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Abstract: Probability distributions are fundamental tools in statistical modeling, particularly in the analysis of lifetime,
reliability, and epidemiological data. Classical distributions such as the exponential, Weibull, and gamma, while analyti-
cally convenient, often lack the flexibility required to model complex real-world phenomena, such as skewness, heavy tails,
and intricate dependence structures. In response to these limitations, this paper introduces a novel trigonometric-based
extension of the Marshall-Olkin family, termed the Marshall-Olkin Cosine Topp-Leone (MOCTL) distribution family. This
new family incorporates additional shape parameters that allow for greater modeling flexibility and adaptability across var-
ious data types. We derive and explore several important statistical properties of the proposed family, including its density,
distribution, hazard rate, and quantile functions. Parameter estimation is addressed using the maximum likelihood estima-
tion (MLE) method, and a detailed Monte Carlo simulation is conducted to assess the performance, bias, and consistency
of the MLESs. The real-world applicability of the MOCTL family is demonstrated through three datasets, including medical
and epidemiological studies. Furthermore, a log-MOCTL Weibull regression model is proposed and applied to HIV/TB
and COVID-19 datasets, confirming its superior modeling capability.
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1. Introduction

In many real-world applications, standard probability distributions often fall short in adequately
modeling complex data structures [1]. As a result, there has been a growing interest in extending
classical models by incorporating additional parameters to increase their flexibility [2]. Over the past
two decades, numerous generalized distribution families have been developed and successfully applied
across diverse domains such as biology, engineering, economics, environmental science, medicine, and
finance.

Prominent among these generalizations is the exponentiated-G family proposed by [3], which intro-
duces a shape parameter into the cumulative distribution function (CDF). Other notable contributions
include the Marshall-Olkin family [4], the beta-G family [5], the quadratic transmutation family [6], the
odd generalized NH-G family [7], the Topp—Leone modified Weibull model [8], the Kumaraswamy-G
family [9], and the gamma-G family [10]. Additional developments include the logistic-X family by
[11] and the T-X family explored by [12].

The Marshall-Olkin (MO) family, first introduced by [4], has gained significant attention for its
versatility in statistical modeling. [13] offered a comprehensive analysis of its mathematical proper-
ties and introduced several new distributions under the MO framework. Subsequent extensions have
aimed to further enhance its applicability. For example, [14] proposed the MO alpha power family,
enabling broader data modeling capabilities. Ref. [15] examined the MO discrete uniform distribu-
tion, analyzing its hazard rate and entropy, while [16] developed the MO generalized-G family with
a focus on theoretical and applied implications. Similarly, [17] introduced the Topp-Leone MO-G
family, effectively capturing heavy-tailed data and varying hazard functions. Applications of the MO
framework include the MO exponentiated Dagum distribution in empirical studies [18], and the MO
odd power generalized Weibull distribution for modeling COVID-19 data [19]. Furthermore, the MO
Type II Topp-Leone-G family has demonstrated power-law behavior common in real-world datasets
[20]. Recent contributions include the MO generalized-k family [21], the exponentiated half-logistic
generalized MO-G family [22], cosine Fréchet loss distribution [23], and the MO Lomax distribu-
tion [24]. More recently, [25] proposed the cosine MO-G family, which incorporates trigonometric
transformation into the MO framework, demonstrating promising results in tail modeling.

In parallel, the trigonometric-G family of distributions, which employs trigonometric transforma-
tions to induce flexibility, has also seen growing interest. Key contributions in this area include the sine
TL-G (STLG) family by [26], the sine Kumaraswamy-G family [27], the alpha-sine-G family [28], and
the sine exponential distribution [29]. Additional developments include the tan-G family by [30], the
cosine Topp-Leone-G (CTL-G) families proposed by [31], estimation of arctan uniform distribution
using ranked set sampling studied by [32], the sine generalized linear exponential model discussed
by [33], truncated inverted arctan power distribution proposed by [34], sine-exponentiated Weibull-G
family investigated by [35], new extended cosine-G distributions studied by [36], statistical inference
under censored data for the new exponential-X Fréchet distribution proposed by [37], sine inverse ex-
ponential model investigated by [38] and the cosine-geometric distribution introduced by [39]. These
trigonometric-based models significantly expand the toolkit for modeling diverse data behaviors.

While recent models such as the CTL-G [31] and TrCTL-G [40] families have proven effective, they
may still be limited in controlling tail behavior and asymmetry. To address these limitations, we pro-
pose a novel distributional family-the Marshall-Olkin Cosine Topp-Leone G (MOCTL-G) family-by
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integrating the Marshall-Olkin mechanism into the CTL-G generator. The Marshall-Olkin transforma-
tion contributes an additional parameter that directly affects the distribution’s tail behavior and failure
rate, offering enhanced flexibility for datasets exhibiting skewness, kurtosis, or heavy tails.

