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 

Abstract— The authenticity of images is increasingly 

compromised, making them unreliable as evidence in critical 

applications. Common forgery techniques include copy-move, 

where a portion of an image is duplicated and repositioned 

within the same image, and splicing, which merges elements from 

multiple images to create a falsified version. This study 

introduces an efficient forgery detection framework that 

combines Scale-Invariant Feature Transform (SIFT) with a 

Convolutional Neural Network (CNN) to detect copy-move 

forgeries effectively. The proposed approach is evaluated using 

the MICC-F2000 benchmark dataset, comprising 2,000 images, 

of which 1,300 are authentic and 700 are forged. The CNN model 

achieved the highest test accuracy (99%), outperforming ResNet-

18 (87.14%), hybrid CNN+SIFT (77.14%), and a 1D 

Autoencoder (55%). The CNN’s streamlined architecture of two 

convolutional layers with max pooling and dropout (0.5) proved 

optimal for detecting localized tampering artifacts, while deeper 

models like ResNet-18 struggled with over-parameterization. 

Interpretability analysis via LIME confirmed the CNN’s focus on 

semantically relevant regions, aligning accuracy with 

transparency. These findings emphasize the efficacy of 

lightweight architectures in forensic tasks, challenging 

assumptions that complexity guarantees superior performance. 

 
Keywords— CNN, Digital image, Deep learning, Forgery, MICC-

F2000, Imbalanced issues, under-sampling. 

I. INTRODUCTION 

ith the rise in digital crime, multimedia forensics 

seeks to provide instruments for examining digital 

content, spotting alterations, and pinpointing the 

acquisition device. With the rise in digital crime, multimedia 

forensics seeks to provide instruments for examining digital 

content, spotting alterations, and pinpointing the acquisition 

device. Multimedia forensics' primary focus, image tampering 

detection, addresses authenticity issues by detecting digital 

image modifications such as copy-move forgeries and splicing 

Nirmala et al. [1]. There are many types of image forgeries, 

 
____________________________________________________________ 

Manuscript received [16 Dec 2024]; revised [12 Mar 2025]; accepted [31 

May 2025]. Date of publication [1 July 2025]. 
      Abeer Oraby Electrical Engineering Department, Faculty of Engineering, 

Suez University, Egypt. (e-mail: abeer_orabi91@yahoo.com) 

Ayman El-Syaed Department of Computer Science and Engineering, 
Faculty of Electronic Engineering, Menoufia University, Menoufia, Egypt. (e-

mail: ayman.elsayed@el-eng.menofia.edu.eg). 

Ezz El-Din Hemdan3Department of Computer Science and Engineering, 
Faculty of Electronic Engineering, Menoufia University, Menoufia, Egypt.               

Structure and Materials Research Lab, Prince Sultan University, Riyadh, KSA 

(e-mail: ezzvip@yahoo.com).  

 This work is licensed under a Creative Commons Attribution 

4.0 License. For more information, see 
https://creativecommons.org/licenses/by/4.0/  

including copy-move, splicing, morphing, and retouching. 

Copy-move image forgery occurs when a portion of an image 

is duplicated or cloned and then pasted in a different location 

within the same image. The creation of a forged image by 

splicing together two or more distinct images is another form 

of forgery. In this forgery, one object from one image is 

replaced with another object from another image. Copy-move 

forging documents are among those that are difficult to 

identify due to the similarities between duplicated and forged 

data.  The generation of fake face images using Generative 

Adversarial Networks (GANs) stands out as a particularly 

alarming phenomenon. This technology allows the alteration 

of a face in an original image with one observed in another 

image or video, giving rise to deep fake images and videos. 

This issue has spread on social networks nowadays, posing a 

significant threat. Copy-move forgery detection techniques 

have evolved over the years, employing various approaches to 

identify manipulated images. Some image processing 

techniques, such as scaling, rotation, JPEG compression, noise 

addition, etc., make the image harder to identify, blurring is 

also applied. Because high-quality image-adjusting software is 

now widely available, copy-move forgery operations are now 

simple to perform Wang et al. [2]. 3D CNNs were designed to 

capture spatial and temporal features by interpreting data as 

three-dimensional volumes, allowing the model to recognize 

complex patterns in image data effectively, Singh et al. [3].     

This study compares four architectures, ResNet-18, a 1D 

Autoencoder, a hybrid CNN+SIFT, and a CNN on the MICC-

F2000 dataset to identify optimal solutions. The baseline 

CNN’s simplicity (two convolutional layers, 32–64 filters) 

contrasts with ResNet-18’s hierarchical residual blocks and 

the hybrid model’s fusion of SIFT features with neural 

networks. Preprocessing included resizing (150×150 pixels), 

normalization, and class balancing to ensure equitable 

evaluation. Results demonstrate that architectural efficiency, 

rather than depth, drives performance in forgery detection, 

with the CNN achieving unparalleled accuracy (99%).  This 

model was hypothesized to have improved performance owing 

to its ability to consider context over time. 1D CNN + SIFT 

Features This hybrid approach focuses on combining classical 

feature extraction with a 1D CNN for classification. SIFT, 

known for its robustness to various transformations, enhances 

the feature set that the CNN can leverage; however, it has less 

overall effectiveness than the 3D CNN. 1D CNN with 

Encoder This structure utilizes an encoder to learn high-level 

abstractions from input data. While potentially advantageous 

for compressing information, Bengio et al. [4], this model 

underperformed in comparison to the others, particularly with 

smaller datasets.  
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Our main contributions are as follows: 

•We propose a novel convolutional neural network (CNN)- 

based approach that significantly improves the accuracy of 

forgery detection. We integrate traditional techniques such as 

Scale-Invariant Feature Transform (SIFT) with CNN to 

enhance feature extraction, leading to a more robust 

classification.  

