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Abstract:— Neural interfaces shows promise in treating neurological conditions such as Epilepsy, Depression, and Parkinson's 

disease. To enable fully implantable treating interfaces, efficient oscillatory feature extraction units are required. This article 

explores different techniques suggested for extracting phase locking value (PLV) and phase amplitude coupling (PAC) 

features. Additionally, the article provides an overview of the current state-of-the-art units and highlights their limitations. 
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I. Introduction 

In neuroscience, synchronization between brain regions is quantified with phase locking value (PLV) and phase-

amplitude coupling (PAC) [1-8].  PLV is a statistic feature that measures the level of phase synchronization between 

two signals within the same frequency bands by a vector whose magnitude represents the level of synchronization by 

a value between zero and one. PLV between two signals 𝑆1 and 𝑆2 is defined as [9-11]: 
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∆𝜃𝑖 = 𝜃1 − 𝜃2                                                                               (2) 

where 𝑁 is the number of samples of the averaging window, and 𝜃1,𝑖 and 𝜃2,𝑖 are the instantaneous phases of 𝑆1 and 

𝑆2 at the 𝑖𝑡ℎ sample. 

 

Phase-amplitude coupling (PAC) is a type of cross-frequency feature in which the amplitude of a high-frequency 

oscillation is modulated by the phase of a low-frequency oscillation. Mean vector length (MVL) is a common measure 

for PAC. PAC based on the MVL is defined as [11]: 
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                   Figure 1: Phase locking value and phase-amplitude coupling features. 

where 𝑁 is the number of samples of the averaging window, 𝜃𝑝,𝑖 is the instantaneous phase of the low-frequency 

phase-modulating signal, and 𝐴𝑚,𝑖  is the instantaneous magnitude of the high-frequency amplitude-modulated 

signal, at the 𝑖𝑡ℎ sample. 

 

A typical PLV/PAC feature extraction unit comprises two main blocks: a complex signal extractor and a PLV/PAC 

computation unit. The raw input data is fed into the complex signal extractor to obtain the real and imaginary 

components of signals within the frequency bands of interest. The PLV/PAC computation unit uses the extracted 

complex signals to obtain the phase and magnitude information necessary for calculating the PLV and PAC features. 

Various implementations of the PLV/PAC extraction unit were suggested, differing in terms of feature accuracy, 

hardware complexity, area occupation, and power consumption [9, 11-16]. This review article examines the state-of-

the-art implementations of the PLV/PAC extraction units. Section II reviews the conventional techniques for extracting 

complex signals. Section III explores the commonly used PLV/PAC computation techniques. Section IV introduces a 

brief insight into the architectures of the PLV/PAC extraction units. The main limitations of the state-of-the-art 

PLV/PAC extraction units are highlighted in Section V. The conclusion is provided in Section VI. 

 

II. Complex Signal Extraction Techniques 

Complex signal extraction involves filtering the input signal into different frequency bands and obtaining the real and 

imaginary components of each band. Fourier Transform (FT), ShortTime Fourier Transform (STFT), Morlet Wavelet 

(MWT), and Band-pass filtering followed by the Hilbert Transform (BPFH) are conventional techniques for complex 

signal extraction [17-19]. The techniques are discussed and compared in this section. 

 

A. Fourier Transform 

FT extracts complex signals with single-tone resolution. The transform uses a complex sinusoidal kernel (sine and 

cosine). The cosine extracts the real component of the complex signal, while the sine extracts the imaginary one. 

FT at each frequency is equivalent to applying two single-tone filters with a 90-degree phase shift. FT assumes a 

stationary condition for the input signal, making it an inaccurate transform for non-stationary signals such as 

neural activities. However, a neural activity often remains stationary for hundreds of milliseconds. A transform 
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that assumes stationarity over a specific time interval can effectively extract complex signals from neural activity 

[19]. 

