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ABSTRACT  

Various fields of science and engineering use neural network technology to solve their problems. In this paper, 

the Adomian decomposition method (ADM) is applied to solve fractional differential equations (FDEs) of a 

deferred correction network (DC Net) model using Caputo-Fabrizo (CF). To improve the accuracy of the 

calculated solution, we compare it with the Picard method (PM). It was found that the two schemes are very close 

to each other based on the analytical results. Comparing these two approaches, numerical tests confirm the 

accuracy of the proposed (DC Net) model. 
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1. Introduction 

The solution of fractional differential equations (FDEs) has been investigated by many researchers in 

recent years, since equations of this type can be found in many fields, including physics, engineering, biology, and 

fluid dynamics [1]. There have been many suggested methods for solving FDEs in recent years, including 

variational iteration techniques [2, 3], homotopy perturbation techniques [4, 5], Adomian decomposition techniques 

[6], homotopy analysis techniques [7], and collocation techniques [8, 9]. There are many definitions, such as Caputo 

[10,11], Rieman-Liouville, Atangana, and Caputo-Fabrizo (CF) [12]. In this research, we use Caputo-Fabrizo, 

which adds a new dimension to the study of fractional differential equations (FDEs). An important feature of the 

new derivative is that it has a nonsingular kernel, which is formed by combining an ordinary derivative with an 

exponential function, but it also has the same supplementary motivating properties with various scales as Riemann-

Liouville fractional derivatives and Caputo derivatives. 

It is noted that the Adomian decomposition method (ADM) is effective for solving both ordinary and 

partial differential equations across a wide range of physical models. The ADM’s ability to yield solutions that are 

nearly identical in accuracy to those obtained through the Picard method (PM), while requiring less computational 

time (as indicated by the comparison of execution times between ADM and PM), demonstrates its efficiency. 

ADM improves the efficiency of solving fractional differential equations (FDEs) in the context of the 

deferred correction network (DC Net) model by providing a systematic approach that avoids the need for 

linearization and discretization [13]. This method involves decomposing the solution into a series of functions and 

applying an inverse operator to the differential equation. It allows for the direct handling of nonlinear terms, which 

is particularly beneficial in complex models. 

This research aims to study a significant fractional-order model of neural network solve ordinary 

differential equations (ODEs) with the definition of CFD. Based on several numerical tests, the proposed DC Net 

model is approximately 100 to 10 times more accurate than the learning polynomial neural network (LPNet). We 

use ADM and PM that have several advantages, as they are used for solving different kinds of equations in 

deterministic or stochastic fields, whether they are linear or nonlinear, and they are free from linearization and 

discretization [14]. For this model, existence, series convergence, and error estimation are discussed. These 

fractional brain models are discussed in four different cases. 
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This research is continued as follows: Section 2 is a presentation of the main definitions and properties 

required through the paper. Section 3 introduces the two methods of solution: ADM and PM. Section 4 shows 

convergence analysis, and contains the existence of a unique solution, series solution convergence, and error 

estimation. In Section 5, we give the numerical solution of the FBM in four different cases, and a comparison 

between the ADM and PM solutions is given. 

 

2. Material and methods 

 

2.1. Definition of Caputo-Fabrizo 

Definition 1 The definition of the CF derivative of order 𝜂 is  
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and the normalization function 𝐵(𝜂) > 0 satisfies 𝐵(0) = 𝐵(1) = 1 (see [15], [16]). Its corresponding fractional 

integral (FI) is  
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where 
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The main advantage of using this definition is that there is no singularity in its definition, as shown in (1) and (2). 

 

3. Solution Methods: ADM and PM 

In this section, we review the solution algorithms for ADM and PM, which were used to solve the model. 

3.1. The solution algorithm for ADM 

In this section we shall review the procedure of the standard ADM for the initial value differential 

equations [17, 18]. 

 Consider the differential equation 

 
( )( ) ( ), = ,L t t g t+Rù ù

 (3) 

where 𝐿 is the highest order derivative differential operator, which is assumed to be invertible, R  is the linear 

differential operator whose order is less than 𝐿. We can apply the inverse operator 𝐿−1 to both sides of (3). After 

simple calculations, we obtain 

 ( ) ( )( )1 1

=0

= , ,
!

n
ii

i

c
t L g t L t t

i

− −+ − Rù ù  (4) 

where ∑
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𝑖=0  arises from the given initial conditions (I.C). 

ADM method assumes that the solution 𝜘 can be described by the series 
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By substituting the above equation in the equation (4), we attain the following recursive relationship 
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Using Definition of CF where 𝐿−1(. ) = 𝐼𝜂(. )𝐶𝐹 , it is reduced to the following fractional equation (FE), so we get 
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where 𝑡 ∈ 𝐽 = (0, 𝑇], 𝑡 ∈ ℛ+, ℝ(𝑡, 𝜘) is continuous function satisfies Lipschitz condition 
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 (8) 

where 𝛷 is the Lipschitz constant. 
 
