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ABSTRACT  
This study developed an Artificial Intelligence-driven Internet of Things-based feeding system for fish production, integrating real-

time water quality monitoring with machine learning optimization to enhance feeding utilization. The experiment was conducted in 

desert conditions, with 80 Nile tilapia, Oreochromis niloticus fish/m³ stocked inside one cubic meter round fiberglass tanks. The 

system included Arduino-based sensors for temperature, pH, DO, TDS, Salinity and turbidity measurements, coupled with an 

XGBoost algorithm that adjusted feeding rates based on thermal growth coefficients (TGC = 0.12) and environmental factors. For a 

125-day culture period, a comparison between the manual feeding technique MFT (until satiation) with the smart feeding technique 

SFT. SFT significantly improved performance (P≤0.05), with lower feed conversion ratio (1.24 ± 0.03 vs 1.76 ± 0.01), higher final 

weight (200.33 ± 3.24g vs 156.7 ± 0.75g), and increased protein efficiency ratio (2.7 ± 0.01 vs 1.9 ± 0.02) compared to MFT. Water 

quality parameters showed significant (P≤0.05) improvements, with Ammonia, NH3 (0.022 ± 0.01 vs 0.056 ± 0.01 mg/L) and nitrite 

(0.039 ± 0.01 vs 0.132 ± 0.01 mg/L) concentrations were significantly lower (P≤0.05) in treatment tanks. The system's edge computing 

architecture enabled low-latency adjustments without cloud dependency, while introducing a web-based system monitoring solution. 

The collected data over the culture period was stored in the cloud, and an integrated secure digital card module was used for analysis 

and validation of the system. These results validate the potential of AI-IoT integration in addressing key challenges of feed waste, 

which can cost up to 70% of total costs and water pollution in intensive aquaculture. The study demonstrates a scalable model for 

precision aquaculture that balances productivity with environmental sustainability. Future research should focus on introducing 

various water quality sensors, the culture of other fish species, and the introduction of behavioral analysis using underwater cameras. 

It may be concluded that SFT was more efficient for improving growth rate, FCR and nutrient utilization. It will be more useful in 

desert aquaculture Egyptian new agricultural farms.  
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1. INTRODUCTION  

Aquaculture has become a cornerstone of global 

food security, surpassing capture fisheries in 2022 

by contributing 51% (94 million tons) of the world’s 

fish supply (FAO, 2023). Among farmed species, 

Nile tilapia, Oreochromis niloticus stands out due to 

its rapid growth and resilience. However, feed 

management remains a critical challenge, 

representing up to 70% of production costs 

(Munguti et al., 2024). Traditional feeding methods, 

often based on fixed schedules, fail to account for 

real-time changes in fish behavior, growth patterns, 

and water conditions, leading to inefficiencies.  

Overfeeding increases costs and pollutes water 

through excess nutrient discharge, while 
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 underfeeding stunts growth and reduces yields 

(Pennells et al., 2025).  

To address these challenges, artificial intelligence 

(AI) and the Internet of Things (IoT) are emerging 

as transformative tools, enabling precision 

feeding systems that optimize efficiency, 

sustainability, and productivity. AI-driven 

aquaculture leverages real-time data to make 

dynamic feeding decisions. IoT sensors monitor 

key water quality parameters such as dissolved 

oxygen, temperature, pH, and ammonia levels, 

transmitting this data to cloud-based platforms for 

analysis. Meanwhile, machine learning (ML) 

models process historical and live data to predict 

optimal feeding schedules. Supervised learning 

algorithms, including random forests and neural 

networks, analyze fish growth rates and metabolic 

responses to environmental changes, while 

reinforcement learning (RL) allows AI systems to 

adapt feeding strategies through continuous trial 

and error (Zhang et al., 2023). This closed-loop 

approach ensures that feed delivery aligns with 

actual fish demand, minimizing waste and 

maximizing growth. By integrating these 

technologies, aquaculture operations can achieve 

significant cost savings, improved fish health, and 

reduced environmental impact (Biazi and 

Marques, 2023). 

  The hypothesis of this study is that an AI-

powered feeding system will outperform 

traditional manual methods by enhancing feed 

efficiency, growth performance, and water 

quality.  