 

B. Short-Time Fourier Transform 

STFT involves computing the FT of a time window moving over the input signal [20, 21]. This is equivalent to 

windowing the complex sinusoidal kernel of FT. Hence, the stationarity assumption is applied only over the time 

window. STFT is equivalent to two band-pass filters at each frequency, with the same magnitude response and a 

90-degree phase shift. The bandwidth depends on the length of the time window that reflects the time-frequency 

resolution. A short window has a high time resolution but poor frequency resolution, while a long window has a 

high frequency resolution but poor time resolution. STFT has a constant window length, resulting in a fixed 

frequency resolution and a trade-off between low and high-frequency accuracy. Accurate extraction across all 

bands requires a technique with frequency-controlled resolution.  

 

 

 

C. Morlet Wavelet 

A wavelet is a time-limited signal with zero average [22, 23]. MVT is a type of wavelet composed of sine and 

cosine functions multiplied by a Gaussian window. The duration of that window varies with wavelet frequency, 

allowing for frequency-controlled resolution [24, 25]. The frequency response of MWT consists of two band-pass 

filters with the same magnitude response and a 90° phase shift. The center frequency is the same as the 

sinusoidal frequency, while the bandwidth depends on window duration. A set of wavelets with similar 

properties but different frequencies is known as a wavelet family. An example of a MVT family is shown in Fig.2. 
 

Fc = 1 Hz Fc = 2 Hz Fc = 4 Hz Fc = 8 Hz

Real Imaginary

 

                               Figure 2: An example of a Morlet wavelet family. 

MWT hardware implementation requires two wavelet filters for each extraction band, which leads to a significant 

number of taps and multipliers. Although Morlet wavelets are suitable for extracting complex signals from neural 

activities, their hardware complexity makes them rarely used for on-chip feature extraction. 

 

D. Band-Pass Filtering and Hilbert Transform 

A band-pass filter bank followed by the Hilbert transform performs complex signal extraction with frequency-

controlled resolution. The filter bank selects the desired frequency bands. The Hilbert transform obtains the 

imaginary components of the bands. This technique provides greater control over the filter characteristics 

compared to the Morlet wavelet convolution.  Additionally, the Hilbert transform, as an all-pass filter with 90° 

phase shift, is suitable for being shared between multiple frequency bands. However, the required taps and 

multipliers are still significant. Generally, the filter-Hilbert method is the conventional technique for on-chip 

feature extraction [9-11, 14, 16]. 
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III. PLV/PAC Computation Techniques 

The computation of PLV and PAC requires extracting sine and cosine values and magnitude information. The sine and 

cosine are typically extracted by computing the phase from the complex signals and obtaining the sine and cosine 

values of that phase. This two-step extraction process can be achieved using CORDIC processors [9-11] or a light 

phase extractor (LPE) associated with a trigonometric lookup table (LUT) [14-16]. Magnitude extraction, on the other 

hand, is performed using a CORDIC processor [9-11] or the L-infinity norm approximation [14-16]. This section 

explains the CORDIC processors algorithm, the LPE with LUT technique, and the l-infinity norm. 

 

A. CORDIC Algorithm 

Coordinate Rotation Digital Computer (CORDIC) algorithm is an iterative method for computing elementary 

functions such as trigonometric and logarithm functions. CORDIC Algorithm involves iterations on three 

equations as follows [9]: 

 

𝑓𝑜𝑟 𝑛 = 1 ∶ 𝑀  

        𝑋[𝑛 + 1] = 𝑋[𝑛] + 𝑌[𝑛] 2−𝑛 

        𝑌[𝑛 + 1] = 𝑌[𝑛] − 𝑠𝑖𝑔𝑛(𝑌[𝑛]) 𝑋[𝑛] 2−(𝑛−1)                   

        𝑍[𝑛 + 1] = 𝑍[𝑛] − 𝑠𝑖𝑔𝑛(𝑌[𝑛]) arctan(2−(𝑛−1))   

                                                                                                             (4) 

where 𝑛 is the iteration parameter, and 𝑀 is the number of iterations. 

