopus model. As can
be seen, the optimal value of K for this model
is 10. As can be seen, the two values below this
value result in segmentation errors. By contrast,
the value above, K = 15, does not affect the seg-
mentation quality, either positively or negatively,
as can be seen, but of course degrade the com-
putational efficiency. Figure (7) shows a visual
assessment of the impact of different values of K
on the segmentation of a hand model. As can
be seen, the optimal value of K for this model
is 5. As can be seen, the two values below this
value result in segmentation errors. By contrast,
the value above, K = 10, does not affect the seg-
mentation quality, either positively or negatively,
as can be seen, but of course degrade the com-
putational efficiency. Figure (8) shows a visual
assessment of the impact of different values of K
on the segmentation of a chair model. As can be
seen, the optimal value of K for this model is 4.
As can be seen, the two values below this value
result in segmentation errors. By contrast, the
value above, K = 10, does not affect the segmen-
tation quality, either positively or negatively, as
can be seen, but of course degrade the computa-
tional efficiency.

In conclusion, a large K parameter degrades
the segmentation efficiency (space and time).
However, a sufficiently small K can lead to an er-
roneous and invalid segmentation. Accordingly,
it is important to identify the optimal value of
K that guarantees valid segmentation and at the
same time does not deteriorate the efficiency.

5. Conclusions

In this article, a thorough experimental inves-
tigation of three key spectral parameters is car-

(¢) K=10 (d) K=15

Figure 6. Number K of eigenvectors used to segment an
octopus model. The optimal is K = 10.

(a) K=3 (b) K=4

(c) K=5 (d) K=10

Figure 7. Number K of eigenvectors used to segment a
hand model. The optimal is K = 5.
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(a) K=2 (b) K=3

(c) K=4 (d) K=10

Figure 8. Number K of eigenvectors used to segment a
chair model. The optimal is K = 4.

ried out to asses their impact on spectral seg-
mentation. These parameters are the concavity
threshold, ¢, the size factor threshold, v and the
number of eigenvectors, K. For each parame-
ter, experiments have been carried out to get an
idea of the optimal value of the parameter, from
the perspective of both the segmentation quality
and the computational efficiency. The general
conclusion is that the optimal value of these pa-
rameters are model-dependent. The underlying
causes for what properties in the model specify
the optimal value of the parameter need deeply
involved theoretical analysis, which is intended
to be the topic of future work. The present study
has only paved the way for such analysis, provid-
ing intuitive pointers to focus on.
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