Therefore, the novelty of our contribution lies in the trigonometric extension of the Marshall-Olkin
framework via the cosine Topp-Leone generator, resulting in a new and highly adaptable family of
distributions. This development enriches the existing literature by offering a powerful tool for modeling
complex lifetime, reliability, and epidemiological data.

2. The proposed Family

Here, we introduce the MOCTL-G family and outline its key mathematical properties. This fam-
ily is constructed by incorporating the Marshall-Olkin transformation into the Cosine Topp-Leone G
(CTLG) family [31]. The cumulative distribution function (CDF) of the CTLG distribution is defined
as:

F(t;n,0) = 1 — cos [’21 (1- A w)z)”] , teR, n>0, 2.1)

where H(t; ) = 1 — H(t; ) represents the survival function of the baseline distribution.
The probability density function (PDF) corresponding to this distribution is given as:

Fitsm ) = mpHEAEY) (1 - AGw?) sin 5 (1= Awpr)|. 2.2)

To extend this model, we apply the Marshall-Olkin transformation [4], which modifies a given
baseline CDF H(w) to create a more flexible family:

Hw)
?+ (1 -9HHW)’

where 0 < < 1 is an additional shape parameter that enhances flexibility. The corresponding PDF
is:

Fw;0,¢) = (2.3)

Ph(w)
[#+ (1 = HHW)]*
Let T be a random variable following the MOCTL-G family with parameters 7, 1, and the baseline
parameter vector . Then, the CDF and PDF are given as:

Jw;9,9) = 2.4)

1 —cos [g (1 - H(; l//)z)n]
FMOCTL—G(I; n, ﬁ? ’7[/) = x _ ) 5 (25)
— 1 cos [5 (1 - H(t;¥) ) ]
and y
g H (s A w) (1= A@Ew)?) sin[5 (1 - A wy?)']
fMOCTL—G(t; n, ﬁ’ w) = 5 (26)

[1-Ycos (’% (1 — H(t; lﬁ)z)n)]z
where H(t; ) = 1 — H(t; ).
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Proof. The Marshall-Olkin transformation modifies a given baseline CDF M(x), as seen in Eq. (5).
Applying this transformation to the CTLG distribution leads to:

1 —cos[ ( - H(; w)z) ]

Fuocri-c(t;n, 9,¢) = (2.7)

1-9cos|Z(1- Ay ]
Taking the first derivative of Equation (2.7) with respect to ¢ results in the PDF:
_ _ -1 . I _
andH( ) AGY) (1= Ap)?) sin[2(1- A@)?)|

Jmocri-c(t;n, 0,¢) = ,7 ) (2.8)
[1—9cos(%(1-Hry?) )P

Thus, the proof is complete. O O

2.1. Reliability Functions of MOCTL-G

This part provides various reliability measures for the MOCTL-G family, including the survival
function (SF), hazard rate function (HRF), reverse hazard function (RHF), odd function, and cumula-
tive hazard function (CHF).

The SF of MOCTL-G family is given by:

1 —cos [g (1 - H(; w)z)n]
Stn,hy)=1- — o (2.9)
1—9cos|2(1-Ht:v)?) |
The HRF of MOCTL-G family is defined as:
9 H( A ) (1 - Aa?) sin5 (1 - AwR))
h(t;m, 9, 9) = > : (2.10)
|1 - 9cos(Z(1- A ¢)2) )| s
The RHF of MOCTL-G family is derive as:
om0y = TTHG DA (1~ A wP) " sin[z(1- A P) o
rnenv,y) = ~ . .
[1-0cos(2(1 - Awyp) )] (1-cos|2(1-A@rv2)))
The odd function of MOCTL-G family is expressed as:
l—cos[%(l—l-—l(t;w)z)”]
_ B F(t;n,0,y¢) _1=vcos[5(1-H@?)"]
O = S | - dzeos[3Q=w2)'] | (12
1-0 cos[ 2 (1-H(tw)?)"]
Finally, the CHF of MOCTL-G family is given by:
1—cos|%(1-H( ¢)2) |
H(t;n,9,¢) = —log|1 - (2.13)

2
— ¥ cos [g (1 - H(t; w)z) ] .
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2.2. Series Expansion of the PDF

The PDF of the MOCTL-G family can be expanded using a binomial series expansion and power
series representation of trigonometric functions. The binomial expansion:

o Dm+0)
(1 - b) _Z r(m)i!b’ for |b| < 1,m > 0, (2.14)

i=

is applied to the denominator of the PDF, giving:

[1 — B cos (2 (1- Ay )] Z(z + 1) [cos (2 (1- A yy) )] (2.15)

Using the Taylor series expansions of the trigonometric functions:

ad (—l)jzzj
cosz = _— (2.16)
JZ:;‘ @2n!
) o (_l)jz2j+1
singz = _— 2.17)
— 2j+ !

and expanding the power series:

[i ajxj] = i cjxj, (2.18)
. =

where ¢y = aé, Cp = [mao] _Z(]n —-m+ jajcy,—;, form>1.