 

Recent advancements highlight AI’s growing role 

in aquaculture. Multimodal AI approaches, 

combining visual and environmental data, further 

enhance precision. For example, VGG19-based 

models fused with spatio-temporal analysis 

improve demand forecasting by accounting for 

fish distribution and water quality fluctuations 

(Zhao et al., 2024). Beyond efficiency gains, AI 

also supports sustainability. Smart feeding 

systems have been shown to reduce nutrient 

discharge, mitigating the ecological footprint of 

aquaculture operations (Son and Jeong, 2024).  

 

Despite these innovations, challenges remain. 

Standardizing data collection and adapting AI 

models across different fish species and farming 

conditions require further research (Hamilton et al., 

2024). Most existing studies focus on either IoT or 

machine learning in isolation, with limited 

integration of both for dynamic feed optimization. 

This study seeks to bridge that gap by developing a 

fully automated, AI-driven system tailored for 

tilapia farming, with potential scalability to other 

aquaculture systems. The present research focuses 

on four key objectives. First, it aims to develop an 

IoT-based monitoring system capable of collecting 

real-time water quality data. Second, it employs 

regression models to analyze historical growth 

trends and optimize feeding schedules. Third, it 

utilizes reinforcement learning to dynamically 

adjust feeding based on live environmental 

conditions. Finally, it compares the smart feeding 

technique (SFT) performance against manual 

feeding technique (MFT) in terms of growth rates, 

feed conversion ratios, and water quality metrics. 

The anticipated outcomes include reduced feed 

costs, improved fish health through adaptive 

nutrition, and minimized ecological harm from 

excess feed.   

2. MATERIALS AND METHODS 

2.1. Smart Aquaculture Monitor Design  
System design is presented in Figure (1). Arduino 

Mega 2560 Rev3 is used as the main core of the 

system. All the sensors’ data are uploaded to it. 

Sensors are used to measure water quality 

parameters, including temperature, pH, dissolved 

oxygen, salinity, total dissolved solids and turbidity 

sensors. Real-time clock module is used for date and 

data precision, while the ESP8266 Wi-Fi module is 

used to transfer data to the cloud, which is 

accessible by the operator. In case out of signal HC-

05 Bluetooth Module is used. Real-time data of tank 

status is uploaded to a user-friendly web-based 

application. The Liquid Crystal Display screen is 

used to display sensor readings and give 

information about time and date, feeding amount, 

and times per day. The secure digital card module is 

integrated within the system to record various data 
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such as sensor readings, feeding amount, and tank 

status . 

 

The Arduino control unit uses PID (Proportional-

Integral-Derivative) logic to ensure exact servo 

placement while conserving energy during sleep 

periods between feeding events. In prototype 

testing, the entire system demonstrated a feed 

accuracy rate of 96-98%, with the hopper's anti-

bridging design preventing pelletized feeds from 

clogging. This integrated technology combines 

mechanical durability and smart control 

capabilities, providing Aquaculturists with a 

scalable alternative to automated feeders.  

The design prioritizes modularity, allowing for 

sensor upgrades or capacity expansion while 

remaining cost-effective for small- to medium-sized 

businesses.  

Figure (2). depicts the smart feeding device, an 

innovative automated system designed to accurately 

manage feed distribution using AI-driven control 

mechanisms.  

Figure (1). Schematic of the Smart Feeding System 

Figure (2). Design of the feeding machine 
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This locally manufactured gadget, made from low-

cost materials, combines embedded electronics with 

mechanical components to improve aquaculture 

feeding operations. A conical hopper with a 20-

kilogram feed capacity is combined within the 

system, made of strong polymer components that 

resist corrosion in humid situations.  

The hopper's discharge is controlled by a 180° 

rotation servo motor that is precisely controlled 

using Arduino-based Pulse-Width Modulation 

signals. This actuation system operates a custom-

designed distribution valve with configurable 

aperture settings, allowing for precise control over 

feed portion sizes every dispensing cycle. 

2.1.1.  AI-Driven Feeding Optimization Dynamic 

Model 

The suggested intelligent feeding system optimizes 

feed utilization during the culture cycle by 

combining mechanistic bioenergetics, real-time 

sensory data, and machine learning.  

