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Abstract 

A compound on miscible fluid jet's magneto hydrodynamics (MHD) stability is discussed. For that model, 

which incorporates fluid inertia, capillary forces, and electromagnetic forces, a general eigenvalue relation is 

derived. Small axisymmetric disturbances are the only ones that cause the model to be capillary unstable, and the 

rest of the disturbances are stable. The attractive fields inside and outside to the gas-mantle fly have consistently a 

settling impact. The radii proportion of the concentric planes assumes a significant part in the (unsteadiness) 

security states and are (diminishing) expanding with expanding attractive field power as the outside span is a lot 

bigger than the inside range; under certain limitations of the radii proportion or more a specific worth of the 

attractive field the slim precariousness is overlooked and totally smothered and afterward dependability sets in. 

The last option result is checked logically and affirmed mathematically for the situation where the barrel shaped 

surface of the external stream is sited at endlessness. 

 

Keywords:  Magnetic Field, Oscillating and Self-Gravitating, Double-fluid . 

1. Introduction 

Chandrasekhar and Fermi [1] have been regarded as pioneers of establishing the principle of self-gravitating 

instability for a complete fluid jet enclosed in a gravitationally low-inertia medium. This can be   derived using the 

normal mode analysis, which is originally   attributed to Chandrasekhar [2]. Such a complete analysis is related to 

the influence of surface tension whether acting separately or combined with other factors. In our present work, we 

are going to study the hydrodynamic stability on a fluid cylinder caused by various acting forces. Meanwhile, several 

studies related to this in this field of stability theory are quite relevant. 

o Moreover, it is worth mentioning that Chandrasekhar [2], investigated the effects of a constant magnetic 

field on the gravitational instability of a liquid jet for small axisymmetric perturbations.  Such a type of 

studying the self-gravitating instability of a liquid jet is inevitable especially by applying the method of 

presenting solenoidal vector in a sense of existing on poloidal and toroidal quantities. Also, Radwan [3] has 

produced several extensions for it as well as the number of other models that incorporate additional 

electromagnetic or electrodynamic forces [11-13]. Now, in our context, we are going to examine the effect 

of the magneto gravitational stability for flowing, coaxial fluid cylinders that are magnetised, with twice 

disrupted interface. This phenomenon may be intriguing for applying geological drilling operations on the 

earth's crust. Such a study may be utilised within internal gas cylinder flowing through cylindrical oil which 

will be discussed in our future work. 
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2. The underlying Problem 

The fluid is assumed to be incompressible, non-viscous, and non-dissipative of primality coefficient. We 

consider a fluid cylinder with a uniform cross-section of (radius𝑅0). The fluid contains a homogeneous axial 

magnetic field that surrounds the fluid jet and moves little. 

𝐻0
(𝑖)

= (0,0, 𝐻0)     (1) 

Additionally, the transversely varying electric field is permeating the nearby self-gravitating tenuous medium. 

𝐻0
(𝑒)

= (0,0, 𝛼𝐻0)  (2) 

The fluid is thought to be flowing with an oscillating velocity where 𝐻0 the magnetic field’s intensity is and is a 

parameter. 

 

𝑢0 = (0,0, 𝑈𝑐𝑜𝑠𝑐𝑜𝑠 Ω𝑡 )  (3) 

 

The fluid's oscillation frequency at time zero is Ω.U is the amplitude of velocity𝑢0. 

The fluid cylinder's axis coincides with the z-axis, and the components of𝐻0
(𝑖)

,𝐻0
(𝑒)

 and 𝑢0 are taken into 

consideration along the cylinder coordinates (r,𝜑, z). The fluid is subject to the combined effects of self-gravitating, 

magneto dynamic, and pressure gradient forces. 

Shown in Fig.1. 

 

 

 

 

 

 

 

 

Fig.1.Self-gravitation magneto dynamic cylindrical Fluid sketch is the basis for the stability of the present model. 