Applying these expansions to the MOCTL-G PDF, we obtain:

f@ = i i i CL™E+ DY (g)nm H(t; y)(1-H(t; l//))X(l - (1-H(; lp))z)("—l)ﬂnnmemu) .

e e 2n!2m + 1)!
(2.19)

The reduced form of the PDF is

f(@) = nin Z Vi jrmn L (D), (2.20)

i, j,k,m,n=0

and Y, (x;7) = h(x; T)[H(x; D).

2 +n+1)-1 Di4 1\ (1), 2y
whereFijom = | 22+ D )( J )<+1>ec<1> (%)

j k 2n!(2m+1)!
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2.3. Quantile Function (QF)
The QF of MOCTL-G family Q(u) is derived as:

IR B N Sy u 7
Ow)=H 11 [1 (2 cos (1 1—m9))

1
2

(2.21)

This function allows for efficient simulation and generation of random samples from the MOCTL-G
distribution.

2.4. Moments and Moment-Generating Function (MGF)
We formulate the moments and the MGF of the MOCTL-G distribution.

2.4.1. Moments
The " raw moment of the MOCTL-G family is given by:

o0

W =E[T'] = f £ f(t)dt. (2.22)
0

Substituting the expanded form of f(¢) from Eq. (2.19), we obtain:

(o)
(o)

1. = 1 Z Yijtomn f £ C(f)dt. (2.23)
i,j,k,m,n=0=0 0
2.4.2. Moment-Generating Function
The MGF of the MOCTL-G family is expressed as:

(o)

My(t) = E[¢"] = f ¢ f()dy. (2.24)
0

Substituting the expanded form of f(¢) from Eq. (2.19), we obtain:

o

Mx(t) = niin Z Vijkmn f@t*tTk(t)dt. (2.25)
i, j,k,m,n=0 0
2.5. Rényi Entropy
Rényi’s entropy of the MOCTL-G distribution is express as:

1

I =
1 -

” log ff(y)”dy, n>0,n+1. (2.26)
0
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Substituting the expanded form of f(#) from Eq. (2.19), we obtain:

1 S (
1_nlog{7r”0’777" >0 Vit f ‘I‘k(t)"dt]. (2.27)

i, j,k,m,n=0 0

I =

2.6. Order Statistics

The PDF of the i order statistic in a random sample of size m drawn from the MOCTL-G distribu-
tion is define as:

__  m i-11 m—i
Jim(®) = = Dlm— l.)!f(f)F(f) (I=F@)™" (2.28)

Expanding the CDF of MOCTL-G, we obtain:

_f =iy
fi’"(t)_B(i,n—i+1) J_:O( j )( by

i+j—1

1 — cos (%(1 = H(t:; )*)")
1= cos (2(1 = H(t; )2y

(2.29)

2.7. Parameter Estimation

Parameter estimation for the MOCTL-G distribution is carried out using the method of MLE. Sup-
pose ty, 1, . . ., t, represents a random sample drawn from the MOCTL-G distribution. The correspond-
ing likelihood function can be expressed as:

L, 0,0) = | | f@. (2.30)
i=1

Taking the natural logarithm, we obtain the log-likelihood function:

¢ =nlogn+nlogd+nlog n+2 log h(t;; w)+z log(1—H(t;; )+ (-1 Z log(1—(1-H(t; %))
i=1 i=1 i=1
+ > logsin (g(l — (1 - Hay, w))z)n) -2 log (1 — B cos (ga — (1 - Hay, ¢))2)'7)). 2.31)
i=1 i=1

2.7.1. Score Functions

s st ot

T .
o0’ 507 5 w) , are derived as follows:

The score function components, defined as U(1#) = (

65 n n
5 = o )5 lor(I=(1=H )P+ 5 > (1=Hi ) log(1=(1=Hz )P cot (51 ~ (1 = Huz )y
i=1 i=1

+0r Y (1= Hig ) logl = (1 = Hie ) tan (50 = (1= Hz)?)). 2.32)
i=1
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ot

=t Zlogcos( (1= (1 = H(t: ) )’7) (2.33)

n

(tt’ 'ﬁ) H' (tl’ W) H’(fz,lﬁ)
4 h(ti3 ) 41— H(t:; ) 20 I)Z 1= (1 - H(t;9))*

+ Z H'(550)(1 = H(w)(1 = (1 = Haz ) eot (301 - (1 - Hasp)Py). @34)
i=1

3. Some Sub Models of the MOCTL-G Family

Here, we present two sub models of the MOCTL family by using two well-known classical distri-
butions: the Weibull and the Gompertz distributions. The PDFs, CDFs, HRF, and SF for each case are
analyzed and visualized to explore the flexibility of the proposed models.