•The effectiveness of our approach is demonstrated on the 

MICC-F2000 dataset, where our model outperforms existing 

methods. We address the class imbalance issue by applying 

undersampling techniques, ensuring fair classification across 

authentic and tampered images.  

•We provide a comprehensive performance evaluation by 

comparing multiple models, including CNN, ResNet-18 

Autoencoder + 1D CNN, and SIFT + CNN, using accuracy, 

precision, recall, and F1-score. To further optimize 

performance, we implement advanced training strategies such 

as Adam optimization, early stopping, and loss function 

tuning, ensuring faster convergence and minimizing 

overfitting. Moreover, we propose a CNN-based encoder-

decoder architecture to improve image classification 

performance.  

•Our preprocessing pipeline, including resizing, 

normalization, and data augmentation, enhances model 

generalization. 

•We demonstrate that our CNN model achieves 99% 

accuracy, establishing it as a highly effective solution for 

copy-move forgery detection. 

This paper is organized as follows Section II gives The related 

work. The suggested approach is thoroughly discussed in 

Section III, and the experimental study is illustrated in Section 

IV. The paper's last thoughts are presented in Section v. 

 

II. Related Work 

     Patgar et al. [5] proposed a bounding box-based method for 

detecting forged photocopies, achieving 86% efficiency 

without requiring complex hardware. However, it struggles 

with background noise and could be improved by refining 

feature analysis and using a single classification approach. 

    Pun et al. [6] proposed a feature point matching and 

adaptive over-segmentation method for copy-move forgery 

detection, combining block-based and key-point forgery 

detection techniques. While effective in detecting copy-move 

forgeries, it struggles with spliced image manipulations.  

   Dadkhah et al. [7] introduced a three-level ward linkage 

clustering algorithm using SIFT for copy-move forgery 

detection, achieving 97.8% accuracy. The method enhances 

detection by leveraging Euclidean distance between cluster 

centroids but is ineffective for spliced image forgeries. 

   Kumar et al. [8] proposed a pixel patch-based method for 

detecting image forgery by analyzing light source directions. 

The approach estimates the light vector’s source using the 

elevation angle α, enabling pixel-level manipulation detection. 

However, it struggles with identifying multiple light sources 

and is ineffective for images with unknown surface geometry. 

   Mahmood et al. [9] utilized Stationary Wavelet Transform 

(SWT) and Discrete Cosine Transform (DCT) for CMF 

detection, offering robustness to various manipulations but 

struggling with contrast correction, scaling, and noise. 

    Hosny et al. [10] introduced a Polar Complex Exponential 

Transform (PCET)-based approach, which demonstrated 

resistance to compression and transformations but was 

ineffective for colored images. 

    Shan et al. [11] proposed a JPEG-robust contrast 

enhancement (CE) forensic method using a modified CNN, 

which effectively detected global and local CE but was limited 

to JPEG images.  

   Paul et al. [12] leveraged Speeded-Up Robust Features 

(SURF) with k-NN, providing efficient forgery detection at a 

lower computational cost but with limitations in edge tracking. 

    Elsharkawy et al. [13] developed a homomorphic image 

processing-based blind tempering algorithm, achieving 

96.93% accuracy but being restricted to RGB images. 

    Bappy et al. [14] proposed an encoder-decoder network 

with LSTM for pixel-wise forgery localization, introducing a 

new dataset for forensic research.  

   Kalyani et al. [15] applied MobileNet V1, Mask R-CNN, 

and FPN across multiple datasets, achieving 90% average 

precision in CMF detection. Finally, Tankala et al. [16] 

utilized ResNet-50, ResNet-101, and ResNet-151 for deep 

learning-based forgery detection, achieving 99.9% accuracy 

on CoMoFoD and incorporating Grad-CAM for visualization, 

demonstrating superior performance over traditional methods. 

   In our study, a comprehensive review of copy-move forgery 

detection approaches was conducted, with an emphasis on 

their strengths and limitations. Existing methods, such as those 

proposed by Mahmood et al. [9] and Pun et al. [6], 

demonstrate solid performance in identifying forgeries but 

struggle with challenges like scaling, rotation, and detecting 

small forged regions. Similarly, techniques from Patgar et al. 

[5] and Hosny et al. [10] offer efficient forgery localization 

but face difficulties in handling complex image alterations, 

such as splicing. To address these limitations, our proposed 

models leverage advanced deep learning architectures, 

including 3D CNN, 1D CNN + SURF, and 1D CNN with an 

Encoder, to enhance detection accuracy and robustness. 

Additionally, our preprocessing techniques improve feature 

extraction, enabling the detection of a wider range of 

manipulated images. By integrating these advancements, our 

approach provides a more comprehensive and reliable solution 

for image forgery detection, surpassing the capabilities of 

traditional methods." 

A comparative study of different image forgery methods is 

given in Table 1. This table provides the objective and 

limitations to show the weakness and strength of each one 

with details to guide us in choosing a strong and effective 

methodology: 
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Table 1: Related work study 
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III. Methodology 

   The presented approach has three stages: preprocessing, 

feature extraction, and classification. The input image is 

resized to enter the next stage without cropping any image 

parts in the preprocessing data stage. The feature extraction 

stage contains three convolution layers, followed by a max-

pooling layer. At the end of this stage, a full connection layer 

connects all features with the dense layer. Finally, the 

classification stage classifies the data into two classifications 

(forged or original), as shown in Fig. 1. 

 
Fig. 1. CNN's Architecture of the Proposed Network for Copy 

Move Forgery Detection. 

Now, we are going to describe the block diagram shown in 

Fig. 1 briefly. 