 

 

𝜌 [
𝜕𝑢

𝜕𝑡
+ (𝑢 . 𝛻 )𝑢 ] =  −𝛻𝑃 + 𝜌𝛻𝑉 +  𝜇(𝛻˄𝐻)˄𝐻                                                     (4) 

𝛻. 𝑢 = 0                                                                                                                                  (5) 

𝜕𝐻

𝜕𝑡
= 𝛻˄(𝑢˄𝐻)   (6) 

𝛻. 𝐻 = 0   (7) 

φ 

r 

H0
(e)

= (0 ,0, αH0 ) 

H0
i = (0 , 0 , H0) 
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𝛻2𝑉𝑖 =  −4 𝜋𝜌𝑖𝐺  (8) 

𝛻. 𝐻(𝑒) = 0    (9) 

𝛻˄𝐻(𝑒)=0    (10) 

𝛻2𝑉𝑒 =  −4 𝜋𝜌𝑒 𝐺  (11) 

 

Where                                 𝑁𝑠 =
𝛻𝑓(𝑟,𝜑,𝑧;𝑡)

|𝛻𝑓(𝑟,𝜑,𝑧;𝑡)|
             (12) 

 

The variables u, p, T, and Ns stand in for the fluid's velocity vector, kinematic pressure, surface tension 

coefficient, normal to the fluid interface as a unit vector. 

Where 

F(r,𝜑, 𝑧; 𝑡) =0   (13) 

 

3. State of equilibrium 

 
Equation (4) can be written as 

[𝜌[
𝜕𝑢

𝜕𝑡
+ (𝑢. 𝛻)𝑢]]𝑖.𝑒 = −𝛻𝛱𝑖.𝑒  (14) 

Where 

𝛱𝑖.𝑒 = [𝑝 + 𝜌𝑉 +
𝜇

2
(𝐻0. 𝐻0)]𝑖.𝑒  (15) 

Where π stands for total magneto hydrodynamic pressure. The basic Equations (4) - (15) are resolved by applying 

the boundary condition to Equations (1) through (3) in their unperturbed states. At 𝑟 = 𝑅0we get 

𝛱0 = 𝑝0 − 𝜌𝑉0 +
𝜇

2
(𝐻0. 𝐻0) = 𝑐𝑜𝑛𝑠𝑡.   (16) 

But the balance of the pressure 𝑝0 =  𝛱0 + 𝜌𝑉0 −
𝜇

2
(𝐻0. 𝐻0) 

The equilibrium's self-gravitating potentials  𝑉0 and 𝑉0
(𝑒)

  satisfy 

𝛻2𝑉0
(𝑖)

= -4𝜋𝐺𝜌   (17) 

𝛻2𝑉0
(𝑒)

= −4𝜋𝐺𝜌   (18) 

The solutions of equations (17), (18) 

 

 

                   𝑉0 = −𝜋𝜌𝐺𝑟2 + 𝑐1             (19) 

𝑉0
(𝑒)

= −𝜋𝜌𝐺𝑟2+𝑐2                         (20) 
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Where the integration constants𝑐1,𝑐2 and 𝑐3 must be determined in conjunction with the boundary 

conditions.𝑐1 = 0 
 

𝑐2 = 𝜋𝐺𝑅0
2[𝜌𝑒 − 𝜌𝑖]                  (21) 

 

Therefore 

 

                                𝑉0 = −𝜋𝐺𝜌𝑖𝑟2                (22) 

𝑉0
(𝑒)

= −𝜋𝐺𝜌𝑒𝑟2 − 2𝜋𝐺𝑅0
2(𝜌𝑒 − 𝜌𝑖) [𝑙𝑛𝑙𝑛 (

𝑟

𝑅0
) −

1

2
]                 (23)   

   

By balancing the pressure over the boundary surface, r=𝑅0 rating, the fluid pressure 𝑃0 in the equilibrium state is 

established. 