 

To extract the phase and magnitude of a complex signal, the real and imaginary components are assigned to 

𝑋[1] and 𝑌[1], respectively. 𝑍[1] is set to 0. The values of 𝑋[𝑀] and 𝑍[𝑀] represent the scaled magnitude and 

phase of the input signal, respectively. The algorithm for computing sine and cosine is similar with 𝑌[1] set to 0, 

𝑋[1] is to the CORDIC aggregate constant, and 𝑍[1] to the phase. The value of 𝑋[𝑀] represents the required 

cosine value, while 𝑌[𝑀] represents the sine. The iterative calculation nature of the CORDIC algorithm leads to 

complex hardware structure, high power consumption, and large occupation area. Achieving high accuracy 

requires high number of iterations, creating a complexity-accuracy trade-off. The optimal design should be 

studied based on the application requirements. For oscillatory feature extraction, 16 iterations may be enough, 

but it still results in high area and power consumption [9, 16, 18]. 

 

B. Light Phase Extractor and LUTs 

The light phase extractor (LPE) use a linear arc-tangent approximation (LAA) to estimate the phase of an input 

complex signal. LAA calculates the phase from the real and imaginary components as a sum of a fractional part 

and an offset value. The phase extraction equations based on LAA are as follows [16]:  

 

𝑃ℎ𝑎𝑠𝑒 =  

{
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  (5)                      

where 𝑅𝐸 and 𝐼𝑀 are the real and imaginary components of the input signal. 

After light phase extraction, sine and cosine values are retrieved using a trigonometric Look-Up Table (LUT). This 

method is much simpler and more power efficient compared to the CORDIC method, with negligible accuracy 

loss. 
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C. L-infinity Norm Approximation 

The L-infinity norm approximates the magnitude of complex signals by taking the maximum value between the 

absolutes of the real and imaginary components. It's a simple and efficient algorithm that requires minimal 

hardware. However, the simplicity comes at the cost of poor accuracy. 
 

IV. State-of-the-Arts PLV/PAC Extraction Units 

The PLV/PAC feature extraction units have been proposed in various implementations. Most of the implementations 

utilizes the filter-Hilbert method for complex signal extraction processes. However, the features computation is done 

differently, either using CORDIC processors or LPE with trigonometric LUT and L-infinity norm approximation. This 

section presents an overview on the state-of-the-art PLV/PAC extraction units. 

In [1], a PLV extraction unit using CORDIC processors was presented. The input signals are band-limited and passed 

through a Hilbert filter in parallel with an all-pass filter to extract the complex signals and compensate for the Hilbert 

block delay. The PLV feature is then computed using three CORDIC processor cores and two moving average FIR 

filters, as shown in Fig.3. The phases of two input complex signals are extracted by the first CORDIC core. The 

subtractor computes the phase difference, which is used by the second CORDIC core to obtain sine and cosine values. 

Two moving average FIR filters performs the averaging over a sliding time window of length N. The third CORDIC core 

gets the final magnitude of the PLV feature. The first CORDIC core also extracts the magnitudes of the input signals 

as extra features. However, using only the PLV feature is more efficient for seizure detection. 

 

                             Figure 3:  The PLV CORDIC-based computation unit suggested in [9]. 

In [11], a single PLV/PAC extraction unit is implemented by considering the similarity between the PLV and PAC 

formulas.  Complex signal extraction is achieved using filter-Hilbert method with shared multipliers and adders to 

enhance power and area efficiencies. However, a memory is required to store the coefficients for each band. CORDIC 

processors are used for PLV/PAC computations and IIR filters are utilized for averaging, reducing power consumption 

and area. 

In [12, 13], PLV feature was calculated using coarse approximation methods without extracting phase information. 

The methods are based on measuring the time periods between two consecutive minima of the two input signals. 

However, they suffer from inaccuracy and cannot extract the PAC feature. 

