
Doi:10.21608/jpps.2025.390691.1013 Journal of Plant Production; Suez Canal University, 2025 
 

*Corresponding author e-mail:gamal.elmasry@agr.sue z.edu.eg Volume 14 (1): 43-53 
 

Detection of impurities on faba bean (Vicia faba L.) by NIR spectroscopy 
Doaa Sheahata, Ramadan ElGamal, Sherif Radwan, and Gamal Elmasry* 

 

Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt.  

Received: 31/5/2025 
 
Abstract: This Faba bean (Vicia faba L.) holds a significant position as one of the primary agricultural commodities 
globally. The presence of impurities on faba beans can lead to significant economic losses and quality deterioration that 
influences seed vigor and growth. Therefore, it is crucial to detect impurities seeds rapidly and non-destructively. In this 
study, a near-infrared (NIR) spectra acquisition device (400–1000 nm) was employed for seed quality detection. Spectral 
fingerprints extracted from pure faba bean seed and impurities were modeled using principal component analysis (PCA), 
partial least square (PLS) regression and linear discriminant analysis (LDA) to demonstrate the general overview of the 
spectral characteristics, predict the seed and impurities features and classify the seeds and impurities to the right 
categories. The results showed that impurities can be detected and classified precisely with total explained variance of 
100%, with better separation of the classes. It also indicates that good statistics were obtained for prediction, cross-
validation, and calibration, the PLS model achieved correlation coefficients (r) of 0.97, with minimal values of RMSE of 
about 2.98. LDA was utilized to classify the seeds based on their spectral fingerprints, achieving an overall classification 
accuracy of 84%. The model effectively distinguished between pure seeds and impurities, demonstrating its potential for 
rapid, non-destructive impurity detection in faba bean seeds. This study illustrates the applicability of NIR spectroscopy 
combined with PCA, PLS, and LDA models for accurate seed impurity detection and classification. 
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INTRODUCTION 

Faba bean (Vicia faba L.) is an important legume 
crop valued for its high protein content and health-
promoting bioactive compounds, making it increasingly 
popular in both human diets and animal feed worldwide, 
it’s staple crops in many parts of the world, contributing 
significantly to food security (Johnson et al., 2020; Boccia 
et al., 2013; Johnson et al., 2023). Faba beans is also 
considered a crucial winter crop primarily cultivated in 
Egypt. The estimated cultivated area for faba beans in 
Egypt is approximately 40.31 thousand ha with total 
production reached 139.52 thousand tons of dry seeds 
(FAOSTAT, 2020). Therefore, it is very important to 
guarantee the purity and safety of faba bean seeds. 
However, the presence of various impurities such as 
insects, bean peels, small rocks, uneven bean pulp 
fractions, and seed cotyledon fractions poses significant 
challenges to faba bean seed quality, safety, and 
marketability. 

The seed quality plays a pivotal role in determining 
crop productivity and sustainability, it is a fundamental 
factor that influences the overall agricultural output. Poor 
seed quality can lead to reduced crop yield, susceptibility 
to diseases, and economic losses for farmers (FAO, 2018). 
As commercial production expands, there is a growing 
demand for rapid, reliable, and cost-effective methods to 
assess seed quality and detect impurities, which are critical 
for food safety, nutritional value, and marketability 
(Rahman & Cho, 2016). Traditional methods for impurity 
detection and quality assessment of seeds are often labor-
intensive, time-consuming, and require extensive sample 
preparation, limiting their utility for high-throughput 
screening in breeding programs and quality control 
processes (Carbas et al., 2020). Due to the limitation of 
traditional methods, there is increasing demand for rapid, 
non-destructive, and reliable techniques for evaluation of 
seed quality. Therefore, the non-destructive testing 
technologies are developed and used for assessing the 

quality of seeds. Near-infrared spectroscopy (NIR) has 
emerged as a promising analytical tool for the rapid, non-
invasive assessment of seed quality and impurity detection 
in various crops, including legumes and cereals (Plans et 
al., 2013). This technique has been successfully applied to 
quantify nutritional parameters (such as protein, starch, 
and oil), detect adulterants, and assess bioactive 
compounds in seeds and flours (Lippolis et al., 2024; 
Johnson et al., 2023; Hernández-Hernández et al., 2021; 
Carbas et al., 2020). NIRS has been successfully applied 
to identify fumonisin B1 contamination in beans and 
melamine adulteration in soybean meals, highlighting its 
versatility for food safety applications (Haughey et al., 
2013). Additionally, the technique can rapidly 
discriminate between samples with high and low levels of 
phenolics or antioxidant compounds, supporting quality 
assurance and breeding efforts (Hernández-Hernández et 
al., 2021). In the context of seed purity analysis, NIRS has 
shown remarkable potential for assessing impurity levels 
in crops such as cotton, maize, and rice . It has been used 
to identify the purity of seed cotton by converting spectral 
data into binary form and computing key spectral features 
(Reddy et al., 2022). The technique also enabled the 
identification of pure botanical and field debris samples 
with an overall accuracy of 98% (Fortier et al., 2010). 
However, challenges related to debris distribution and 
sample size limited its use to screening purposes (Liu et 
al., 2024). 

