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ABSTRACT 

BACKGROUND: This study investigates the effects of CO₂ laser surface treatment on grade V commercially pure titanium (CP Ti) to 
improve its antibacterial properties. It evaluates the impact of this process on the implant’s surface characteristics, including topography, 
and hydrophilicity. 
METHODS: A total of 22 Grade V CP Ti discs were CNC-machined into 8mm × 3mm, polished, and divided into two groups: Ti/control 

and Ti/laser (n=11 per group). The Ti/laser samples were subjected to CO₂ laser treatment at a 1064 nm wavelength with a power of 6 
watts. Surface properties were examined using a wettability test and atomic force microscopy (AFM). To assess bacterial adhesion, biofilms 

of S. epidermidis, S. aureus, E. coli, and P. aeruginosa were grown on the titanium surfaces of both groups. Dead bacteria were stained with 
Propidium Iodide (PI) fluorescent dye, visualized under a fluorescent scanning microscope, and quantified using ImageJ software. The 
obtained data were analyzed statistically. 
RESULTS: The mean surface roughness (Ra) of the laser-treated samples was measured at 229.97 nm, which was significantly greater 
than the 72.09 nm observed in the control group. Contact angle measurements indicated values of 83.19° for Ti/control and 41.39° for 
Ti/laser, demonstrating a substantial increase in hydrophilicity for the laser-treated surfaces. Fluorescent imaging of dead bacteria revealed 
a significantly higher count on Ti/laser surfaces (338.18) compared to the control group (6.92) (P < 0.0001*). 

CONCLUSION: The CO₂ laser effectively modified CP Ti surfaces, producing nano-textured, hydrophilic surfaces with antibacterial 
properties. This enhancement reduced biofilm formation. 
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INTRODUCTION  
Lasers stand as a major technological revolution in the 

20th century, progressively gaining dominance in 

various daily life applications, particularly within the 

medical field. Their unique optical radiation modifies 

surfaces from micro to nano scales, altering adhesion 
properties for surface characteristics customization. This 

benefits medical equipment, like dental implants, by 
surface engineering to prevent biofilm development [1]. 

Implants provide a reliable solution for tooth loss, 

boasting a 90% success rate among fully or partially 

edentulous patients. However, they are prone to 

inflammatory issues [2]. Titanium, the gold standard 

for dental implants, offers remarkable mechanical 

properties, corrosion resistance, higher elastic modulus 

than bone, exceptional fracture resilience, and superior 

tissue compatibility compared to alternative metals [3]. 
Despite these qualities, laser irradiation systems have 

been developed to enhance titanium surfaces [4], 

optimizing the osteogenic response for improved 

osseointegration by modifying surface features, and 

wetting capacity [5, 6]. Laser light induces surface 

oxidation, aiding in oxygen diffusion within the molten 

metal, creating morphologies like laser-induced 

periodic surface structures (LIPSSs) [7]. 

High-energy lasers in dentistry modify titanium 

surfaces through fusion, vaporization, ablation, and 

solidification, creating diverse textures. Laser 
wavelength and mode significantly impact surface 

features. Pulsed lasers like Yttrium Aluminum Garnet 

(YAG) and CO2 yield energy peaks exceeding 10^6 

W/cm^2 [5, 8]. Studies stress evaluating laboratory 

setups before clinical use, considering parameters like 

wavelength, pulse duration, repetition rate, fluence, 

intensity, and treatment duration [9]. 

Commercially Ti6Al4V alloys lack inherent 

antibacterial properties, indicating a persistent risk of 

bacterial colonization [10]. In recent decades, 

enhancing implant surface antimicrobial properties has 

become crucial in combating bacterial infections. 
Coatings containing agents like Cu, Ag, etc., are 

employed using different techniques to deter bacterial  

attachment and biofilm formation. Thin coatings are 

vulnerable to damage, reducing antibacterial efficacy, 

these coatings release antibacterial agents for a limited 

duration, addressing early post-surgical infections. 