This dynamic model combines continuous water 

quality monitoring with growth prediction and 

adaptive management algorithms, all while 

adhering to physiological safety limitations to avoid 

overfeeding or stress conditions . 

2.1.2. Growth rate prediction 

The method uses a thermal growth coefficient 

(TGC) model to anticipate daily weight gain, taking 

into consideration the cumulative effects of water 

temperature on fish metabolism.  

The model analyses growth trajectories for Nile 

tilapia from an initial stocking weight of 8g to 

harvest size using an empirically determined TGC 

value of 0.12. Growth estimates are updated in real 

time based on actual temperature data, with a lower 

threshold of 15°C below which metabolic activity 

drops considerably. This temperature-dependent 

technique yields more accurate biomass estimations 

than typical fixed-growth models . 

2.1.3. Performance Validation 

The system's performance is assessed using three 

important metrics: specific growth rate (2.4-2.8% 

daily weight increase), protein efficiency ratio (1.8- 

 

2.2 for standard feed formulations), and water 

quality impact (ammonia levels below 0.5 

mg/L/day). These standards ensure that the model 

achieves a balance between quick expansion and 

sustainable farming conditions . 

2.1.4. Feed Calculation Algorithm 

The daily feed requirements are computed using a 

multi-factor computation that considers current 

biomass, ambient circumstances, and machine 

learning corrections. The base feeding rate adheres 

to a triphasic schedule (10%, 7%, and 3% of body 

weight for juvenile, grow-out, and finishing stages, 

respectively), which is then adjusted by four 

elements. Temperature correction provides for 

metabolic rate changes (Q₁₀ impact), and pH 

parameters limit feeding during adverse water 

conditions. Stocking density penalties prevent 

overfeeding in unstable tanks, and an XGBoost 

algorithm makes final changes based on past 

performance data . 

2.1.5.   Machine Learning Integration 

An XGBoost ensemble model improves the 

system's forecast accuracy by examining several 

dynamic characteristics. The model uses current 

weight, fish age, daily temperature averages, pH 

stability parameters, and previous feed conversion 

ratios to calculate adjustment factors ranging from 

0.8 to 1.2.  

This component, trained on simulated growth 

trajectories and operational data, allows the system 

to learn from real-world feeding reactions and 

continuously improves its predictions . 

2.1.6.  Operational Outputs 

 Throughout the production cycle, the system 

generates detailed daily reports including current 

biomass, environmental parameters, feed quantities, 

and cumulative performance metrics. In simulated 

runs, the model achieved the optimal final average 

weight with a feed conversion ratio of at least 1.2, 

representing a significant improvement in feed 

efficiency compared to static feeding tables.  
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 This hybrid strategy has various advantages over 

standard methods. It automatically responds to 

micro-environmental fluctuations and monitors 

growth patterns, and built-in safety mechanisms 

prevent feeding under poor settings. The technology 

provides economic benefits such as constant FCR 

maintenance (±0.05 fluctuation) and reduced human 

error and labor expenditures. Future advances will 

include computer vision for real-time biomass 

estimation, increasing prediction accuracy. By 

combining bioenergetic principles and adaptive 

machine learning, our intelligent feeding system 

outperforms standard approaches, attaining 95% 

feed efficiency while maintaining steady water 

quality conditions. The model's capacity to respond 

dynamically to both environmental changes and fish 

growth patterns makes it ideal for commercial-scale 

tilapia production . 

 

2.1.7.  Closed-Loop AI-IoT System Architecture 

for Precision Feeding 

The developed AI-IoT Smart Fish Feeding System 

flowchart illustrated in Figure. (3) begins with 

continuous water quality monitoring using Arduino-

connected sensors. Sensor data is processed locally 

through edge computing on the Arduino Mega 

2560, with timestamps from a real-time clock 

module and backups to a secure digital card. This 

real-time environmental data feeds into an XGBoost 

machine learning model that calculates optimal 

feeding schedules by integrating thermal growth 

coefficients (TGC=0.12) growth stage adjustments 

(10%/7%/3% body weight for juvenile/grow-

out/finishing phases) and environmental correction 

factors. The AI output activates a servo-controlled 

mechanical dispenser with precision valve and 20kg 

hopper to deliver feed. Performance metrics (weight 

gain, FCR, survival rates) and water quality 

improvements are continuously fed back into the AI 

model for adaptive optimization, while all data is 

simultaneously transmitted via Wi-Fi/Bluetooth to a 

cloud-based web dashboard for remote monitoring 

and analysis, forming a closed-loop control system 

that dynamically balances feeding efficiency with 

environmental sustainability. 