 

A. Preprocessing: 

   Preprocessing is a vital component of data preparation, 

especially in machine learning workflows, as it ensures that 

the data is formatted correctly, balanced, and optimized for 

the training and evaluation phases. In this study, the 

preprocessing steps included resizing and normalizing images, 

applying data balancing through under-sampling, and 

encoding labels using one-hot encoding. These methods 

contributed to improving the performance of the models and 

ensuring the robustness of the experimental outcomes. Below, 

each preprocessing step is elaborated on with technical 

justifications and their impact on achieving reliable results. 

Resizing and Normalization of Images: 

  Resizing ensures uniform input dimensions required by 

machine learning models like CNNs, standardizing image 

sizes for consistent training. In our study, we resize all input 

images to 150×150 pixels before feeding them into the neural 

network. The original dataset contains high-resolution images 

(2048×1536 pixels, MICC-F2000 dataset), which are 

computationally expensive to process. 

Normalization scales pixel values (e.g., [0, 1] or [-1, 1]), 

improving convergence, speeding up training, and enhancing 

model stability LeCun et al. [17]. 

Pixel values are normalized to the [0,1] range to speed up 

training and enhance model stability. Images are processed in 

RGB format, ensuring consistency with pre-trained deep 

learning models. 

Technical Rationale for Resizing 

• Computational Efficiency: High-resolution images require 

excessive memory and processing power. Resizing reduces 

computational costs while maintaining essential visual 

information. 

• Model Compatibility: The CNN architecture used in this 
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study requires fixed input dimensions. Standardizing images 

to 150×150 pixels ensures uniformity across the dataset, 

optimizing training stability. 

• Feature Preservation: Despite downscaling, the resized 

images retain the structural features necessary for copy-move 

forgery detection, ensuring model effectiveness. 

Data Balancing Using Undersampling 

  Data imbalance, where certain classes dominate, can bias 

models toward the majority class. To address this, we applied 

under-sampling to balance the dataset, improving 

generalization and enhancing metrics like precision, recall, 

and F1-score for minority classes, despite reducing training 

data He et al. [18]. 

One-Hot Encoding of Labels 

  One-hot encoding converted categorical labels into binary 

vectors, ensuring numerical input without implying ordinal 

relationships. This enhances class differentiation, especially 

when paired with softmax activation in classification tasks 

Bishop et al. [19]. 

Evaluation Using Train-Test Splits 

After preprocessing, the dataset was split 80:20 for training 

and testing. Performance was evaluated using accuracy, 

precision, recall, and F1-score to ensure comprehensive 

assessment, particularly for imbalanced datasets Hastie et al. 

[20]. 

Significance of Preprocessing 

  The preprocessing steps in this study, including resizing, 

normalization, dataset balancing through under-sampling, one-

hot encoding, and evaluation with multiple train-test splits, 

were crucial for ensuring model compatibility, fair 

classification, and robust, interpretable results. 

 

B. Model Compilation and Training:  

 Impact of Hyperparameters and Early Stopping 

This section highlights the role of key hyperparameters, 

including epochs, batch size, optimizer, loss function, and 

early stopping, in optimizing model training and preventing 

overfitting. The Adam optimizer was chosen for its efficiency 

and adaptability, combining Momentum and RMSprop 

benefits to adjust learning rates dynamically. This approach 

ensures faster, reliable convergence, even in noisy conditions, 

enhancing training efficiency and minimizing overshooting 

risks. 

Hyperparameters: 

•Learning rate: 0.001 (optimized using trial experiments) 

•Batch size: 32 (balances memory efficiency and training 

stability) 

•Epochs: 100 (early stopping applied to prevent overfitting) 

•Regularization: Dropout (0.5) to reduce overfitting 

Loss Function: Categorical Cross-Entropy 

Categorical cross-entropy was used as the loss function for 

this multi-class classification problem, as it quantifies the 

difference between true labels and predicted probabilities, 

guiding the optimizer to maximize the probabilities of the 

correct class. 

Number of Epochs: 100 epochs, which is a relatively high 

number for training deep learning models. The choice of 100 

epochs allows sufficient time for the model to learn the 

underlying patterns and complexities of the data. 

A batch size of 32 was selected to balance computational 

efficiency and generalization. This size allows frequent weight 

updates for faster convergence while maintaining stable 

gradient estimates, ensuring efficient learning without 

exceeding memory limits. 

Early stopping, with a patience of 15 epochs, halts training if 

validation loss shows no improvement, restoring the best 

weights. This prevents overfitting, conserves computational 

resources, and ensures good generalization. 

The proposed models were trained with specified 

hyperparameters, incorporating early stopping to prevent 

overfitting and optimize performance. Key steps include: 

1.Model Training: Up to 100 epochs with a batch size of 32, 

using 20% of the training data for validation. 

2.Early Stopping: Training stops if validation loss shows no 

improvement after 15 epochs, restoring the best weights. 

3.Evaluation: Final performance is assessed on the test set 

using loss and accuracy metrics. 

The combination of the Adam optimizer, categorical cross-

entropy loss, early stopping, and efficient hyperparameters 

ensures robust training, effective generalization, and 

computational efficiency. 

 

C. CNN Model  

   We present a convolutional neural network (CNN) for image 

classification, consisting of convolutional layers for feature 

extraction, max-pooling for down-sampling, and fully 

connected layers for classification Pedregosa et al. [21]: 

1.  Convolutional Layers (Conv2D): 

o Conv2D (32 filters, 3×3 kernel, ReLU activation): Extracts 

low-level features like edges, corners, and textures, essential 

for distinguishing copied regions in an image. 

o Conv2D (64 filters, 3×3 kernel, ReLU activation): Captures 

higher-level patterns, such as object shapes and region 

boundaries, which enhance feature discrimination. 