The integration of advanced chemometric methods 
such as Partial Least Squares (PLS) and Principal 
Component Analysis (PCA) with NIR data has 
significantly improved the accuracy and reliability of 
impurity detection and compositional analysis (Lippolis et 
al., 2024). These statistical approaches facilitate the 
development of robust calibration models, enabling 
precise prediction of both macronutrients and 
micronutrients, and the discrimination of samples with 
varying levels of impurities or adulterants (Johnson et al., 
2023). The use of independent validation sets, and 
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clustering techniques further enhances model performance 
and generalizability across diverse genotypes and growing 
conditions (Rahman & Cho, 2016). Cross-validation is a 
technique utilized for evaluating predictive rule accuracy 
and model selection by dividing the data into multiple 
segments and testing the model on a validation sample 
(Malone et al., 2022). This method allows for the 
verification of results derived from exploratory data 
analysis and the selection of the most predictive model. 
Despite being non-parametric, cross-validation can be 
applied to any automated model-building technique 
(Bhatti, 2018). 

In this context, a PLS model with a correlation 
coefficient of 0.906 was built for estimating debris content 
in cotton, while Linear Discriminant Analysis (LDA) was 
used to classify different lint types (Li et al., 2010). The 
application of variable selection methods like competitive 
adaptive reweighting algorithms (CARS) led to improved 
model accuracy, with the 4052–8000 cm⁻¹ spectral range 
proving optimal (Zhang et al., 2022). Another 
classification model using the first derivative spectra and 
multiplicative scatter correction (MSC) achieved 80% 
accuracy in predicting cotton impurities (Reddy et al., 
2016). NIRS has also been applied to evaluate the purity 
of maize hybrids using PCA and Orthogonal Linear 
Discriminant Analysis (OLDA), achieving identification 
rates of 100% and 90% for specific varieties (Tian-xin et 
al., 2015). In food adulteration detection, NIRS 
successfully identified corn mixed into Brazilian coffee at 
contamination levels as low as 5% using PLSR (Winkler-
Moser et al., 2015). Moreover, the purity of multi-grain 
rice seeds was determined using Vis-NIR spectroscopy. 
The models achieved strong predictive performance, with 
R² values of 0.920 in the short NIR region and 0.930 in the 
long NIR region (Zhang et al., 2019).  

Several studies were reported in literature for using 
NIR spectroscopy to detect the sed quality of different 
crops and legumes. However, studies using NIR 
spectroscopy to detect the quality of the Egyptian faba 
bean variety Sakha 1 seeds and the specific impurities 
accompanying this variety have not been reported. In this 
sense, developing an accessible multivariate approach 
using portable NIR devices to identify potential impurities 
in faba bean will bring great scientific-technological 
contribution and, consequently, will encourage Egyptian 
authorities entrusted with the seed quality inspection to 
apply such advanced technologies. Therefore, the main 
objective of this study was to propose a methodology for 
predicting and screening some impurities in faba bean 
seeds, based on NIR spectroscopy associated with 
multivariate analyses, to be implemented for the best use 
of this product in the industry. 
 

MATERIALS AND METHODS 

2.1.  Sample collection and preparation: 

The faba bean seeds of the authorized variety Sakha 1 
and the accompanying impurities used in this study were 
obtained from the Seed Production Department, Egyptian 
Ministry of Agriculture and Land Reclamation. The faba bean 
seeds were sorted based on size and appearance to ensure 

uniformity within the sample set (Figure 1). The moisture 
content of seeds was determined using a standard oven 
method by drying about 10g samples at 103 °C for 72h and 
found to be 9% (w.b.). 

 
Figure (1): A representative sample of faba bean seeds 

of the variety Sakha 1. 

Five different kinds of impurities that usually exist in 
faba bean seeds such as insects, bean peels, small rocks, 
uneven bean pulp fractions, and seed cotyledon fractions were 
also prepared and isolated from the bean seed lots as shown 
(Figure 2). Insects (Bruchidius incarnatus Boh.) were 
carefully selected to represent a species commonly found in 
bean seeds. Both the faba bean seeds and impurities were 
thoroughly cleaned to remove any external debris or 
contaminants. The bean seeds and impurities were packaged 
in airtight containers (vacuum packed bags) and stored in a 
cooling chamber with an average temperature of 10 °C to 
maintain their integrity and prevent any contamination until 
further analysis. Each sample was labeled with a unique 
identifier to maintain traceability throughout the experiment. 
This ensured that the measurements and observations could 
be accurately associated with the corresponding samples. 

 

 

 

 

 

 

Figure (2): Representative samples of five different 
impurities in faba bean seeds: (a) bean peels; (b) insects; (c) 
equal bean seed cotyledon fractions; (d) uneven bean pulp 
fractions; (e) small pieces of rock. 