Enhancing the durability of antibacterial coatings 

remains a pressing need [11]. Topography plays a 

significant role in bacterial adherence, micro- or nano-

topographical patterns on titanium surfaces offer a 

promising strategy to impart antimicrobial properties 
[12]. Interest in developing new antimicrobial  

therapies is increasing due to the potential escalation 

of drug resistance [13]. 

A biofilm is a well-organized community structure 

consisting of bacteria adhered to diverse solid surfaces, 

accompanied by the generation of extracellular 

polysaccharides (EPSs) [14], matrix proteins, and 

extracellular DNA (eDNA) [15-18]. Accordingly, 

bacteria develop heightened infectivity and resistance 

to drugs. The majority of These infections are 

predominantly instigated by S. aureus and S. 

epidermidis, along with Gram-negative bacilli [15, 17, 

19], E. coli, and P. aeruginosa [18, 20]. The typical 
biofilm life cycle is attachment, maturation, and dispersal. 

Lasers create precise patterns on metal surfaces, 
enhancing titanium implants' biocompatibility. However, 

there is Limited research on microbial colonization of 
laser-treated surfaces [12]. 

From this perspective, this research aims to evaluate 

the efficacy of the CO2 laser strategy used for 

engineering Grade V commercially pure titanium (CP 

Ti) surfaces, with the creation of antibacterial surface 

properties against bacterial biofilms. The null 

hypothesis stated that CO2 laser irradiation will not 

alter titanium surface properties. 

 

MATERIALS AND METHODS 
2.1. Specimen preparation 

A Grade V commercially pure (CP) titanium alloy 

block (KERA TI 5-DISC) was used to manufacture 

titanium discs measuring 8mm × 3mm (N=22) [21]. 

The disc design was created using Auto-cut software 

(Version 6.0160115, China) and fabricated with a 

Computer Numerical Control (CNC) electron 

discharge machine (DK7740, China). A single operator 

polished the discs sequentially with silicon carbide 
abrasive papers of 180, 320, and 1200 grits [21, 22]. 

To eliminate potential contaminants, the discs 

underwent ultrasonic cleaning (T-14, L&R 

manufacturer, USA) with distilled water and acetone 

for 15 minutes [23], followed by air drying. The 

samples were then randomly assigned to two groups 

(n=11 each): the Ti/control group, consisting of 

unmodified titanium discs, and the Ti/laser group, 

which featured CO₂ laser-engineered surfaces. The 

sample size was determined assuming a 5% alpha error 
and 80% study power, and calculated by a software 

program (G*Power 3.1.9.7). The mean [±SD] percent 

surface coverage of biofilm was found to be 68.71 

[±9.50] for untreated titanium surfaces and 52.53 

[±14.34] for laser-treated titanium surfaces [12].  

2.2. Laser treatment 

The surfaces of the titanium discs were modified using 

a continuous-wave CO₂ fiber laser (ML025-CA, USA) 

with a wavelength of 1064 nm, an energy output of 120 

millijoules, a power setting of 6 watts, and a frequency 
of 50 hertz. A single clinician performed the treatment, 

applying three consecutive repetitions. Each session 
lasted 15 seconds and employed a perpendicular linear 

scanning mode, with a spot size of 400 microns. [23, 24].  
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2.3. Atomic force microscopy (AFM) 

Atomic force microscopy (AFM) imaging was 

performed at room temperature using contact mode 

[22]. Surface analysis was conducted with a scanning 

probe microsco  pe (SPM-9600, Japan) fitted with a 

silicon cantilever (NCHR-20; Nano World AG, 

Neuchâtel, Switzerland). Surface roughness (Ra) was 

measured in nanometers through scans covering an 

area of 40μm × 40μm, with the results visualized as 

colored 3D images [25]. 
2.4. Contact angle test 

For the surface wettability assessment, a Rame-hart 

contact angle goniometer (Model 190, USA) equipped 

with DROP image CA v2.5 software was used. A 

micro-syringe dispensed 2 µL of distilled water onto 

the titanium disc surfaces [26]. Contact angle 

measurements were recorded as the average of three 

readings taken at different locations within 20 seconds 

of water droplet placement [27]. 