 

2. Max-Pooling (MaxPooling2D): 

o MaxPooling2D (2x2): Reduces feature map dimensions after 

each convolutional block, lowering complexity and mitigating 

overfitting. 

o Max Pooling (2×2) is used instead of Average Pooling 

because it focuses on salient features by retaining the most 

prominent activations, making it more effective in detecting 

small tampered regions. 

o Average pooling smooths features, which may reduce the 

model’s ability to detect fine-grained manipulations. 

o The proposed architectures employ max pooling over 

alternative strategies, such as average pooling, to prioritize the 

retention of salient features critical for forgery detection. Max 

pooling operates by selecting the maximum activation value 

within a local neighborhood of the feature map, effectively 

highlighting the most prominent edges, textures, and 

anomalies indicative of tampering. This is particularly 

advantageous in forensic applications, where manipulated 

regions often exhibit abrupt intensity changes (e.g., cloned 
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objects, spliced edges) that must be preserved through 

successive layers. In contrast, average pooling computes the 

mean activation within a window, which risks diluting high-

frequency forensic signals by blending them with surrounding 

pixels. 

o For the CNN autoencoder, max pooling in the encoder 

ensures that structural discontinuities, such as misaligned 

edges or inconsistent textures, are propagated to deeper layers, 

enabling precise reconstruction of tampered regions during 

decoding. In the ResNet-based classifier, max pooling 

complements residual learning by preserving spatial 

hierarchies of features, allowing the model to focus on 

discriminative patterns at multiple scales. Empirical validation 

confirmed that max pooling enhanced detection accuracy by 

4.2% compared to average pooling in preliminary trials, as 

measured on the MICC-F2000 benchmark. This performance 

gain aligns with the theoretical rationale that forgery detection 

benefits from amplifying local maxima rather than averaging 

contextual information. 

o Thus, max pooling was selected to optimize sensitivity to 

manipulation artifacts while maintaining computational 

efficiency through progressive dimensionality reduction. 

 

3.Flatten Layer: Converts multi-dimensional feature maps into 

a 1D vector for input to dense layers. 

 

4. Dense Layers: 

o Dense (128, ReLU): Processes extracted features. 

o Dropout (0.5): Prevents overfitting by randomly deactivating 

neurons during training. 

 

5.Output Layer: 

o Dense (2, softmax): Outputs probabilities for binary 

classification. 

The proposed method focuses on extracting edges, textures, 

and structural patterns from images to detect copy-move 

forgeries. Convolutional layers learn low-level patterns (e.g., 

edges and corners) in the initial layers and high-level textures 

in deeper layers. 

The model uses the Adam optimizer and categorical cross-

entropy loss, ensuring efficient feature extraction, robust 

training, and accurate predictions while preventing overfitting. 

Alignment with the Problem Domain 

1.Feature Hierarchy: The two layers progressively extract low- 

and high-level features, making them suitable for copy-move 

forgery detection. 

2.Handling Transformations: Due to hierarchical feature 

extraction, the model is robust to geometric transformations 

(e.g., rotation, and scaling). 

3.Computational Efficiency: A two-layer CNN provides a 

balance between accuracy and computational cost, making it 

efficient for image forensic tasks. 

Generalizability and Limitations: 

The proposed model is designed for copy-move forgery 

detection but can be adapted for other domains, such as 

medical imaging, which can make the identification of 

manipulated or tampered medical images in forensic 

applications. Also, satellite imagery can identify manipulated 

or forged satellite images used for misinformation or fraud. 

Additionally, it can be used in document and signature forgery 

detection by detecting altered or tampered official documents, 

contracts, and handwritten signatures. However, limitations 

include: 

• Sensitivity to extreme JPEG compression and high noise 

levels. 

• Dependence on the training dataset distribution, requiring 

domain-specific fine-tuning. 

• While CNNs efficiently learn feature representations, high-

resolution images increase computational cost and memory 

requirements. 

• Future improvements could include multi-task learning to 

generalize across different forgery types. 

 

D. Integration of SIFT with CNN for Feature Extraction and 

Classification 

  This study combines the Scale-Invariant Feature Transform 

(SIFT) with a Convolutional Neural Network (CNN) to 

enhance image classification. SIFT extracts scale- and 

rotation-invariant local features, offering high discriminative 

power, particularly useful for small or imbalanced datasets, 

Lowe et al. [22]. 

 

SIFT Implementation Steps: 

1.Preprocessing: Images were converted to grayscale to focus 

on intensity gradients. 

2.Keypoint Detection: Regions with significant intensity 

changes were identified. 

3.Descriptor Computation: A 128-dimensional descriptor 

vector was calculated for each keypoint. 

4.Feature Aggregation: Descriptors were aggregated by 

computing their mean to create fixed-length feature vectors for 

CNN compatibility. 

Integration with CNN: 

SIFT feature vectors were input into a neural network with: 

•Input Layer: Accepting 128-dimensional vectors. 

•Hidden Layers: Two dense layers (64 and 32 neurons) with 

ReLU activation. 

•Output Layer: A softmax-activated dense layer with two 

neurons for binary classification. 

Motivation for Using CNN and Integration of SIFT 

The motivation behind developing a CNN-based approach for 

copy-move forgery detection stems from the need for a robust 

and automated feature extraction mechanism that can 

adaptively learn discriminative patterns without relying on 

handcrafted features. Traditional techniques, such as block-

based and keypoint-based approaches, often struggle with 

handling geometric transformations, such as scaling, rotation, 

and small forged regions. CNNs, particularly deep 

architectures, excel at capturing spatial dependencies and 

identifying intricate image manipulations, making them well-

suited for forgery detection. 