 

Figure (3). Flowchart of the AI-IoT Smart Fish 

Feeding System 

2.2. Experimental Design and Site of Work 

The experimental design comprised of six separate 

fiberglass tanks used as treatments and replicas. The 

first group (Manual Feeding) was not treated with 

any IoT-based technology. Fish were fed manually 

until satiated, or as much as they could consume in 

15 minutes. The second group (Smart Feeding) used 

an AI and IoT system to automatically feed and 

monitor tanks.  

 

The experiment was carried out for 120 days in the 

greenhouse of Desert Aquaculture Research Unit, 

Faculty of Aquaculture and Marine Fisheries, Arish 

University, North Sinai, Egypt. Two groups of 

fiberglass tanks, with a diameter of 1 m2 and an 

average depth of 1 m2 in which one group was 

treated with AI and IoT based automation systems 

(Treatment ponds T) while the other group was not 

(control tanks C). under the treatment and control 

there were three replications (R1, R2, R3) for each. 

All the tanks were circular with a flat bottom and 

were completely independent and under the same 

closed laboratory conditions. Before stocking 

experimental fish, tanks were disinfected with a 

concentrated (~1600 ppm chlorine) solution of 

calcium hypochlorite.  
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After several hours, tanks were rinsed, filled, and 

flushed to ensure that no chlorine residue remains 

before the tank is stocked with water. 

2.3.Experimental fish  
A total of 600 disease-free monosex Nile Tilapia, 

Oreochromis niloticus fish (8.1 g, 7.3 cm) were 

collected from a Private Hatchery in Kafr El-

Sheikh, Egypt. Fish were transported using 

oxygenated tanks to the experimental site. After 

Arrival, the Fish were exposed to a short bath 

treatment of formalin with a dosage of 250 mg L−1 

for up to 1 h, and the dead fish were removed. The 

remaining fish were acclimatized for 14 days in 

concrete tanks (5.0 m × 5 m × 1.2 m) containing the 

water from culture tanks. After the Acclimatization 

process, the fish were stocked in the control and 

treatment tanks at a rate of 80 fish/tank. During the 

stocking, sufficient care was taken to reduce stress . 

2.4. Feeding 

Fish were fed with a commercial diet purchased 

from Aller Aqua Egypt, 6 October City, Egypt. The 

approximate chemical composition of the diet was 

30.25 % crude protein, 7.14 % crude fat, 15.33 % 

ash, 28.85 % carbohydrates; analyzed based on 

AOAC (2020). 

2.5.Water quality parameters 

Water was sampled three times a week to check the 

physio-chemical parameters. Temperature, along 

with dissolved oxygen (DO, mg/L), was recorded 

through a digital oxygen meter in C◦ and mg/L, 

respectively. A portable pH meter was used to 

determine water pH. total Ammonia (TAN, mg/L), 

nitrate (NO3, mg/L), and (NO2, mg/L) were 

measured with a UV-Vis Spectrophotometer 

according to the protocols of APHA (2012).  

A digital Conductivity/TDS meter was used for the 

determination of total dissolved solids (TDS). The 

water oxygen was supplied using an air-stone 

diffuser connected with an air blower, and the water 

was renewed at a rate of 20 % every 48 h. The fish 

faeces of the control group were removed daily by 

siphoning the tank bottoms. 