 

              𝑝0
𝑖 = −𝜋𝐺𝜌𝑖[𝜌𝑖(𝑟2 − 𝑅0

2) + 𝜌𝑒𝑅0
2] +

𝜇

2
𝐻0

2                              (24)            

                

                𝑝0
𝑒 = −𝜋𝐺𝜌𝑒 [𝜌𝑒𝑟2 − 2𝑅0

2(𝜌𝑖 − 𝜌𝑒) [𝑙𝑛𝑙𝑛 (
𝑟

𝑅0
) −

1

2
]] +

𝜇

2
𝛼𝐻0

2             (25) 

 

 

4. Perturbed State 

 

It is possible to construct any dimensionally scale Q(r, φ, z; t) as for small departures from the equilibrium state: 

Q(r,𝜑, 𝑧; 𝑡) =𝑄0(𝑟) + 𝜀(𝑡)𝑄1(𝑟, 𝜑, 𝑧) + ⋯  (26) 

Where 

𝑄1 = 𝜀0𝑞1(𝑟)𝑒𝑥𝑝𝑒𝑥𝑝 (𝜎𝑡 + 𝑖(𝑘𝑧 + 𝑚𝜑))   (27) 

The modified form of the cylindrical interface's formula is provided by 

r=𝑅0 + 𝑅1 + ⋯   (28) 

With 

𝑅1 = 𝜀(𝑡)𝑒𝑥𝑝𝑒𝑥𝑝 (𝑖(𝑘𝑧 + 𝑚𝜑))   (29) 

Where 

𝜀(𝑡) = 𝜀0𝑒𝑥𝑝𝑒𝑥𝑝 (𝜎𝑡) 
The height of the surface wave measured from the un-perterbuted state. From eq. (26) and (29) in the basic 

equations (4) - (14), the pertinent perturbation equations are given by 

 

[𝜌 [
𝜕𝑢

𝜕𝑡
+ (𝑢0. 𝛻)𝑢1] − 𝜇(𝐻0. 𝛻)𝐻1]𝑖 = −𝛻𝛱1

𝑖   (30) 

Where 

[𝛱1]𝑖 = [𝑝1 − 𝜌𝑉1 + 𝜇(𝐻0. 𝐻1)]𝑖  (31) 
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𝛻. 𝑢1
𝑖 =0    (32) 

[
𝜕𝐻1

𝜕𝑡
]𝑖 = [(𝐻0. 𝛻)𝑢1 − (𝑢0. 𝛻)𝐻1]𝑖  (33) 

𝛻. 𝐻1
𝑖 = 0    (34) 

𝛻2𝑉1
𝑖 = 0   (35) 

A system similar to (30) - (35) may be produced for the outside of the self-gravitating dielectric fluid cylinder.  

For such a perturbed quantity   Q(r,𝜑, 𝑧; 𝑡) may be described as 

Q(r,𝜑, 𝑧; 𝑡) =𝑞1(𝑟)𝑒𝑥𝑝𝑒𝑥𝑝 (𝜎𝑡 + 𝑖(𝑘𝑧 + 𝑚𝜑)) (36) 

From Laplace equation in cylinder coordinate equation 

𝑉1
(𝑖)

= 𝐴𝜀0𝐼𝑀(𝑥)𝑒𝑥𝑝𝑒𝑥𝑝 (𝜎𝑡 + 𝑖(𝑘𝑧 + 𝑚𝜑)), (37) 

𝑉1
(𝑒)

= 𝐵𝜀0𝑘𝑚(𝑥)𝑒𝑥𝑝𝑒𝑥𝑝 (𝜎𝑡 + 𝑖(𝑘𝑧 + 𝑚𝜑)). (38) 

Thus, from equations (34), (35) we get 

𝐻1 =
𝑖𝑘𝐻0

(𝜎+𝑖𝑘𝑈𝑐𝑜𝑠𝑐𝑜𝑠 Ω𝑡 )
𝑢1  (39) 

By take the divergence to eq. (31) we get 

𝛻2𝛱1
(𝑖)

= 0,   (40) 

In which 

 

𝐻1
(𝑒)

= 𝛻𝛹1
(𝑒)

   (41) 

And Equation (38) becomes 

𝛻2𝛹1
(𝑒)

= 0         (42) 

Since the fluid is incompressible, in viscid and irrational 

𝑢1 = 𝛻𝛷   (43) 