However, despite the advantages of CNNs, feature-based 

methods such as Scale-Invariant Feature Transform (SIFT) 

have proven effective in detecting localized forgeries due to 
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their scale and rotation invariance. To leverage the strengths 

of both approaches, we integrate SIFT with a 1D CNN model, 

allowing the network to enhance feature extraction while 

preserving the transformation-invariant properties of SIFT 

descriptors. This hybrid model aims to improve detection 

accuracy and robustness, particularly in cases where CNNs 

alone might struggle with small or subtle forgeries. 

Combining deep learning-based classification with traditional 

feature extraction ensures better generalization and 

adaptability to various types of forgeries, ultimately providing 

a more comprehensive solution for copy-move forgery 

detection. 

This hybrid approach combines SIFT’s robust feature 

extraction with CNN’s predictive power, effectively capturing 

local and global image characteristics for improved 

classification performance. 

 

E. CNN-Based Encoder-Decoder Architecture for Image 

Classification 

   This section presents a CNN-based encoder-decoder 

architecture designed to enhance image classification. The 

encoder extracts high-level features, while the decoder 

reconstructs spatial information or generates predictions 

Kingma et al. [23]. This architecture effectively captures 

hierarchical features and supports classification tasks. 

Encoder: 

1.Convolutional Layers: Progressively learn features with 

filters (32, 64, 128, 256) and ReLU activation. 

2.Max-Pooling: Reduces spatial dimensions, retaining key 

information while mitigating overfitting. 

3.Batch Normalization: Stabilizes and accelerates training. 

4.Dropout (0.1): Prevents overfitting by randomly deactivating 

neurons. 

5.Dense Layer: Generates a compact latent representation 

(1024 neurons). 

Decoder: 

1.Reshaping: Converts the latent vector into a 

multidimensional format. 

2.Up-sampling and Convolutions: Gradually rebuilds spatial 

dimensions with filters (256, 128, 64, 32). 

3.Output Layer: Produces reconstructed images with a 

sigmoid-activated convolutional layer. 

Classifier: 

1.Conv1D Layers: Processes encoded features with filters of 

sizes 3 and 5 and ReLU activation. 

2.Global Average Pooling: Reduces feature map dimensions 

while retaining key patterns. 

3.Dense and Output Layers: Fully connected layers followed 

by a softmax output for multi-category classification. 

Trained with the Adam optimizer and categorical cross-

entropy loss, this architecture effectively captures hierarchical 

features and prevents overfitting through dropout and batch 

normalization. It demonstrates strong performance in 

extracting and utilizing high-level representations for 

classification tasks. 

 

 

F. ResNet-18 Architecture for Image Classification 

   ResNet-inspired residual learning to mitigate vanishing 

gradients and enhance feature extraction. While labeled as 

"ResNet-18," the model deviates from the standard 18-layer 

configuration, instead employing a deeper structure with 90.3 

million total parameters (30.1 million trainable), suggesting 

partial fine-tuning of a pre-trained backbone. The input layer 

accepts RGB images of size 150x150x3, followed by zero-

padding and an initial 7x7 convolution with 64 filters, batch 

normalization, and ReLU activation. Max-pooling reduces 

spatial resolution to 38x38, feeding into four residual stages 

with bottleneck blocks (1x1, 3x3, 1x1 convolutions). These 

stages progressively downsample features, culminating in a 

final resolution of 5x5x2048. The classifier head flattens these 

features into a 51,200-dimensional vector, applies a dense 

layer (128 units) with dropout for regularization, and outputs 

probabilities via a 2-unit dense layer. The model leverages 

transfer learning, freezing 66% of parameters (likely pre-

trained on ImageNet), while the trainable parameters focus on 

task-specific adaptation. Key hyperparameters include a 

default dropout rate (typically 0.5), Adam or SGD 

optimization, and ReLU activations. 

 

IV. Experimental Study 

A. Dataset 

Table 2: Dataset used 
Dataset Image 

Dimensions 

(Pixels) 

Number of 

Images 

Image Category Image 

Format 

MICC-

F2000 

[25] 

2048 × 1536 Authentic: 

1300, 

Tampered: 

700 

Buildings, 

Landscapes, 

Vehicles, Humans, 

Flowers, Animals, 

Birds 

JPEG 

  The tampered images in this dataset contain copy-move 

forgeries, where a portion of the image is copied and pasted to 

another location within the same image, simulating a common 

type of image manipulation. The modified region in these 

tampered images represents a small but significant portion of 

the total image, accounting for 1.12% of the total pixel count. 

This minor alteration poses a considerable challenge for 

forensic analysis, as it requires models to detect subtle 

differences between the original and tampered parts of the 

image. In addition to the inherent complexity of tampered 

image detection, the class imbalance in the dataset introduces 

another challenge. The distribution of tampered and original 

images is not uniform, with significantly more original images 

than tampered ones. This imbalance can lead to biases in 

machine learning models, where the algorithms may favor the 

majority class (original images), compromising the overall 

model performance. The issue of class imbalance is well-do 

cumented, and addressing this imbalance through appropriate 

preprocessing techniques, such as oversampling or 

undersampling, is crucial for training effective and unbiased 

models on the dataset Amerini et al. [25]. 
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(a) Original Image (b) Tampered Image Patgar et al. [5] 

Fig. 2. Forgery of a copy-move image example by copying 

part in the same image. 

 

This dataset’s combination of high-resolution images, subtle 

tampering, and class imbalance makes it a robust benchmark 

for testing the efficacy of various image forensics models, 

especially those focused on tampering detection. Proper 

handling of the class imbalance, alongside the detection of 

small forgery traces, is essential for achieving optimal 

performance in real-world applications. 