3.1. Marshall-Olkin Cosine Topp-Leone Weibull (MOCTLW) Distribution

By using the Weibull distribution as the baseline model, we define the MOCTLW distribution with
the following CDF:

1 —cos [’5’ (1 - e—zyxw)”]

F(t; 77’ 1‘9" 79 w) = —_— .
1—Fcos|2(1—e2)]

3.1

The corresponding probability density function (PDF) is:

w—1 ,—y1° —yt° (1 _ =2yt -1
FEom. 8.y, ) = ﬂﬂﬁ?’wl‘_ e Ve (1 e 2) s [z (1 _ e_zytm)n]. 32)
(1 — ¥ cos [’—zr (1- e‘27f“’)"]) 2

o |
w
(D_
(] 37
(]
o _
o™ o {
DiZf - I
o M)~
< T T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4
X X

Figure 1. PDF and Hazard Function of the MOCTLW Distribution
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Figure 2. CDF and Survival Function of the MOCTLW Distribution

Figure 1 displays the plots of the PDF and HRF for various parameter settings. The PDF demon-
strates a range of shapes, including right-skewed and reversed J-forms, while the HRF reveals diverse
patterns such as increasing, unimodal, and nearly constant behaviors. Additionally, Figure 2 presents
the CDF and SF plots, further illustrating the flexibility of the MOCTL-G distribution under different
parameter configurations.

3.2. Marshall-Olkin Cosine Topp-Leone Gompertz (MOCTLG) Distribution

Using the Gompertz distribution as the baseline, we define the MOCTLG distribution with the
corresponding density and distribution functions.

Qs oy n
1 —cos [’5(1 —e 1)) ]
F(t;n,9,4,a) = (3.3)
1 —9cos [’%(1 - e__(em_])) ]
and
ﬂﬂﬂae”e_%(em_l)(l - e_%(em‘l))n_l ;
fn,d,a,d) = 1n[g(1 - e_i(em_l)) ] (3.4)

2 XS
2(1 — Jcos [%(1 - e‘%(”“‘l)) ])

The PDF and HRF plots for the MOCTL-G distribution, as shown in Fig. 3, reveal flexible behaviors
across different parameter values. The density function is right-skewed and nearly symmetric, while
the HRF exhibits varying trends of increase and decrease. Fig. 4 presents the CDF and SF plots.

4. Survival Regression Model

This section introduces the Log Marshall-Olkin Cosine Topp-Leone Weibull Regression Model
(LMCTLW-RM) as an extension of the MOCTLW distribution for survival analysis.

Using the following transformation Y = log 7', the log-transformed LMCTLW density function is:
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foin, 0 p,0) = —— — 2><sin[g(1—e‘ey;”)n]. (4.1)

— — -1
9. you Y =AY
Unny L —e o (1 e o

The survival function of Y is:

b —ey%rn
l—cos[g(l—e ]

Sy;n,Ou,o)=1- — —n 4.2)
1= Feos|3(1-e 7]
Let z = =£. We define the MOCTLW location-scale regression model as:
vi=tlw+oz, i=12,...,n (4.3)

where: - t! is the vector of explanatory variables, - z; follows the LMCTLW distribution, - w is the
vector of regression coefficients.
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Figure 5. PDF plot of the LMCTLW Distribution

4.1. Parameter Estimation

For a sample of n observations {(y;, t;)}, the likelihood function under right-censoring is:

tw) =) bw)+ ) bw), (4.4)

ieT ieC

where T and C represent uncensored and censored cases, respectively.

4.2. Residual Analysis

To assess model adequacy, Cox-Snell residuals are computed as:

e; = —log [S(yilty)] . 4.5)
For the LMCTLW regression model, this simplifies to:

vi—aTf; n

l—cos[g(l—e‘e 7 )]
— A
1—ﬂCOS[§(l—€_e v )]
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If the model is well-fitted, these residuals should follow an exponential distribution.
5. Simulation Study

To assess the performance of the maximum likelihood estimators (MLEs) for the MOCTL-Weibull
(MOCTLW) distribution, we conduct an extensive Monte Carlo simulation study with 1,000 iterations
across varying sample sizes. Data are generated using the quantile function (QF) of the MOCTLW
distribution based on specified true parameter values. The BFGS optimization algorithm was imple-
mented in R with box constraints to ensure parameter validity, with complete reproducibility ensured
through supplementary R code. We evaluate the accuracy and efficiency of the MLEs using bias and
mean squared error (MSE). The simulation results presented in Table 1 reveal consistent patterns
across all parameters. As expected from asymptotic theory, both bias and mean squared error (MSE)
decrease monotonically with increasing sample size, confirming the consistency of the MLEs.