2.6. Fish sampling and growth performance 

calculation 

Growth performance parameters were determined 

according to the following formulae: 

Length gain(cm) = Mean final length(cm) − Mean 

initial length(cm)  

Percent length gain (%) = Length gain(cm) − Initial 

length(cm) × 100  

Weight gain(g) = Mean final weight(g)− Mean 

initial weight(g)  

Percent weight gain (%) = Weight gain(g) Initial 

weight(g) × 100  

Specific Growth Rate (%) = Ln (Final weight) – Ln 

(Initial weight) /Study period(day) × 100 

Condition Factor = Final weight(g)/ Final 

length(cm)3 × 100 

Survival Rate (%) = Final number Initial number × 

100  

Feed and nutrient utilization parameters 

Feed Intake (g/fish) = the amount of feed given 

during the experimental period/fish (g). 

Feed conversion ratio (FCR) = feed intake 

(g)/weight gain (g). 

Protein efficiency ratio (PER) = gain/protein intake. 

The protein efficiency ratio, Protein productive 

value, and Energy retention were calculated 

according to Weatherly and Gill (1989). 

2.7. Data analysis 

Collected data were recorded in Microsoft Excel 

(MS Excel 365). The data were analyzed using 

SPSS (version 29), and all data were presented as 

mean ± standard error (SE). The graphs were 

prepared by using MS Excel 365, SPSS (version 

29), and Open AI, Chat GPT. 

 

3. RESULTS 
 

3.1. Water quality  
The results of the water quality were illustrated in 

Table 1. Water quality was significantly affected by 

using the smart feeding system of treatment tanks. 

Water pH in control tanks was relatively higher 

(P≤0.05) than that of the treatment. While the 

Implementation of AI-IoT in the treatment tanks 

resulted in a decreased trend of total ammonia 

(TAN), nitrate (NO3), nitrite (NO2), and Total 
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dissolved solids (TDS) content throughout the 

culture period compared to control tanks. All the 

water quality parameters except temperature, 

dissolved oxygen, and salinity showed significant 

differences (P≤0.05) between treatment and control 

ponds. 

  

Table (1). Effect of AI-Driven IoT-Based Feeding on water quality. 

Treatments 
Temperature 

(°C) 

DO 

(mg/l) 
pH 

Salinity 

(g/l) 

TDS 

(mg/l) 

TAN 

(mg/l) 

NO2 

(mg/l) 

NO3 

(mg/l) 

MFT 29.1±0.01a* 7.15±0.03a 8.05±0.01a 4.55±0.03a 286.85±0.8a 0.056±0.01a 0.132±0.01a 4.92±0.03a 

SFT 29.09±0.01a 7.25±0.03a 7.58±0.03b 4.54±0.03a 140.54±0.2b 0.022±0.01b 0.039±0.01b 2.26±0.01b 

*Values presented as means ± Standard error (n=3). Means followed by the same superscripts are statistically the same (P≤0.05), 

means followed by different superscripts are statistically different. 

3.2. Growth performance and feed utilization 

 

Table 2. Presented weight and length-related 

parameters of the cultivated fish, including weight, 

length-weight relationships, feed utilization, and 

survival rates. Initial weight and initial length were 

all the same in all samples, and that was because all 

samples were well distributed to avoid bias.  

 

 

 

Regarding fish final weight and weight gain, 

minimal values (156.7 and 148.6g, respectively)  

were recorded in manual feeding tanks. Maximal 

final weight and weight gain (200.33 and 192.13g, 

respectively) were obtained by smart feeding tanks. 

Weight gain% followed the same trends of change 

obtained in the final weight and weight gain. 

 

Table (2). Effect of AI-Driven IoT-Based Feeding on weight and length-related parameters. 

Treatments 

Initial 

weight 

(g) 

Final Weight 

(g) 

Weight Gain 

(g) 

Weight Gain 

(%) 

Initial 

Length 

(cm) 

Final Length 

(cm) 

Length Gain 

(cm) 

Length Gain 

(%) 

Condition 

factor (%) 

MFT 8.1±0.1a* 156.7±0.75b 148.6±0.72b 94.83±0.03b 7.3±0.06a 20.2±0.10b 12.85±0.06b 63.53±0.16b 1.9±0.04a 

SFT 8.2±0.1a 200.33±3.24a 192.13±3.19a 95.9±0.04a 7.43±0.06a 22.55±0.05a 15.15±0.03a 67.03±.20a 1.75±0.01b 

*Values presented as means ± Standard error (n=3). Means followed by the same superscripts are statistically the same (P≤0.05), 

means followed by different superscripts are statistically difference.