Combining equations (33), (44) 

𝛻2𝛷1 = 0    (44) 

 

From Equation 28), the variable 𝛷1 , 𝜋1𝑎𝑛𝑑 𝛹1 
 

Therefore, the non-singular solutions of equations (40), (41) and (44) are obtained in the following way: 

ɸ1
(𝑖)

= 𝑐4𝜀0𝐼𝑚(𝑘𝑟)𝑒𝑥𝑝(𝜎𝑡 + 𝑖(𝑘𝑧 + 𝑚𝜑)) (45) 

𝛱1
(𝑖)

= 𝑐5𝜀0𝐼𝑚(𝑥)𝑒𝑥𝑝 (𝜎𝑡 + 𝑖(𝑘𝑧 + 𝑚𝜑)) (46) 

𝛷1
(𝑒)

= 𝑐6𝜀0𝑘𝑚(𝑥)𝑒𝑥𝑝 (𝜎𝑡 + 𝑖(𝑘𝑧 + 𝑚𝜑))                                                             (47) 

𝛱1
(𝑒)

= 𝑐7𝜀0𝑘𝑚(𝑥)exp (𝜎𝑡 + 𝑖(𝑘𝑧 + 𝑚𝜑))  . (48) 

Where𝑐4,𝑐5 ,𝑐6 , and 𝑐7 are integration constants and m is the first and second types of order, 𝐼𝑚(𝑘𝑟)and𝑘𝑚(𝑘𝑟) 

are Bessel functions.  

Where (x=k𝑅0) 
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5. Boundary conditions 

Now, it is worth mentioning that the solution of the fundamental equation (4) and (14) must satisfy the boundary 

conditions. Simple equations in the un-perterbuted state by Equations (1-3), (17) and (23-26) while in perturbed 

state given by (47) and (48) 
 

5.1.1. Magnetic condition 

 
Due to considering the equation of motion is affected magnetically, this will add up a vital factor in considering 

the boundary condition, which regulates along the fluid the fluid contact. This issue is appearing as the normal 

magnetic field component to continuous at𝑟 = 𝑅0. 

Which is expressed as follows 

𝑁0. 𝐻1
(𝑖)

+ 𝑁1. 𝐻0
(𝑖)

= 𝑁0. 𝐻1
(𝑒)

+ 𝑁1. 𝐻0
(𝑒)

                                       (49) 

Such that 

𝑁0 = (1,0,0)          ,     𝑁1 = (0,
−𝑖𝑚

𝑅0
, −𝑖𝑘) (50) 

Then, 

𝑐6 =
𝑖𝛼𝐻0

𝑘𝑚
\ (𝑥)

 Where   (x=kr)  (51) 

5.1.2. Kinematic State 

 

The typical element of the fluid's velocity and the velocity of the perturbed boundary fluid connection must be 

similar. (29) At 𝑟 = 𝑅0  i.e. 
 

𝑢1𝑟 = (𝜎 + 𝑖𝑘𝑈𝑐𝑜𝑠𝑐𝑜𝑠 Ω𝑡 )𝜀0𝑒𝑥𝑝𝑒𝑥𝑝 (𝜎𝑡 + 𝑖(𝑘𝑧 + 𝑚𝜑))  (52) 

Combining eq. (57) 

𝑢1𝑟 =
𝜕ɸ1

𝜕𝑟
 

We get 

 

𝑐4 =
(𝜎+𝑖𝑘𝑈𝑐𝑜𝑠𝑐𝑜𝑠 Ω𝑡 )

𝑘 𝐼𝑚
\ (𝑥)

  (53) 

From eq. (31), (40) we get 

 

𝜌 [
𝜕𝑢1𝑟

𝜕𝑡
+ 𝑈𝑐𝑜𝑠𝑐𝑜𝑠 Ω𝑡 

𝜕𝑢1𝑟

𝜕𝑧
] −

𝑖𝑘𝜇𝐻0
2

(𝜎+𝑖𝑘𝑈𝑐𝑜𝑠𝑐𝑜𝑠 Ω𝑡 )