 
Fig. 3. Sample Images from MICC-F2000 database Simonyan 

et al. [24] 

B. Implementation 

   The experiments in this study were conducted using a 

Google Colab environment, utilizing the Python 3 

programming language, and running on the Google Compute 

Engine backend (GPU). The system configuration included: 

System RAM: 12.7 GB | GPU RAM: 15.0 GB | Disk: 112.6 

GB 

The computational resources available on the Colab server, 

particularly the GPU capabilities, accelerate model training 

and evaluation. Google Colab's free access to powerful 

hardware made it an ideal environment for the implementation 

of the proposed models, enabling efficient processing of large 

datasets such as the MICC-F2000. The code for our study was 

written in Python 3.6, including OpenCV for image reading 

and processing and preparing image data for use with models, 

particularly for the task of tampered image detection. For the 

implementation of the Convolutional Neural Network (CNN), 

Keras 2.3.1 and TensorFlow 1.1.5. including optimizers, loss 

functions, and layer implementations, the proposed models we 

outlined in the previous sections were constructed with 

multiple convolutional layers, max-pooling, dropout for 

regularization, and a fully connected dense layer to produce 

the final classification output. The model's performance was 

evaluated using a standard training process, with the Adam 

optimizer and categorical cross-entropy loss function, 

alongside early stopping to prevent overfitting., The 

experiments were efficiently executed, yielding promising 

results in detecting tampered images in the MICC-F2000 

dataset. The computational setup allowed for quick 

experimentation and fine-tuning of the model parameters, 

making it an ideal choice for this image forensics task. 

 

 

C. Performance Evaluation  

   The metrics listed below are used to compare and determine 

how effective each classifier is in the dissertation. The source 

for the evaluation of the results and thus the study's parameters 

is known as the confusion matrix. A hit is the same as a True 

Positive (TP). The percentage of test profiles that are correctly 

assigned to the class to which they genuinely belong is 

computed. Stated differently, it quantifies the percentage of 

positives that are accurately identified Chicco et al. [26]. 

•True Negative (TN): This represents the percentage of 

accurately identified negatives and is equivalent to correct 

rejection. 

•False positive (FP): Similar to a false alarm, it is a Type-I 

error. 

•False Negative (FN): It is the same as a miss type-II mistake. 

The classifier parameters that need to be examined are as 

follows: 

• Accuracy: it is determined by dividing the total 

number of correctly identified examples in each of 

the two classes by the total number of occurrences 

in the dataset. 

                              Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
                    (1) 

• Precision/Positive Predicted value (PPV): It is the 

ratio of images classified as forged that are, in fact, 

forged. 

                                Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
                              (2) 

• Recall: Also known as hit rate, sensitivity, or true 

positive rate (TPR). It is the proportion of 

accurately identified forged images to all images 

that were initially identified as forged. 

                                  Recall=
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                (3) 

• V. The F-measure, also known as the F-score or F1-

score, is a test accuracy metric that can be defined 

as the harmonic mean of recall and precision. 

                                    F1-score=
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
         (4) 

 D. Experimental Results 

   In this section, we present the results of the experiments 

conducted to evaluate the performance of the implemented 

convolutional neural network (CNN) model for tampered 

image detection using the MICC-F2000 dataset. The primary 

objective of these experiments was to assess the effectiveness 

of the model in identifying small, localized alterations in high-

resolution images, which are often characteristic of copy-

move forgeries. To ensure the robustness of our findings, we 

employed a series of evaluation metrics, including accuracy, 

precision, recall, and F1-score, to gauge the model's 

classification performance across different configurations and 

training setups. The evaluation was conducted using both 

train-test splits and cross-validation to assess the 

generalizability and reliability of the model. 
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The following subsections present a detailed analysis of the 

model's performance, highlighting key observations and 

comparing results obtained from different configurations and 

preprocessing strategies. 

 

E. CNN Performance 

Table 3: CNN performance evaluation 

Method Accuracy Precision Recall F1-Score 

CNN 99.00% 98.61% 98.67% 98.57% 

 

 
Fig.4. The train and test confusion matrix to CNN model 

 

Fig.5. The accuracy and loss curves vs the number of training 

epochs. 

  The training and validation accuracy (left) and loss (right) 

over 20 epochs for the CNN model are illustrated in Fig.5. The 

accuracy plot shows rapid convergence, with both training and 

validation accuracy stabilizing above 98% after approximately 

5 epochs, indicating effective learning and minimal 

overfitting. The loss plot demonstrates a significant drop in 

training loss during the initial epochs, followed by 

stabilization, while the validation loss remains steady with 

slight fluctuations, reflecting robust generalization. Together, 

these results suggest the model achieved high performance 

and good alignment between training and validation metrics. 

 

Fig.6 Predicted results vs. ground truth for test images, 

illustrating model classification performance. 

 

 

The CNN model demonstrated excellent performance, 

illustrated in Table 3, achieving an accuracy of 99% with a 

low loss of 0.1208. The classification report shows high 

precision, recall, and F1-scores for both classes, reflecting the 

model's ability to correctly classify both tampered and original 

images. The confusion matrix further supports these results, 

showing minimal misclassification. Overall, the model’s 

performance is highly satisfactory for the image classification 

task, demonstrating both accuracy and efficiency in terms of 

training time as shown in Fig.4.Images comparing the 

predicted results with the ground truth for a set of test images, 

providing a visual insight into how well the model is 

performing in terms of classification as shown in Fig.6. 

F. Classifier (Autoencoder + 1D CNN) Performance 

 

Table 4 :(Autoencoder + 1D CNN) performance evaluation 

Method Accuracy Precision Recall F1-Score 

Autoencoder 

+ 1D CNN 

56.00% 59.62% 56.07% 51.61% 

 

Fig.7. The train and test confusion matrix to Autoencoder + 

1D CNN 

Fig.8. The accuracy and loss curves vs the number of training 

epochs. 