2.5. Bacterial biofilm preparation 

For bacterial adhesion and biofilm formation analysis, 
five bacterial species were cultured: Gram-positive 

Staphylococcus epidermidis (12228) Staphylococcus 

aureus (29213), along with Gram-negative 

Escherichia coli (25922) and Pseudomonas 

aeruginosa (27853). The bacteria were grown 

overnight for 20 hours in Müller Hinton Broth (MHB; 

Oxoid) at 37°C, with continuous shaking at 100 rpm in 

a gyratory incubator. After incubation, the bacterial 

cultures were standardized to an optical density (OD) 

of 0.3 at 550 nm and further diluted 1:50 in fresh sterile 

MHB, producing an inoculum of approximately 1 × 

10⁷ Colony Forming Units (CFU)/ml. Titanium discs 

were then submerged in the prepared bacterial 

suspension within a sterile 6-well plate and incubated 

for 24 hours at 37°C under continuous agitation at 100 

rpm. This procedure was designed to evaluate bacterial 

interactions with the titanium surfaces [28-31] 

2.6. Fluorescent scanning microscope analysis 

For antimicrobial analysis of the biofilm, titanium 

discs from both the control and laser-treated groups 

were removed from the bacterial inoculum and washed 

with sterile Phosphate Buffered Saline (PBS) [32]. 

Following this, the discs were stained with a 
fluorescent dead cell marker, Propidium Iodide (PI), 

for 30 minutes at 37°C while shielded from light [28]. 

The stained biofilms were then analyzed using 

confocal fluorescence microscopy (Leica TCS SPE, 

Germany) equipped with imaging software (Leica 

LASX, Germany). Dead cells, indicated by red 

fluorescence, were selectively stained due to their 

compromised membranes. The extent of bacterial cell 

damage was quantified using ImageJ software (NIH, 

U.S.), which measured the red fluorescence-covered 

area [33]. This analysis was performed for each 

titanium disc, and biofilm coverage was calculated 

based on fluorescence intensity patterns. 

2.7. Statistical analysis 

Normality was assessed using the Shapiro-Wilk test and 

Q-Q plots. Surface roughness and surface wettability 

were normally distributed while the count of dead 

bacteria was not normally distributed. Group comparison 

was conducted using an independent t-test and Mann-

Whitney U test. All tests were conducted with two tails, 

and the significance level was set at a p-value of ≤0.05. 
Data analysis was conducted using IBM SPSS, version 

23 for Windows, Armonk, NY, USA. 

 

RESULTS 

3.1. Atomic force microscopy (AFM) 

The evaluation of surface nano-roughness using 

atomic force microscopy (AFM) indicated that the 

control titanium discs had an average Ra value of 72.09 

nm with a standard deviation of ±1.83. In comparison, 
the laser-treated discs demonstrated a significantly 

higher Ra value, averaging 229.97 nm with a standard 

deviation of ±44.30 (P < 0.0001) (Table 1). These 

findings were further supported by AFM-generated 2D 

profiles and 3D topographical images. The Ti/control 

samples (Figure 1a) displayed a relatively smooth 

surface, whereas the Ti/laser samples (Figure 1b) 

exhibited a distinct spiky texture, emphasizing the 

alterations in surface morphology due to laser 

treatment. 