6. Empirical Applications of the MOCTLW Distribution

This section demonstrates the practical utility of the Marshall-Olkin Cosine Topp-Leone Weibull
(MOCTLW) distribution through comprehensive empirical analyses. We evaluate its performance
against four established competing models:

6.1. Goodness-of-Fit Framework

We employ a rigorous evaluation framework consisting of:

6.1.1. Information Criteria

e Akaike Information Criterion (AIC): —2¢ + 2k
e Bayesian Information Criterion (BIC): —2¢ + klogn
e Consistent AIC (CAIC): =2+ 2kn/(n —k — 1)

where ¢ is the log-likelihood, k is the number of parameters, and » is the sample size.

6.1.2. Nonparametric Tests

e Cramér-von Mises (W): ﬁ + 20 (F (X)) — 2’2—;1)2
e Anderson-Darling (A%): —n — % 21 2i = Dln F(x) + In(1 = F(x11-)]
e Kolmogorov-Smirnov (D): sup, |F,(x) — F(x)|

For all measures, lower values indicate superior model fit. The comprehensive comparison across
these metrics provides robust evidence of the MOCTLW distribution’s enhanced flexibility and appli-
cability in real-world scenarios.

6.2. Application to Kevlar Fatigue Fracture Dataset

The first case study examines fatigue life measurements for Kevlar 373/epoxy composite materials
under constant stress conditions. The dataset, originally studied by [43], records the time-to-failure

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue 2, 476-499



488

Table 1. Simulation results for the MOCTLW distribution (% = 0.3, n = 3.0, y = 2.5,

w=1.6)

Sample Size Parameter MLE Estimate Bias MSE
) 0.4400 0.1400  0.4320
h=25 n 2.9937 -0.0063  0.6853
Yy 2.8367 0.3367 0.9116
w 1.7076 0.1076  0.3581
9 0.3965 0.0965 0.3176
1=50 n 3.0516 0.0516  0.5581
Y 2.6963 0.1963  0.5173
w 1.6381 0.0381  0.2507
9 0.3773 0.0773  0.2673
n=75 n 3.0981 0.0981 0.4775
Y 2.6376 0.1376  0.5131
w 1.6041 0.0041  0.1950
4 0.3596 0.0596  0.2047
1=150 n 3.0995 0.0995 0.3154
Yy 2.5732 0.0732  0.3424
w 1.5816 -0.0184 0.1417
9 0.3474 0.0474  0.1628
12250 n 3.0848 0.0848 0.2672
Y 2.5569 0.0569  0.2845
w 1.5811 -0.0189 0.1160
9 0.3340 0.0340 0.1242
12500 n 3.0685 0.0685 0.1941
Yy 2.5364 0.0364 0.2173
w 1.5800 -0.0200 0.0873
9 0.3247 0.0247  0.0941
n 3.0517 0.0517 0.1534
n=1000 Y 2.5303 0.0303 0.1712
w 1.5829 -0.0171  0.0680
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Table 2. Competing models for comparative analysis

Model Description

CTLW Cosine Topp-Leone Weibull [31]

TrCTLW  Transmuted Cosine Topp-Leone Weibull [40]
ExCTLW Exponentiated Cosine Topp-Leone Weibull [41]
TLW Topp-Leone Weibull [42]

(in hours) for 76 specimens subjected to a constant 90% stress level. These complete failure times
make this dataset particularly valuable for lifetime modeling applications in materials science. The
dataset values are as follows: 70.0251, 0.0886, 0.0891, 0.2501, 0.3113,0.3451, 0.4763, 0.5650, 0.5671,
0.6566, 0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120,
0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595,
1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808,
1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 2.2460, 2.2878,
2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455,
3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960”.

The comparative model evaluation, presented in Table 3, demonstrates the superior performance
of the MOCTLW distribution across all information criteria. Specifically, the MOCTLW yields the
lowest values for the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and
related metrics, indicating its better fit relative to competing models. To further validate these findings,
we conducted complementary nonparametric goodness-of-fit tests, with detailed results summarized
in Table 4. The MOCTLW distribution consistently outperforms the alternative models, as reflected
in its lower Anderson-Darling and Cramér—von Mises statistics, along with a more favorable Kol-
mogorov—Smirnov (K-S) test outcome.