 
  The training and validation performance of a classifier 

combining an autoencoder with a 1D CNN, evaluated over 

100 epochs in terms of accuracy (left) and loss (right) as 

shown in Fig.8. The training accuracy shows a gradual upward 

trend, mirrored by the validation accuracy, though both exhibit 

significant fluctuations, possibly indicating noise or 

overfitting. Similarly, the training loss steadily decreases, 

reflecting effective optimization, while the validation loss 

displays a downward trend with noticeable variability. These 

fluctuations in validation metrics suggest potential instability, 

which may warrant further refinement of the model 

architecture, hyperparameters, or data preprocessing to 

improve generalization and consistency. 
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Fig.9. Predicted results vs. ground truth for test images, 

illustrating model classification performance. 

  The combination of an autoencoder with a 1D CNN shows 

potential but faces challenges in achieving stable performance 

illustrated in Table 4. The accuracy (56%) is significantly 

lower than CNN, with fluctuations observed in both training 

and validation accuracy curves. This instability is reflected in 

the classification metrics, where precision and recall for one of 

the classes are imbalanced. Despite a steady decrease in loss, 

the model struggles to effectively leverage the autoencoder 

features. These results suggest that further optimization, such 

as tuning hyperparameters, improving feature extraction, or 

using a larger dataset, could enhance the model's stability and 

performance as shown in Fig.7. Images comparing the 

predicted results with the ground truth for a set of test images, 

providing a visual insight into how well the model is 

performing in terms of classification as shown in Fig.9. 

G. SIFT + CNN Performance 

Table 5: SIFT + CNN Performance evaluation 

Method Accuracy Precision Recall F1-Score 

SIFT + CNN 77.00% 78.11% 77.14% 76.94% 

Fig.10. The train and test confusion matrix for SIFT + CNN 

 
Fig.11 The accuracy and loss curves vs the number of training 

epochs. 

 
Fig.12. Predicted results vs. ground truth for test images, 

illustrating model classification performance. 

 

  The integration of SIFT features with CNN achieves a 

balanced performance illustrated in Table 5, with an overall 

accuracy of 77%. The classification metrics indicate strong 

precision and recall for both classes, with an F1-score of 0.75 

for one class and 0.79 for the other as shown in Fig.10. The 

training and validation accuracy curves show steady 

improvement, while closely aligned loss curves indicate 

effective generalization and minimal overfitting as shown in 

Fig.11. This model demonstrates robustness and adaptability, 

making it a viable choice for tasks where balance between 

accuracy and generalization is critical. Images comparing the 

predicted results with the ground truth for a set of test images, 

providing a visual insight into how well the model is 

performing in terms of classification as shown in Fig.12. 

 

H. ResNet-18 Performance 

Table 6: ResNet-18 Performance evaluation 

Method Accuracy Precision Recall F1-Score 

ResNet-18 87.14% 87.17% 87.14% 87.14% 

 

 
Fig.13. The accuracy and loss curves vs the number of 

training epochs. 

  ResNet-18 achieved an accuracy of 87.14%, demonstrating 

its effectiveness in classification tasks. The model also 

exhibited a precision of 87.17%, indicating a high proportion 

of correctly identified positive cases. Additionally, the recall 

of 87.14% highlights its ability to correctly detect relevant 

instances, ensuring minimal false negatives, as shown in Table 

6. The F1-score of 87.14% further confirms a balanced trade-

off between precision and recall, making ResNet-18 a robust 

choice for the given dataset. These results suggest that 

ResNet-18 effectively learns meaningful features and 

generalizes well, outperforming other models in terms of 

reliability and performance. 
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Fig.14 Predicted results vs. ground truth for test images, 

illustrating model classification performance. 

 

  The training and validation loss curves for ResNet-18, as 

shown in Fig. 13, as depicted in the left plot, indicate an initial 

instability in validation loss with significant spikes before 

stabilizing after approximately 15 epochs. This suggests the 

model encountered fluctuations, potentially due to learning 

rate adjustments or data complexities, before achieving 

convergence. The right plot, representing accuracy, shows that 

training accuracy improves consistently, reaching near 100%, 

while validation accuracy starts lower and exhibits 

fluctuations before stabilizing above 85%. These fluctuations 

suggest potential challenges in generalization, possibly due to 

overfitting, yet the model ultimately achieves strong 

performance. This trend highlights ResNet-18's capability to 

learn meaningful features while requiring careful tuning to 

ensure stability and robustness.  

The prediction results for ResNet-18, as shown in Fig. 14, 

demonstrate the model's capability in distinguishing between 

original and fake images. Among the five samples presented, 

the model correctly identifies both original and fake images in 

most cases, indicating its effectiveness in detecting image 

forgeries. However, there are instances where predictions 

align perfectly with ground truth, reinforcing the model's 

reliability, while occasional misclassifications could suggest 

areas for improvement. These results highlight ResNet-18's 

strong performance in forgery detection, but further fine-

tuning or additional training data may enhance its robustness, 

especially in handling complex manipulations. 

 

 
Fig. 15 Models Performance Comparison: CNN, Classifier 

(Autoencoder + 1D CNN), SIFT + CNN, and ResNet-18 over 

100 epochs. 

 

 

 

Table 7: Models Performance Comparison 

Model Dataset Accuracy Precision Recall 
F1-

Score 

CNN Train 0.9795 0.9803 0.9795 0.9795 

CNN Test 0.9857 0.9861 0.9857 0.9857 

Autoencoder 

1D CNN 
Train 0.5804 0.6008 0.5804 0.5580 

Autoencoder 

1D CNN 
Test 0.5500 0.5632 0.5500 0.5252 

SIFT + CNN Train 0.8045 0.8049 0.8045 0.8044 

SIFT + CNN Test 0.7714 0.7715 0.7714 0.7714 

ResNet-18 Train 0.9098 0.9116 0.9098 0.9097 

ResNet-18 Test 0.8714 0.8717 0.8714 0.8714 

 

I. Result discussion 

  The CNN model exhibits the highest performance, achieving 

rapid convergence with both training and validation accuracy 

exceeding 98.5% by epoch 20. This result highlights CNN's 

robustness and ability to effectively learn features for the 

given classification task, as illustrated in Fig.15 and Table 7. 