𝜕𝑢1𝑟

𝜕𝑧
= −

𝜕𝛱

𝜕𝑟
 (54) 

From which we get 
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𝑐5 =
−𝜌𝑖

𝑘𝐼𝑚
՝ (𝑥)

[𝜎2 + 2𝑖𝑘𝜎𝑈𝑐𝑜𝑠𝑐𝑜𝑠 Ω𝑡 − 𝑖𝑘𝑈Ω𝑠𝑖𝑛𝑠𝑖𝑛 Ω𝑡 − 𝑘2𝑈2𝑐𝑜𝑠2Ω𝑡 ] −
𝜇𝑘𝐻0

2

𝐼𝑚
՝ (𝑥)

   

 (55) 

 

 

 

 

 

 

5.1.3. Self-gravitating conditions 

 

i. The equilibrium surface must have a continuous self-gravitating potential. 

At 𝑟 = 𝑅0 

𝑉1 + 𝑅1
𝜕𝑉0

𝜕𝑟
= 𝑉1

(𝑒)
+ 𝑅1

𝜕𝑉0
(𝑒)

𝜕𝑟
  (56) 

ii. The self-gravitating potential's derivative needs to be continuous over the surface of the initial equilibrium   at 

𝑟 = 𝑅0 

𝜕𝑉1

𝜕𝑟
+ 𝑅1

𝜕2𝑉0

𝜕𝑟2 =
𝜕𝑉1

(𝑒)

𝜕𝑟
+ 𝑅1

𝜕𝑉0
(𝑒)

𝜕𝑟
  (57) 

Sub. From eqs. (22), (23), (28), (37) and (38) we get 

A=4𝜋𝐺(𝜌𝑒 − 𝜌𝑖)𝑅0𝑘𝑚(𝑥)  (58) 

B=4𝜋𝐺(𝜌𝑒 − 𝜌𝑖)𝑅0𝐼𝑚(𝑥)  (59) 

Lastly, we must apply a condition requiring compatibility between the jump in total fluid stress and the framing of 

𝑃1𝑠 across the fluid cylindrical interface (29) at  𝑟 = 𝑅0 

𝑝1 + 𝑅1
𝜕𝑝0

𝜕𝑟
+ 𝜇(𝐻0. 𝐻1) − 𝜇(𝐻0. 𝐻1)(𝑒) = 𝑝1𝑠 (60) 

The condition can be written 

𝜌𝑒[𝛱1
(𝑒)

− 𝑉1
(𝑒)

] − 𝜌𝑖[𝛱1
(𝑖)

− 𝑉1
(𝑖)

]=𝑅1
𝜕𝑝0

𝑖

𝜕𝑟
− 𝑅1

𝜕𝑝0
(𝑒)

𝜕𝑟
− 𝜇(𝐻0. 𝐻1)(𝑖) + 𝜇(𝐻0. 𝐻1)(𝑒)  

 (61) 

Then we get 

𝜎2 + 2𝑖𝑘𝜎𝑈𝑐𝑜𝑠𝑐𝑜𝑠 Ω𝑡 − 𝑖𝑘𝑈Ω𝑠𝑖𝑛𝑠𝑖𝑛 Ω𝑡 − 𝑘2𝑈2𝑐𝑜𝑠𝑐𝑜𝑠 Ω𝑡 =
𝑥𝐼𝑚

՝ (𝑥)𝑘𝑚
՝ (𝑥)𝜌𝑖

[𝐼𝑚(𝑥)𝑘𝑚
՝ (𝑥)−𝜌𝐼𝑚

՝ (𝑥)𝑘𝑚(𝑥)]
[4𝜋𝐺(1 −

𝜌) ((1 − 𝜌)𝐼𝑚(𝑥)𝐾𝑚(𝑥) −
1

2
(2𝜌 + 1)) −

𝐻0
2𝑥2(1−𝛼2)𝐼𝑚(𝑥)𝑘𝑚(𝑥)