Table 3. Model parameter estimates and information criteria for Kevlar Fracture Dataset

Model 9 n b% w AIC CAIC BIC Rank
ExCTLW 0.3391 2.0164 0.2534 1.1363  251.733  261.0557 252.2964 4
TrCTLW -0.7165 0.6467 0.3565 1.0082 250.7038 260.0267 251.2672 2
MOCTLW  39.7946 1.8274 19392 0.4438 248.3684 257.6913 248.9317 1
CTLW - 0.6733 1.1829 0.2300 251.6326 261.0468 251.9095 3
TLW - 1.4356 1.1042 0.2881 251.7463 261.0602 252.3067 5

Table 4. Goodness-of-fit test results for dataset one

Model -t A* (p-value) CVM (p-value) KS (p-value)
ExCTLW 121.8615 0.6836 (0.0924) 0.1158 (0.0671) 0.0954 (0.4249)
TrCTLW 121.3519 0.5534 (0.1487) 0.0949 (0.1296) 0.0944 (0.4781)

MOCTLW 120.1842 0.4139 (0.1900) 0.0582 (0.1800) 0.0904 (0.5220)

CTLW 122.8163 0.6804 (0.0727) 0.1154 (0.0676) 0.0987 (0.4617)

TLW 122.8632 0.6846 (0.0710) 0.1161 (0.0663) 0.0990 (0.4187)

Figure 6 provides a graphical representation of the fitted density curves. The MOCTLW model
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(black curve) closely follows the histogram bars, indicating its superior fit compared to alternative
models.
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Figure 6. Density plot of the fitted models using dataset one

6.3. Application to Acute Lymphocytic Leukaemia in children Datasets

The second dataset was compiled in 1981 by the Pediatric Oncology Group (POG) as part of a
multi-center prospective study on standard-risk acute lymphocytic leukemia (ALinC) in children. The
data was previously used by [44] and is illustrated as: 1.311.2091.10.80.510.70.51.71.10.80.5
1.20.81.1091.2090.806030.80.6041.11.10.20.8051.10.10.81.710.810.810.20.80.4
10208140.80511091309041409051.7090.80.81.2090.80.510.60.10.20.50.1
0.1090609061.2151.1141.21.71410.704090.70.80.704090.6041.220.70.50.9
0.50907090.70410.7090.70.513090810.70.70.60.81.10.90.90.80.80.70.70.4 0.5
0409090711071311.11.1091.10.810.71.60.80.60.80.61.2090.60.810.50.81 1.1
0.808051.10.8091.1081.21.11.21.11.20.20.50.70.20.50.60.1 0.40.60.20.51.1 0.80.6
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05151.108061.10.81.10.8151.108041081.40909109130810510.705141.2
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0.81051.703060.60405050.7040.50.8051.3091309051.2091.1090.50.70.51.1
1.10508061.20.804130.80.51.20.70.5091.30.81.20.9.

Table 5. The results of MLE estimates and values of information criteria for ALinC dataset

Model 0 a A B AIC CAIC BIC Rank
ExCTLW 0.2665 1.4278 0.4094 3.2022 232.4144 247.8002 232.5317 3
TrCTLW -0.6682  0.3507 0.5331 2.8618 229.1552 244.5410 229.2725 2
MOCTLW  25.7302 0.5705 1.9606 1.2969 221.2374 236.6232 221.3547 1
CTLW - 0.3830 3.3258 0.3829 233.5574 248.9670 233.6275 5
TLW - 0.8090 3.0689 0.4740 232.519 248.0852 232.5891 4

Table 5 displays the parameter estimates and GOF metrics for the competing distributions analyzed
using the ALinC dataset. The evaluation is based on criteria such as the AIC, BIC, and CAIC, where
lower values indicate a better fit. The analysis reveals that the MOCTLW distribution provides the best
fit, outperforming the other competing models.

The study incorporated additional discrimination measures, including the A*, CVM, and KS tests,
to compare the proposed distribution with alternative models. Corresponding p-values were also com-
puted. Table 6 presents a summary of these statistical measures. The best-fitting probability model is
typically identified as the one with the lowest KS, A*, and CVM values, alongside the highest p-values.
A review of the results confirms that the MOCTLW model outperforms the competing models, making
it a suitable choice for analyzing the ALinC dataset.

Table 6. The results of the GOF test for ALinC dataset

Model -t A* (p-value) CVM (p-value) KS (p-value)
ExCTLW 112.2072 2.6690 (<0.0001) 0.4568 (<0.0001) 0.0879 (0.0095)
TrCTLW 110.5776 2.4367 (0.0173) 0.4274 (<0.0001) 0.0829 (0.0173)

MOCTLW 106.6187 2.2409 (0.0513) 0.4176 (<0.0001) 0.0499 (0.0201)

CTLW 113.7787 2.9137 (<0.0001) 0.4974 (<0.0001) 0.0915 (0.0006)

TLW 113.1595 2.8034 (<0.0001) 0.4785 (<0.0001) 0.0902 (0.00072)