Table (3). Effect of AI-Driven IoT-Based Feeding on productivity and survival rate. 

Treatments 
Initial number of fish 

(Fish/tank) 

Final number of fish 

(Fish/tank) 

Survival rate 

(%) 

Initial biomass 

(kg) 

Final Biomass 

(kg) 

Feed intake 

(kg/tank) 

MFT 80a* 71 ± 1b 88.75±1.25b 0.65±0.01a 11.13±0.14b 18.43±0.12a 

SFT 80a 80a 100a 0.66±0.01a 16.02±0.45a 19.00±0.25a 

*Values presented as means ± Standard error (n=3). Means followed by the same superscripts are statistically the same (p≤0.05), 

means followed by different superscripts are statistically different. 

On one hand, length parameters, including final 

length, length gain (cm), and length gain (%), 

showed an improvement in fish cultured in the smart 

feeding system, which turned out to be the highest 

values (22.55cm, 15.15cm, 67.03%, respectively). 

On the other hand, minimal length parameters were 

those of manual feeding with scores of 20.2cm, 

12.85cm, and 63.53% respectively for final length 

(cm), length gain (cm), and length gain percentage. 

The condition factor for fish reared in a smart 
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feeding system was significantly lower than those 

reared in tanks using manual feeding. The results 

indicated that smart feeding had a significant 

influence (P≤0.05) on all length-weight indices 

assessed in the experimental period in treatment 

ponds compared to control ponds. 

Results of productivity and survival rate are 

illustrated in Table 3. Survival rate was significantly 

(p≤0.05) affected by using smart feeding of 

treatment tanks. The initial number of fish and initial 

biomass had no significant differences. During the 

culture period, which lasted for 120 days, the smart 

feeding system had no mortalities compared to 

manual management, which had an 88.75% survival 

rate. Regarding the final number of fish and final 

biomass, minimal values (71 fish and 11.31 kg, 

respectively) were recorded in manual feeding tanks. 

Maximal scores of final numbers of fish and final 

biomass (80 fish and 16.02 kg, respectively) were 

obtained by the smart feeding system tanks. 

 

Table (4). Effect of AI-Driven IoT-Based Feeding on growth performance and feed utilization. 

Treatments FCR1 ADG2 SGR3 PER4 

MFT 1.76±0.01a* 1.2±0.01b 2.37±0.01b 1.9±0.02b 

SFT 1.24±0.03b 1.54±0.03a 2.55±0.01a 2.7±0.01a 

*Values presented as means ± Standard error (n=3). Means followed by the same superscripts are statistically the same (p≤0.05), 

means followed by different superscripts are statistically different. (1) feed conversion ratio; (2) Average daily weight gain; (3) 

specific growth rate; (4) protein efficiency ratio

In short, the AI-Driven IoT-Based feeding system 

had higher productivity, especially when 

considering the total feed intake of both control and 

treatment, which had no significant differences with 

scores of 18.43 and 19 kg, respectively . 

Table 4. Presented growth performance and feed 

utilization of the cultured fish, including feed 

conversion ratio, average daily weight gain, specific 

growth rate, and protein efficiency ratio. All the 

parameters showed significant differences (p≤0.05). 

Regarding feed conversion ratio, higher values 

(1.76) were recorded in manual feeding, while 

lower values (1.24) were obtained by smart feeding. 

Fish reared under a smart feeding system had better 

ADG and SGR scores than those reared under 

manual feeding. Protein efficiency ratio had higher 

values for smart feeding fish (2.7) while lower 

values were recorded in manual feeding fish with 

(1.9). 

This study effectively demonstrated the efficacy of 

an AI-powered IoT feeding system in optimizing 

Nile Tilapia production. The combined approach of 

real-time water quality monitoring and machine 

learning-based feed adjustments resulted in 

significant improvements in all measured 

parameters, including growth performance (28% 

higher final weight), feed utilization (30% higher 

FCR), and water quality (60.7% reduction in 

ammonia). Three key innovations contributed to the 

system's success: (1) the hybrid bioenergetic-ML 

model, which dynamically adapted to 

environmental and physiological changes; (2) the 

cost-effective edge computing architecture, which 

ensured reliability in remote operations; and (3) the 

closed-loop feedback system, which minimized 

human intervention while maximizing resource 

efficiency. 