(𝜌𝑖)2𝑅0
2[𝐼𝑚

՝ (𝑥)𝑘𝑚(𝑥)−𝐼𝑚(𝑥)𝑘𝑚
՝ (𝑥)]

]                                 (62) 

 

Since the density relation of a self-gravitating oscillating fluid is equal to𝜌 = (
𝜌𝑒

𝜌𝑖
), Eq. (62) is the dispersion 

relation of a self-gravitating fluid cylinder; each is acting upon magnetic forces. The first and second forms of 
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modified Bessel functions, as well as the longitudinal and transverse wave numbers x and m, all have a 

relationship with the growth of rate𝜎. 𝐼𝑚(𝑥),𝑘𝑚(𝑥) of order m, and their derivatives𝐼𝑚
՝ (𝑥), 𝑘𝑚

՝ (𝑥).the fluid 

density 𝜌𝑖  the fluid cylinder radius𝑅0, the uniform streaming U, and the self-gravitating constant g. we put U=0, 

𝜌 = 0, 𝛼 = 0𝐻0 = 0 and m=0 we get 

𝜎2=4𝜋G 𝜌𝑖[
𝑥𝐼0

՝ (𝑥)

𝐼0
] (𝐼0(𝑥)𝑘0(𝑥) −

1

2
)          (63) 

The dispersion relation was obtained by Chandrasekhar and Fermi, and it is the same. In an actuality different an 

approach then we have here. They applied the technique of expressing solenoidal. Poloidal and toroidal values of 

vectors. 

 If we assume that𝜌 = 0, 𝐻0 = 0, 𝛼 = 0, 𝑎𝑛𝑑 𝑚 ≥ 0, the relation (63) produces  

where the ratio of the densities of the self-gravitating dielectric fluids is equal to 

 𝜌 =
𝜌𝑒

𝜌𝑖   and 𝜀 =
𝜀𝑒

𝜀𝑖  is the proportion between the dielectric constants of fluids. 

 

(𝜎 + 𝑖𝑘𝑈)2=4𝜋𝐺𝜌[
𝑥𝐼0

՝ (𝑥)

𝐼0(𝑥)
](𝐼𝑚(𝑥)𝑘𝑚(𝑥) −

1

2
)      

 (64) 

This is consistent with the conclusions made by Chandrasekhar [2] and Hassan [5].If we assume U=0, =0, G=0, 

and m=0, the relation (63) produces. 

 

 𝜎2 = −
𝐻0

2

𝜌𝑅0
2

𝑥2(1−𝛼2)𝐼𝑚(𝑥)𝑘𝑚(𝑥)

[𝐼𝑚
՝ (𝑥)𝑘𝑚(𝑥)−𝐼𝑚(𝑥)𝑘𝑚

՝ (𝑥)]
            (65) 

This is the fluid cylinder's magneto hydrodynamic dispersion relation 

 

 

 

 

 

 

 

 

 

6. Numerical  Solutions 

From solving the equants of motion (14) numerically using Matlab package 2-17 as a tool to be 

compared with the analytical results, it has been found out that 
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𝜎∗ = 𝑉 +  𝑠𝑞𝑟𝑡 [𝑈∗  + [
𝑥𝐼0

՝ (𝑥)𝑘0
՝ (𝑥)

(𝐼0(𝑥)𝑘0
՝ (𝑥)−𝜌𝐼0

՝ (𝑥)𝑘0(𝑥))
] [(1 − 𝜌) [(1 − 𝜌)𝐼0(𝑥)𝑘0(𝑥) −

1

2
(2𝜌 − 1)] −

𝑀
(1−𝛼2)𝐼0(𝑥)𝑘0(𝑥)

(𝐼0
՝ (𝑥)𝑘0(𝑥)−𝐼0(𝑥)𝑘0

՝ (𝑥))
]]       

(66) 

 

Where = 
−𝑖𝑘𝑈𝑐𝑜𝑠Ω𝑡

(4𝜋𝐺𝜌𝑖)
1
2

                            𝑈∗ =
𝑖𝑘𝑈Ω𝑠𝑖𝑛Ω𝑡

4𝜋𝐺𝜌𝑖
          M=[

𝐻0

𝐻𝑠
]