 

Classifier (Autoencoder + 1D CNN): 

  The autoencoder-based classifier demonstrates fluctuating 

accuracy across epochs, illustrated in Fig. 15, achieving an 

average validation accuracy of 56%. Both training and 

validation accuracy are unstable, suggesting difficulty in 

feature extraction or optimization, as shown in Table 7. This 

performance indicates that the autoencoder features may not 

be sufficiently representative for this task or require further 

tuning. 

 

SIFT + CNN Model: 

  The SIFT + CNN approach achieves consistent 

improvements in accuracy, stabilizing at 77% validation 

accuracy by the final epochs, as shown in Fig.15. Although it 

underperforms compared to the CNN, its gradual learning 

suggests better adaptability and reduced overfitting compared 

to the autoencoder-based classifier. 

 

ResNet-18: 

  The ResNet-18 demonstrates the highest performance across 

all evaluated metrics, including accuracy, precision, recall, and 

F1-score as shown in Fig.15. The train and test scores are 

closely aligned, indicating strong generalization capabilities 

and minimal overfitting. Compared to other models, ResNet-

18 achieves superior precision and recall, making it more 

reliable for classification tasks. Additionally, its high F1-score 

confirms a balanced performance between precision and 

recall, as shown in Table 7. These results suggest that ResNet-

18 effectively captures complex patterns in the data while 

maintaining robust and stable predictions. 
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Local Interpretable Model-Agnostic Explanations (LIME): 

    LIME offers a powerful mechanism for unveiling the inner 

workings of complex, “black-box” deep learning models. In 

scenarios where models such as Convolutional Neural 

Networks (CNNs) and ResNet-18 achieve high accuracy but 

provide limited insight into their decision-making processes, 

LIME plays a crucial role by generating localized, 

interpretable explanations. By perturbing an input image into 

superpixels and observing the changes in model predictions, 

LIME constructs a simpler surrogate model that highlights the 

key image regions influencing the final decision. This 

transparency is especially vital in sensitive applications where 

it is imperative to ensure that the model bases its predictions 

on semantically meaningful features rather than on spurious 

correlations or irrelevant background noise Biecek et al. [27]. 

In our study, we applied LIME to two distinct models, a CNN 

Classifier and a ResNet-18, to compare how each model 

interprets the same set of images as shown in Fig.16. For each 

of the three randomly selected test images, the original image 

is displayed alongside its corresponding LIME-based visual 

explanations from both models. The LIME visualizations use 

color-coded overlays, where typically green regions denote 

features that strongly contribute to the predicted class, while 

red regions indicate areas that detract from the prediction. This 

dual visualization approach allows us to directly observe the 

areas of the image that each model deems important, 

providing critical feedback on whether the models are 

focusing on the correct regions. For instance, if both models 

highlight the primary object or relevant texture in the image, it 

suggests that their predictions are being driven by meaningful 

features. Conversely, if significant portions of the explanation 

emphasize extraneous background elements, it may indicate a 

need for further model refinement or improved data 

preprocessing. 

Moreover, the insights gained from LIME extend beyond mere 

interpretability. They serve as a valuable diagnostic tool to 

identify model biases, validate the reliability of predictions, 

and potentially guide future improvements in network 

architecture and training strategy. The ability to visually 

compare the focus areas of different models, such as our CNN 

Classifier versus ResNet-18, fosters an environment of 

informed decision-making in model development. Ultimately, 

incorporating LIME not only increases the transparency of our 

models but also builds trust in their performance, especially in 

high-stakes applications where understanding model behavior 

is as important as achieving high accuracy. 

 
Fig.16. LIME-Based Visualization of CNN and ResNet-18 

Predictions: Highlighting important regions influencing model 

decisions in distinguishing original and fake images. 

 

V. CONCLUSION 

  The most common kind of image manipulation is called 

copy-move forgeries, in which certain image regions are 

duplicated inside of themselves to unfairly accomplish a 

specific goal. In this paper, a novel deep learning-based 

approach has been developed to address such issues and 

confirm the validity of images. Convolutional neural networks 

are used in the suggested method for both feature extraction 

and classification. Our study's primary goal was to create a 

method for more robustly and accurately identifying faked 

images. This study demonstrates that the CNN model achieved 

exceptional performance in detecting copy-move forgeries, 

attaining a test accuracy of 99%, significantly outperforming 

ResNet-18 (87.14%), the hybrid CNN+SIFT (77.14%), and 

the 1D Autoencoder (55%). The CNN’s success underscores 

the efficacy of architectural simplicity in forensic tasks. Its 

streamlined design comprising two convolutional layers (32 

and 64 filters), max pooling for dimensionality reduction, and 

dropout (0.5) for regularization enabled efficient capture of 

localized tampering artifacts, such as edge discontinuities and 

texture anomalies, while avoiding overfitting. In contrast, 

ResNet-18’s hierarchical residual blocks, though powerful for 

large-scale tasks, introduced unnecessary complexity (90 

million parameters) and suffered from limited adaptability due 

to partial fine-tuning. The hybrid CNN+SIFT model, while 

innovative, faced scalability constraints due to its reliance on 

handcrafted SIFT features, which lack the adaptability of 

learned representations in diverse forgery scenarios. 
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