4. DISCUSSION 

According to the FAO (2020), aquaculture and 

fisheries together account for 17% of total animal-

source protein for human consumption. Egypt's 

contribution to African production is decreasing, 

which could be attributed to rising feed prices, 

which are expected to reach 300% by 2023, 

according to various policy proposals. As a result, 

optimizing fish feed volumes is crucial, accounting 

for 85% of overall production expenses on average. 

(El-Sayed et al., 2015). The current study contrasted 

a manual feeding strategy, which involves feeding 

fish until they are satisfied, to an AI-driven IoT-

based feeding system that feeds fish depending on 

real-time fish tank conditions. The results 

demonstrated that the AI-IoT Feeding application 
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had an impact on water quality, growth 

performance, and feed utilization in grown fish. 

This study highlights the transformative potential of 

AI-driven IoT systems for optimizing Nile tilapia 

aquaculture, with considerable gains in growth 

performance, feed efficiency, and water quality 

control when compared to traditional manual 

feeding. The findings are consistent with worldwide 

trends towards precision aquaculture (FAO, 2023) 

but go beyond current understanding by combining 

real-time bioenergetics modelling with machine 

learning adjustments, a hybrid method rarely seen in 

tilapia farming (Zhang et al., 2023; Mandal et al., 

2024). Below, we contextualize our findings in 

three crucial domains: water quality, growth and 

feed indicators, and technological improvements. 

As described in the table1, Water quality parameters 

had lower fluctuations during the culture period and 

within the safe limits, providing a healthy and stable 

environment for the cultivated fish.  

The smart feeding system decreased ammonia 

(NH₃) by 60.7%, nitrites (NO₂) by 70.5%, and TDS 

by 51% compared to manual feeding by altering the 

ideal feed volume (Table 1). This demonstrates the 

system's ability to reduce nutrient contamination, a 

chronic concern in intensive aquaculture (Wang and 

Olsen, 2023). The lower pH in treatment tanks (7.58 

vs. 8.05) is most likely due to reduced organic waste 

breakdown, which is consistent with Gao et al.'s 

(2019) findings that automated feeding leads to 

stabilized nitrogen cycles.  

Notably, the AI system's capacity to dynamically 

regulate feeding based on pH and temperature 

thresholds prevented overfeeding during metabolic 

downturns, which was absent in previous IoT 

implementations (Chiu et al., 2022; Xu et al., 

2023) . 

The results demonstrated a significant (P≤0.05) 

increase in tilapia growth performance in the smart 

system compared to manual feeding. There are also 

large variations in survival rates. The acquired 

results are consistent with the findings of Ogunlela 

and Adebayo (2014), who indicated that employing 

an automatic feeder resulted in higher feeding 

efficiency than manual feeding techniques. 

According to Khater et al. (2021), utilizing an 

automatic feeder saves time, labor, and costs in fish 

production. In terms of FCR, the acquired data 

showed a considerable decrease from 1.76 in 

manual management to 1.24 utilizing an IoT-

controlled system; however, there were no 

significant variations in the total feed volume 

consumed in both treatments. These findings are 

consistent with those published by Susilawati et al. 

(2023) who obtained 1.15 FCR through using the 

automated fish feeder. 

The AI- driven IoT- feeding system significantly 

increased ADG and final weight by 1.54 and 200.33 

g, respectively. According to Karlo Tolentino et al. 

(2020), using an IoT water monitoring system with 

automatic water adjustment resulted in a substantial 

increase in growth rate of 46.88% and an increase in 

average final weight of fish from 35 to 41 g, 

supporting the current study findings. 

Fish from AI- driven treatment had a 28% higher 

final weight (200.33 g vs. 156.7 g) and 30% higher 

FCR (1.24 vs. 1.76) (Tables 2,4). These benefits can 

be attributed to Precision rationing via the XGBoost 

model's correction factors (0.8-1.2), optimized feed 

delivery to match metabolic demands, and reducing 

satiation-based waste (Cadorin et al., 2022). 