 

Table 1: Comparison of surface nano-roughness 

parameter (Ra) as measured by AFM between 

Ti/control and Ti/laser groups 

Ra values in 

nanometers 

Ti/control  

(n=11) 

Ti/laser  

(n=11) 

p value† 

Mean ±SD 72.09 

±1.83 

229.97 

±44.30 

<0.0001* 

Median 73.54 234.89 

Min – Max 70.00 – 

73.83 

169.00 – 

292.80 

*Statistically significant different at p value≤0.05, 

†Independent t test 

3.2. Contact angle test  

 The Ti/laser discs demonstrated significantly 

enhanced hydrophilicity, with a mean contact angle of 

41.39° (SD ±1.40), compared to the Ti/control 

specimens, which had a mean contact angle of 83.19° 
(SD ±0.35) (P < 0.0001) (Table 2). This difference is 

visually represented in Figure 2(a, b), where the results 

of the Rame-hart contact angle tests for both Ti/control 

and Ti/laser samples are depicted.  
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Table 2: Comparison of surface wettability between 

Ti/control surfaces and Ti/laser ones 

Contact 

angle 

Ti/control  

(n=11) 

Ti/laser  

(n=11) 

p value† 

Mean 

±SD 

83.19 ±0.35 41.39 

±1.40 

<0.0001* 

Median 83.00 40.50 

Min – 

Max 

82.90 – 

83.90 

40.30 – 

43.40 

*Statistically significant different at p value≤0.05, 

†Independent t test 

 

3.3. Fluorescent scanning microscope analysis 

For microbial biofilm analysis, Table 3 presents the 

mean values of dead-stained bacteria for both control 
and laser-treated titanium samples. The Ti/control 

discs had a mean value of 6.92 (SD ±1.24), whereas 

the Ti/laser specimens showed a significant increase, 

reaching 338.18 (SD ±148.84) (P < 0.0001). 

Fluorescence microscope images (Figure 3a, b) 

provide a visual representation of red fluorescence 

staining, which indicates dead bacterial cells and helps 

quantify biofilm coverage. A substantial rise in red 

fluorescence-stained dead bacteria was observed on 

Ti/laser surfaces (Figure 3b) in contrast to Ti/control 

surfaces (Figure 3a). 
 

Table 3: Comparison of dead bacterial number 

between Ti/control and Ti/laser groups 

Dead 

bacterial 

number 

Ti/control  

(n=11) 

Ti/laser  

(n=11) 

p value† 

Mean 

±SD 

6.92 ±1.24 338.18 

±148.84 

<0.0001* 

Median 6.50 327.00 

Min – 

Max 

6.00 – 

10.00 

140.00 – 

650.00 

*Statistically significant different at p value≤0.05, 

†Mann Whitney U test 

Figure 1. The atomic force microscope displays 3D 

surface nano-roughness maps and 2D profiles of 

titanium discs, where (a) corresponds to Ti/control 

specimens, and (b) illustrates Ti/laser-treated surfaces. 

Figure 2. Contact angle images from the Rame-Hart 

test on Ti/control (a) and Ti/laser (b) specimens show 

that all surfaces display hydrophilic properties, with 

contact angles measuring below 90°. 

 
Figure 3. Confocal fluorescence microscopy images: 

(a) shows dead-stained bacteria on a Ti/control surface, 

while (b) depicts the Ti/laser surface. A significant 

increase in dead bacteria is observed on laser-treated 

surfaces compared to the control. 
 

DISCUSSION  
Titanium treated with a laser improves the success of 

dental implants by altering surface characteristics. To 

optimize implant surfaces, it is crucial to understand 

these modifications and their effects on bacterial 

interactions. The CO2 laser was selected due to its 

wavelengths, which have low absorption in titanium, 

preventing excessive heat generation [34]. Surface 
modifications by lasers depend on factors such as 

energy density, focal position, power, frequency, and 

the number of scanning passes [5]. Laser parameters 

can either smooth or texture surfaces, with high 

frequency and power leading to polishing, while low 

frequency and power create roughness [35]. The depth 

of a laser scan increases progressively with each 

additional pass due to greater energy absorption[36]. 