A PLV/PAC extraction unit had been suggested in [14] and re-used in [15, 16]. Complex signals are extracted using 

filter-Hilbert method with sharing resources. PLV and PAC computation unit is implemented using an LPE, 

trigonometric LUT, and L-infinity norm - see Fig.4.  
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                     Figure 4: The PLV/PAC Computation Unit Suggested in [14]. 

 At first, the PAC magnitude modulated complex signals are applied to an L-infinity norm block to extract the 

magnitude value. The PAC phase modulating complex signals as well as the PLV two input complex signals, are applied 

to a shared LPE. A subtractor gets the phase difference between for the PLV. After that, a trigonometric LUT is utilized 

to obtain the corresponding sine and cosine values. Accumulators and shifters are used to perform the averaging 

over the time window. The final values for PLV and PAC are computed using an L-infinity norm block. This 

implementation significantly reduces power and area consumptions at negligible accuracy loss. 

 

V. Limitations 

As previously mentioned, extracting PLV and PAC features involves two main steps: extracting the complex signals 

within the bands of interest, and performing the PLV and PAC computation. The extraction process of complex signals 

can be achieved through the Morlet wavelet convolution or a band-pass filter followed by the Hilbert transform. The 

filter-Hilbert method is the technique conventionally used for on-chip feature extraction. However, high numbers of 

filter taps, coefficients, and multipliers are still needed. Resource sharing reduces the power and area; however, it 

requires memory to store coefficients for different bands. For the features computation, CORDIC processors achieve 

high accuracy at the cost of high power and area. Hence, the CORDIC-based approach is unsuitable for high channel 

count implantable devices. Instead, an LPE with Trigonometric LUTs and L-infinity norm achieve significant power 

and area reduction at a negligible accuracy loss. However, two steps are used to obtain the sine and cosine functions 

for PAC and PLV. First, the LPE approximates the phase. Then, a trigonometric LUT extracts the sine and cosine values.  

Table 1 illustrates a comparison between different PAC/PLV unit. 

            Table 1: Comparison Between Techniques: 

Parameter JSSC’13 

[10] 

TBioCAS’19 

[13] 

CICC’22 

[15] 

ISSCC’18 

[11] 

ISCAS'2023 

[25] 

Supply Voltage 

(V) 

1.2 0.5 0.85 1.2 1.2 

Process (nm) 130 180 65 130 40 

PLV/PAC 

channels 

32 PLV 1 PLV 8 PAC/PLV 65 AC/PLV 16 AC/PLV 

Total Power 

(μW) 

400 0.015 9.7 200.4 3.2 

Power/ch (μW) 12.5 0.015 1.2 3.1 0.2 

Area (mm2) 0.632 0.025 0.033 0.245 0.005 

 

In summary, the previously suggested PLV/PAC extraction units in the state-of-the-art exhibit two significant 

limitations. Firstly, the complex signal extractor requires large numbers of filter taps that lead to a high number of 
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coefficients and multipliers. Secondly, the computation of sine and cosine functions is a two-step process, resulting 

in a complex calculation for feature computation. 

 

VI. Conclusion 

Neural interfaces shows promise in treating neurological conditions. To enable fully implantable treating interfaces, 

efficient oscillatory feature extraction units are required. Extracting oscillatory synchronization features such as PLV 

and PAC involves two main blocks. The first block is a complex signal extractor that extracts complex signal 

representations within the frequency bands of interest. The second block for extracting the synchronization features 

is a PLV/PAC computation unit that calculates the PLV and PAC features from the extracted complex signals. For 

implementing the PLV/PAC computation unit, CORDIC processors or LPE with trigonometric LUT and L-infinity norm 

approximation can be used. The LPE-based method is more efficient in terms of power and area compared to the 

CORDIC-based one. However, this LPE-based method requires a two-step computation for the sine and cosine 

functions needed to compute the PLV and PAC. 

This article explores different techniques suggested for extracting the PLV and PAC features. Additionally, the article 

provides an overview of the current state-of-the-art units and their limitations. 
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