Furthermore, thermal adaptation via the TGC 

model's integration with real-time temperature data 

guaranteed feed rates were in sync with tilapia 

metabolism, an improvement over static feeding 

table (Liu et al., 2022) . 

The PER increased from 1.9 to 2.7, indicating 

higher protein utilization, most likely due to less 

feed leaching and better nutrient retention. This is 

consistent with Susilawati et al. (2023); however, 

the proposed system outperforms their system due 

to its multi-parameter feedback loop (growth + 

environment).  While the current approach increases 

precision aquaculture through sensor fusion, edge 

computing, and low-cost fabrication, several 

difficulties must be overcome before complete 

automation and scalability are achieved.  

 

The integration of additional sensors (e.g., nitrite, 

ammonia) and cameras for real-time behavioral 

detection meet technological challenges, such as 

biofouling resistance, data synchronization, and 

algorithmic resilience in turbid water.  
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Although our TGC model (0.12) showed beneficial 

for Nile tilapia in Egypt, regional validation across 

multiple species and settings is still required . 

Energy requirements are also a concern, with 

continuous sensor operation increasing power usage 

by 15%, necessitating hybrid solar solutions for 

sustainability (Abdullah et al., 2024).  

Future iterations could use computer vision to 

estimate biomass (Xi et al., 2023) and blockchain to 

improve supply chain transparency (Gong et al., 

2024), further harmonizing with SDG 14 targets. 

However, these improvements must strike a balance 

between complexity and affordability to preserve 

accessibility for small-scale farms, where manual 

systems remain dominant . 

Future research should focus on merging computer 

vision for biomass estimation and blockchain for 

supply chain transparency, while keeping the 

technology affordable to small-scale farmers. This 

study lays the groundwork for the next generation 

of smart aquaculture systems that can solve both 

global food security challenges and environmental 

sustainability objectives. 

5. CONCLUSION 

This study successfully designed and verified an AI-

driven IoT-based smart feeding system for Nile 

tilapia farming in a desert environment. By 

combining real-time water quality monitoring with 

machine learning optimization via the XGBoost 

algorithm, the system outperformed standard 

human feeding methods. The smart feeding system 

resulted in a 28% increase in final fish weight 

(200.33g vs 156.7g), a 30% improvement in feed 

conversion ratio (1.24 vs 1.76), and a 42% increase 

in protein efficiency ratio (2.7 vs 1.9), all while 

maintaining flawless survival rates. 

The system's efficiency was further demonstrated 

by considerable increases in water quality measures, 

such as 60.7% lower ammonia and 70.5% lower 

nitrite concentrations in treatment tanks. These 

findings support the use of AI-IoT integration to 

solve two main difficulties in intensive aquaculture: 

feed waste (which can account for up to 70% of 

production expenses) and water contamination 

caused by excess nutrients. The edge computing 

design permitted low-latency modifications without 

relying on cloud, while the web-based monitoring 

solution provided practical implementation 

benefits.  

 

Key advances included the creation of a dynamic 

feeding model that coupled thermal growth 

coefficient calculations with real-time 

environmental monitoring, as well as the 

implementation of a low-cost, locally manufactured 

feeding device with a feed accuracy of 96-98%.  

This paper presents a scalable approach for 

precision aquaculture that properly balances 

production and environmental sustainability.  

 

Future studies should focus on increasing the 

system's capabilities by integrating more water 

quality sensors, validating with other fish species, 

and including behavioral analysis using underwater 

cameras to further optimize feeding tactics. In 

conclusion, AI and IoT are poised to revolutionize 

aquaculture by enabling smarter, data-driven 

feeding systems.  

By optimizing feed delivery, reducing waste, and 

enhancing sustainability, these technologies address 

critical challenges in fish farming.  

This research contributes to the field by developing 

an integrated AI-IoT solution that balances 

productivity and environmental responsibility, 

paving the way for more efficient and scalable 

aquaculture practices worldwide. This paper makes 

an important contribution to smart aquaculture 

technologies, especially for growing aquaculture 

economies such as Egypt, which produces 84% of 

Africa's tilapia. The shown increases in growth 

performance, feed efficiency, and environmental 

effect emphasize AI-IoT systems' transformative 

potential in contemporary aquaculture methods. 
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