Figure 7 presents a histogram overlaid with fitted density plots for various probability distributions
applied to the ALinC dataset. By examining the alignment between the fitted densities and the his-
togram bars, we can assess how well each distribution represents the data. A closer match suggests
a more accurate fit. Notably, the MOCTLW distribution, depicted by the black curve, emerges as the
best-fitting model for this dataset.
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Figure 7. Curve of density of the proposed fitted model using ALinC dataset

6.4. Applications of Survival Regression Models for US COVID-19 data

The performance of the Log-Marshall-Olkin Cosine Topp-Leone Weibull (LMCTLW) and Log-
Cosine Topp-Leone Weibull (LCTLW) regression models is assessed using the US COVID-19 dataset.
This dataset, obtained from the WHO website, contains records of 425 patients admitted to US health
facilities with COVID-19 between January and June 2022. Among these patients, 61.6% were cen-
sored, while 38.4% were uncensored. The response variable, denoted as y;, represents the log of the
observed survival time in days. The censoring indicator variable d is defined such that d = 0 corre-

sponds to censored observations, while d = 1 denotes uncensored cases (patients who experienced the
event which is death).

The definition of exposure variables:

t;: Age: < 30 year (NO=0, YES=1)

: Age: 30 < Age < 60 year (NO=0, YES=1)

t3: Age: > 60 year (NO=0, YES=1)

t4: Sex: male (NO=0, YES=1)

t5: Sex: female (NO=0, YES=1)

t¢: Has acute respiratory distress syndrome (Positive=1, Negative=0)
t7: Has arrhythmia (NO=0, YES=1)
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tg: Coughing (NO=0, YES=1)

t9: Has fever (NO=0, YES=1)

t10: Having difficulty breathing (NO=0, YES=1)

t11: Travel a lot (NO=0, YES=1)

t1»: Has chronic disease (NO=0, YES=1)

t13: Has cardiovascular disease (NO=0, YES=1)

t14: Has Diabetes (Negative=0, Positive=1)

t15: Is hypertensive (Non-hypertensive=0, hypertensive=1)

The fitted regression model can be expressed as:

15
i = o + Z,B,-t,»,- oz,  i=1,2,..,425. 6.1)

J=0

The response variable is defined as y; = log,(#;), representing the natural logarithm of the observed
survival times in days, which follows either the LMCTLW or LCTLW distribution. The term z; denotes
the random error, whose density is given in Equation (6.1). The parameter o > 0 is an unknown scale
parameter, while 8 = (8o, 1, . - ., B15) represents the set of unknown regression coefficients. Addition-
ally, t¥ = (ty, ty, ..., t15) corresponds to the exposure variables.

The parameters of the regression models were estimated using the MLE method, implemented
via the "mle2” function from the ”bbmle” package in R. The performance of the fitted models was
evaluated and compared using various statistical criteria. Table 7 presents the estimated parameters,
their standard errors (SEs), corresponding p-values, and key goodness-of-fit metrics. Among the mod-
els considered, the log-Marshall-Olkin Cosine Topp-Leone Weibull (LMCTLW) regression model ex-
hibits the lowest AIC and BIC values, indicating a superior fit compared to the log-Cosine Topp-Leone
Weibull (LCTLW) model. These results suggest that the LMCTLW model is the most appropriate
choice for modeling the given dataset.

The regression model parameters were estimated using the MLE approach, facilitated through the
mle2 function available in the bbmle package in R. To assess and compare the performance of the fitted
models, several statistical measures were employed. Table 7 summarizes the estimated parameters
along with their standard errors (SEs), associated p-values, and key GOF indicators. Among the models
evaluated, the log-Marshall-Olkin Cosine Topp-Leone Weibull (LMCTLW) regression model yields
the lowest values for the AIC and BIC, suggesting that it offers a better fit than the log-Cosine Topp-
Leone Weibull (LCTLW) model. These findings support the LMCTLW model as the more suitable
choice for analyzing the dataset.

In all fitted models, the coefficients for the explanatory variables-age below 30 years, age above
60 years, ARDS, arrhythmia, and travel history; were significant at the 5% level. The coefficients
for age above 60 years, ARDS, and arrhythmia were negative, while the coefficient for travel history
was positive. These findings indicate that the likelihood of survival decreases with increasing age.
Furthermore, patients without ARDS, arrhythmia, and difficulty breathing tend to have longer survival
times than those who present with these conditions.
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Table 7. The estimates of the regression parameters and goodness-of-fit statistics for the
COVID-19 dataset