This study utilized a CO₂ laser with a 1064 nm 

wavelength, 120 mJ energy, 6 W power, and 50 Hz 
frequency. The laser was applied in a perpendicular 

linear scanning mode, with three passes lasting 15 

seconds each and a spot size of 400 microns. Atomic 

force microscopy measurements revealed a significant 

increase in surface roughness compared to the control 

group (P < 0.0001*), with laser-treated surfaces 

exhibiting a mean Ra value of 229.97 nm ± 44.30. The 

surface morphology exhibited a wavy pattern with a 

spiky texture [37 ]. A study reported that low laser 

power combined with a high pulse repetition rate 

generates smoother surfaces but may cause micro-
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cracks due to rapid cooling [35]. Similarly, Ma C et al. 

[38] observed that laser treatment creates a polished 

surface with visible melting pathways. In contrast, the 

findings of this study revealed that, high laser power 

and a low pulse repetition rate result in rougher 

surfaces. This occurs due to increased pulse energy, 

which shifts the process from polishing to laser surface 

ablation. 

In this study, the contact angle measurements for the 

control and laser-treated titanium were recorded as 83.19 ± 
0.35 and 41.39 ± 1.40, respectively (P < 0.0001*). In 

contrast, a separate investigation on titanium alloys 

reported different results, revealing distinct surface patterns 

and reduced roughness. These outcomes were achieved 

using nanosecond laser processing, which led to highly 

hydrophilic surfaces. This effect is mainly attributed to an 

increase in surface oxides and a decrease in surface 

impurities [39], While Yang C-J et al. [40] documented a 

rise in contact angle values, wettability is affected by 

multiple factors beyond laser processing, such as elemental 

composition and surface characteristics. Conversely, this 

study revealed that CO₂ laser treatment on titanium 

surfaces lowered contact angle measurements while 

increasing nano-scale roughness, ultimately enhancing 

hydrophilic properties. 

To analyze bacterial biofilms, titanium discs from both 

groups were cultured with different bacterial strains. 

These included gram-positive species such as S. 

epidermidis and S. aureus, along with gram-negative 

strains like E. coli and P. aeruginosa, which are 

commonly utilized for toxicity assessment. [30]. 

Implant-related bacterial infections, which result in 
peri-implantitis, may lead to failure due to poor fitting, 

biofilm development, and insufficient antimicrobial 

properties. Ensuring strong antimicrobial efficacy is 

essential to prevent colonization and infection. [32]. 

Fluorescent staining of control titanium revealed a 

mean value of 6.92 (SD ±1.24), which increased 

significantly to 338.18 (SD ±148.84) following laser 

treatment. This indicates a substantial rise in the 

number of dead bacteria on Ti/laser surfaces (P < 

0.0001). Scheuerman TR et al. [41] stated that bacteria 

are believed to preferentially adhere to rougher 

surfaces for three main reasons: (i) a larger surface area 
available for attachment, (ii) increased protection from 

shear forces, and (iii) chemical alterations that 

facilitate favorable physicochemical interactions. 

However, according to Yang K et al. [42] surface 

patterns approximately 1 μm in size exhibit anti-

adhesive properties. Moreover, Perera-Costa et al. [43] 

demonstrated that the investigated microtopographies 

led to a significant decrease (approximately 30–45%) 

in bacterial adhesion compared to smooth control 

samples. This reduction, attributed to spatially 

organized micro/nanotopographic surface patterns, 

supports the findings of the current study by 

highlighting an effective strategy for minimizing 

bacterial adhesion and preventing biofilm formation. 

These findings indicate that CO₂ laser irradiation 

generates nano-roughness on titanium surfaces, which 

inhibits bacterial biofilm colonization and lowers the 

risk of implant failure, thereby rejecting the null 

hypothesis. 

 

CONCLUSION  
The study revealed several key insights. CO2 laser 

irradiation significantly enhances the nano-

topographical roughness of titanium disc surfaces, 

leading to improved hydrophilicity. Notably, this laser-

based surface modification imparts antibacterial 

properties against both gram-positive bacteria (S. 

epidermidis and S. aureus) and gram-negative bacteria 

(E. coli and P. aeruginosa). As a result, it inhibits 
bacterial biofilm formation, thereby lowering the risk 

of implant failure. 
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