3.2. The solution algorithm for PM  

Applying PM to FE (4), the solution is a sequence constructed by  
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The functions 𝜘𝜅(𝑡) are continuous, and they are the sum of successive differences  
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This means that the sequence 𝜘𝜅 is equivalent to the infinite series ∑ (𝜘𝜅 − 𝜘𝜅−1)𝑛

𝜅=1  which is convergent. The final 

PM solution takes the form 
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From the above relations, we can deduce that if the series ∑ (𝜘𝜅 − 𝜘𝜅−1)𝑛

𝜅=1  is convergent, then the sequence 𝜘𝜅(𝑡) 

would be convergent to 𝜘(𝑡). And to prove that the sequence {𝜘𝜅(𝑡)} is convergent, consider the series 
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From (9) for 𝜅 = 1, we get 
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where 𝜙 =
(1+𝜂𝑇)[𝐻+�̆�𝑛]

𝐵(𝜂)
. Now, we get an estimate for [𝜘𝜅(𝑡) − 𝜘𝜅−1(𝑡)], 𝜅 ⩾ 2, 
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In the above relation, if we put 𝜅 = 2, and use (10) we get 
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Make the same for   
= 3,4, ,
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So, the general form of this relation is 
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Since 𝛽 < 1, then the series 
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is convergent. Hence, the sequence {𝜘𝜅(𝑡)} uniformly converges. Since ℝ(𝑡, 𝜘(𝑡)) is continuous in 𝜘, then 
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4. Convergence analysis 

 

4.1. Existence and uniqueness  

Theorem 1: 

 Let ℝ(𝑡, 𝜘) satisfy the Lipschitz condition (8), and if  𝑇𝜂 <
𝛤(𝜂+1)

𝛷
, then the solution 𝜘 of the FE (4) is unique. 

 

Proof. From (4), we can define a mapping 𝛹 as 
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If 0 < 𝛿 < 1, then the mapping 𝛹 would be contraction, moreover if  𝑇 <
𝐵(𝜂)−𝛷

𝛷𝜂
, then there exists a unique 

solution to (4).  

 

4.2. Solution convergence 

Theorem 2: 

If the solution of FE (4) exists, and |𝜘1(𝑡)| < 𝐿, where 𝐿 is a positive constant, then the ADM series solution (5) 

of FE (4) converges .  
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Proof. Define a sequence 𝑄�̆� = ∑ 𝜘𝜅(𝑡)�̆�
𝜅=0   is the sequence of partial sums from the ADM series solution, and we 

have 
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Taking two partial sums; 𝑄�̆� and 𝑄𝜈, such as �̆� > 𝜈. Now, our goal is to prove that 𝑄�̆� is a Cauchy sequence in the 

Banach space ℑ. 
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Let �̆� = 𝜈 + 1, then  
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Using the triangle inequality, we get  
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Now 0 < 𝛿 < 1, and �̆� > 𝜈 implies that (1 − 𝛿�̆�−𝜈) ≤ 1. Hence 
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If |𝜘1(𝑡)| < 𝐿 and as 𝜈 → ∞ then, ‖𝑄�̆� − 𝑄𝜈‖ → 0, and therefor 𝑄�̆� is a Cauchy sequence in the Banach space ℑ, 
then the ADM series solution converges.  

 

 

 

4.3. Error estimation 

Theorem 3: 

The maximum absolute error of the ADM series solution is  
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Proof. From theorem 2, we have 
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So, the MAE in the interval 𝐽 is 
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 Examples and applications 

 Example 5.1 [12] Consider the fractional equation: 
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with exact solution 𝑒−𝑡 . 
 Applying ADM to equation (12), we get 
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Using PM to equation (12), we have  
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 Figures (1,2) show ADM and PM solutions at (𝜂 = 1,0.97, 0.95, and 0.9). 
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A comparison between the RE (relative error) of ADM and PM solutions (where 𝜂 = 0.9) is given in table 1. 

Although the two solutions are nearly identical in accuracy, when the time used in two cases is compared, ADM 

takes a shorter amount of time than PM (ADM time = 0.171 sec., PM time = 0.312 sec.). 

 

Example 5.2: [12] Consider the fractional equation: 
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Applying ADM to equation (13), the solution algorithm is  
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Using PM to equation (13), so we have  
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Figures (5,6) show ADM and PM solutions at (𝜂 = 1,0.97, 0.95, and 0.9). 

 

 
 

 
 

 
 

A comparison between the AD (Absolute difference) of ADM and PM solutions (where 𝜂 = 0.9) is given in table 

2. Although the two solutions are nearly identical in accuracy, when the time used in two cases is compared, ADM 

takes a shorter amount of time than PM (ADM time = 0.187 sec., PM time = 0.282 sec.). 
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Conclusion 

This research is presented on the use of ADM and PM to solve FDEs, particularly around a deferred 

correction network (DC Net). It highlights the advantages of using the Caputo-Fabrizo derivative, which offers a 

nonsingular kernel and retains essential properties like other fractional derivatives. 

The findings indicate that both ADM and PM are effective in providing accurate solutions to FDEs, but 

ADM demonstrates increased flexibility and efficiency. The comparative analysis shows that ADM converges 

faster and requires less computational time than PM. The research shows the importance of these methods in various 

scientific and engineering applications. It emphasizes their role in enhancing the reliability of models predicting 

brain metabolite variations. 
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