Model Parameters Estimate SE P-value Goodness-of-fit Rank

a 4.619674 7.9873 0.5630

0 2.9366 3.6033 0.4150

o 3.3178 1.9552 0.0897

Bo -0.7818 27287 0.7744

Bi 1.9622 1.1859 0.0980

B> 0.0430 0.8608 0.9601

B3 -1.8872  0.8519 0.0267
Log-LMCTLW B4 0.3204 1.3721 0.8153 AIC=773.969 1

Bs 0.3977 1.3637 0.7705 BIC=846.907

Be -0.9321 0.2641 0.0004

B7 -1.6239 0.5291 0.0021

Bs -0.1543 0.4382 0.7246

Bo 0.0884 0.4382 0.8401

Bio 1.6164 0.3943 4.1e-05

B 1.0822 1.1653 0.3530

B2 -0.9033 1.2034 0.4528

B3 -1.7593 1.1850 0.1376

Bia -1.3084 1.1649 0.2613

Bis 0.0403 0.7386 0.9564

a 1.5688 1.0851 0.1482

o 2.0700 0.7397 0.0051

Bo 270474  0.6933 9.5e-05

Bi 2.5058 0.6912 0.0002

B2 0.4272 0.2861 0.1354

B3 -1.5284  0.2822 6.1e-08

Ba -0.4335 0.3602 0.2288 AIC=775.313 2

Bs -0.3617 0.3609 0.3162 BIC=852.302
Log- LCTLW. 09324 0.2684  0.0005

B -1.5482  0.5487 0.0047

Bs -0.1440  0.4408 0.7437

Bo 0.0776 0.4324 0.8575

Bio 1.6674 0.4204 7.3e-05

B 1.0569 1.1356 0.3520

B2 -0.8675 1.1768 0.4610

B3 -1.7132 1.1556 0.1382

Bia -1.2663 1.1370 0.2653

Bis 0.0844 0.7679 0.9124
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6.4.1. Cox-Snell Residuals Analysis for COVID-19 Patients Data

Residual analysis is an essential step in validating survival regression models, as it helps evaluate
the adequacy of the model fit by comparing observed survival probabilities with predicted values. In
this study, we assess the goodness-of-fit for the LMCTLW and LCTLW regression models using Cox-
Snell residuals (CSR). Figures 8 and 9 display the residual plots for both models, providing insights
into their fit and any potential deviations from the expected behavior.

S(e)

(W
000 e T T —

50
Residuals

Figure 8. Cox-Snell Residuals Plot for COVID-19 Data using LMCTLW Model

For the LMCTLW model, the Kolmogorov-Smirnov one-sample test produces a test statistic of
D = 0.0947, which is below the critical value of D = 0.1065 at the 5% significance level. This
suggests that the (CSR) closely align with the standard exponential distribution, thereby confirming
the adequacy of the LMCTLW model for inference.

9

0 6
Residuals

Figure 9. Cox-Snell Residuals Plot for COVID-19 Data using LCTLW Model
Using the Kolmogorov-Smirnov one-sample test, the test statistic for Figure 9 is D = 0.2345, which
exceeds the critical value of D = 0.1065 at the 5% significance level. This suggests that the (CSR) for

the LCTLW regression model do not follow the standard exponential distribution, meaning the model
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is not suitable for inference.

Figures 8 and 9 present the Cox-Snell residual plots for the LMCTLW and LCTLW regression
models, respectively. The estimated standard exponential curve fits the theoretical survival curve more
closely for the LMCTLW model than for the LCTLW model. While the Kolmogorov-Smirnov test
statistic confirms that the LMCTLW model adequately fits the COVID-19 data, the LMCTLW regres-
sion model remains the most appropriate choice for inference.

7. Conclusion

This study introduces the Marshall-Olkin Cosine Topp-Leone (MOCTL-G) family of distributions,
a flexible parametric model that enhances existing distribution families by incorporating additional
shape parameters. We explore its fundamental characteristics, including moments, entropy, moment-
generating functions, and order statistics. Furthermore, we develop survival regression models based
on the MOCTL-G family to examine the relationships between survival time and exposure variables. A
Monte Carlo simulation study demonstrates the reliability of the MLE for parameter estimation within
the proposed distribution. The practical applicability of the MOCTL-G family is illustrated by fitting
two real-life data. The MOCTLW distribution provides a better fit compared to some existing lifetime
models. In the analysis of COVID-19 survival data, the Log-MOCTLW (LMCTLW) regression model
outperforms the Log-CTLW (LCTLW) model according to goodness-of-fit criteria. Additionally, Cox-
Snell residual analysis further validates the LMCTLW model as the most appropriate for inference.
The findings suggest that the MOCTL-G family offers a robust framework for modeling survival data
and can be applied to other real-world scenarios requiring flexible parametric distributions. Future
research could expand on this work by exploring Bayesian estimation techniques, alternative parameter
estimation methods, and applying the MOCTL-G family to a wider variety of survival datasets across
fields such as medicine, engineering, and reliability studies.
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