2

            𝐻𝑠 = 2𝜌𝑖𝑅0√
𝜋𝐺

𝜇
     

  𝜌 =
𝜌𝑖

𝜌𝑒
 

 
Fig. 2.U=0,  𝜌=0.2 conformable with M=0.1, 0.4, 0.7, 0.9 and 1.2 

 

 

 

 

 

(i) For U=0, 𝜌=0.2 conformable with M=0.1,0.4,0.7,0.9 and 1.2 it is found unstable domain  is 0< 𝑥 < 1.24 , 

0< 𝑥 < 1.346 , 0< 𝑥 < 1.447, 0< 𝑥 < 1.545, 0< 𝑥 < 1.548 The contiguous stable domain are 1.246<
𝑥 < ∞, 1.346< 𝑥 < ∞, 1.447< 𝑥 < ∞, 1.545< 𝑥 < ∞, 1.548< 𝑥 < ∞. 
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Fig. 3. For U=0,  𝜌=0.4 conformable with M=0.1, 0.4, 0.7, 0.9 and 1 

 

 

(ii) For 𝜌=0.4,U=0 conformable with M=0.1, 0.4, 0.7, 0.9 and 1.2 it is found unstable domain is 0< 𝑥 <
1.450, 0< 𝑥 < 1.246, 0< 𝑥 < 1.347, 0< 𝑥 < 1.444, 0< 𝑥 < 1.547 The contiguous stable 

domain are 1.450< 𝑥 < ∞, 1246< 𝑥 < ∞, 1.347< 𝑥 < ∞, 1.444< 𝑥 < ∞, 1.547< 𝑥 < ∞. 

 

Fig.4.For  𝜌=0.5, U=0 conformable with M=0.1, 0.4, 0.7, 0.9 and 1 

(iii) For 𝜌=0.5,U=0 conformable with M=0.1, 0.4, 0.7, 0.9 and 1.2 it is found unstable domain is 0< 𝑥 <
1.145,0< 𝑥 < 1.252, 0< 𝑥 < 1345, 0< 𝑥 < 1445, 0< 𝑥 < 1447 The contiguous stable domain 

are 1.145< 𝑥 < ∞, 1252< 𝑥 < ∞, 1345< 𝑥 < ∞, 1445< 𝑥 < ∞, 1447< 𝑥 < ∞. 
 

 
 

 

Fig.5. for U=0, ρ=0.7 conformable with M=0.1, 0.4, 0.7, 0.9 and 1 

 

 

(iv) For 𝜌=0.7,U=0, conformable with M=0.1, 0.4, 0.7, 0.9 and 1.2 it is found unstable domain is 0< 𝑥 <
1.147, 0< 𝑥 < 1.347, 0< 𝑥 < 1.346, 0< 𝑥 < 1.445, 0< 𝑥 < 1.447 The contiguous stable 

domain are 1.147< 𝑥 < ∞, 1.347< 𝑥 < ∞, 1.346< 𝑥 < ∞, 1.445< 𝑥 < ∞, 1447< 𝑥 < ∞ 
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Fig.6.For 𝜌=0.7, U=0, conformable with M=0.1, 0.4, 0.7, 0.9 and 1.2 

 

Accordingly, the numerical results go in agreement with the analytical ones as shown in the previous sections. 

 

7. Conclusions 

In this section we have found out that the unstable domains are reduced as N value grows for a given value of 

U*, which means that that the magnetic field's impact stabilises the system. Such reducing the N, the capillary 

force (M) which demonstrates the stability of the magnetic force, the model by increasing the regions of stable 

domains while reducing the regions of unstable ones. 

Meanwhile.  The capillary force has a large stabilising effect on the model. While it has been discovered that 

unstable domains expand for the same N values that U* values expand.  Owing to this result, it reveals the 

puzzle of the streaming effect which appear as in terms short and long waves to become unstable. 

Finally, we have figured out that the capillary force is indicated by the growth of the unstable domain with 

increasing M values for a given value of N. 
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