 

2.2.  Physical properties of faba bean seeds and impurities:  

Size, color, and mass, which are crucial parameters for 
understanding the physical properties of the samples and 
developing effective detection methods, were measured for 
faba bean seeds and the accompanying impurities. The size 
parameters (length, width, and thickness) of both bean seeds 
and impurities were measured using a digital caliper (CD-
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6"C, Mitutoyo, Japan) with an accuracy of 0.01 mm (Figure 
3a). 

The color values of the faba bean seeds and their 
impurities were determined using a colorimeter (WR10QC, 
X-Rite, USA) as shown in Figure (3b). Before recording the 
measurements, the colorimeter was calibrated to ensure 
accuracy. This involved using a standard white tile, which 
served as a reference point for all subsequent measurements. 
The colorimeter was zeroed on this tile to ensure that any 
subsequent measurements were not affected by any potential 
bias in the instrument. Carful was taken to ensure that the 
sample was clean and free from any dust or other 
contaminants that could potentially affect color 
measurements. The sample was placed in a consistent 
position on the measuring stage of the device to ensure 
consistency. The colorimeter measured three parameters for 
each sample in the LAB color space: L* (lightness), a* (the 
red/green axis), and b* (the yellow/blue axis) as shown in 
Figure (3b). The measurements were recorded and used to 
calculate the average color properties for each type of sample. 
This provided a comprehensive understanding of the color 
characteristics of faba bean seeds and impurities, which are 
crucial for developing effective detection methods.  

 

Figure (3): Measuring physical features of bean seeds using 

(a) a digital caliper; (b) a colorimeter; and (c) a digital balance. 

The mass of each seed sample was measured using a 
precise weighing scale. Each sample was carefully placed on 
the center of the weighing scale ( Techplast, SAB – 220, 
Egypt), ensuring that it was clean and dry as shown in Figure 
(3c). The mass of each sample was recorded to the nearest 
milligram. The mass measurement provided valuable 
information about the mass of the samples, which could be 
used to assess the density and uniformity of the seeds and the 
impurities. 

The data collected on the size, color, and mass of the 
bean seeds and their impurities served as important 
parameters for subsequent analysis and comparison. These 
measurements provided valuable insights into the physical 
characteristics of the samples, aiding in the development of 
effective detection of impurities in faba bean seeds. Besides 
determining size, color and mass, the density of the bean 
seeds and the five impurities were also calculated by dividing 
the mass by the volume of the sample. Each density 
measurement was repeated three times for each sample to 

ensure consistency and the average density for each sample 
was calculated. 

2.3.  NIRS data acquisition 

A hand- held NIR spectrometer (LinkSquare1, Link 
Square Inc., Korea) shown in Figure (4a) was used in the 
spectral range of 400 − 1000 nm to scan the samples 
spectrally with optical resolution of 1 nm to 44 nm of 552 
wavelengths. It was used to extract the spectral fingerprints of 
the bean seeds and the five impurities. The reflectance of the 
samples at each wavelength was recorded, creating a spectral 
profile for each sample. These spectral profiles were then 
analyzed to identify and distinguish between the seeds and 
impurities. The solid form of the samples (seeds and 
impurities) allowed direct and unaltered analysis of their 
spectral characteristics, providing valuable insights into their 
composition and structure, and enabling the effective 
detection of impurities. During scanning, the faba bean seeds 
were placed in a Petri dish and then directly scanned in a 
completely dark room by the Link Square spectrometer held 
in a vertical position. In total, 600 spectral fingerprints of the 
solid seeds. After taking the spectral fingerprints of all 
samples, they were exported in excel sheets via the 
LinkSquare Collector software (LinkSquare Co., Korea) 
installed in the computer as shown in Figure (4b). 
 

Figure (4): The hand-held LinkSquare NIR spectrometer (a) 
LinkSquare 1 spectrometer, and (b) User interface of the 
LinkSquare collector software. 

2.4.  Spectral data analysis: 

2.4.1. Preparing and preprocessing of spectral data: 

Spectral fingerprints for the seeds and impurities 
samples were exported to spreadsheet Excel files using the 
LinkSquare Collector software. Spectral preprocessing 
techniques encompass a collection of discretionary 
mathematical procedures that are conducted on the spectra 
prior to the construction of a calibration model. The 
mathematical pretreatment of spectra serves to diminish noise 
or extraneous data, as accomplished through smoothing 
techniques, while concurrently augmenting the signal 
originating from the chemical information via differentiation 
as accomplished by standard normal variate (SNV) 
preprocessing. After the preprocessing step, each type of the 
spectral data was then imported into the Unscrambler 
software (Unscrambler x, Camo Analytics, Denmark) to be 
analyzed separately using different multivariate modeling 
methods (PCA, PLS and LDA) to predict the seed features or 
to classify the seeds and impurities. 

b c 
a 

  
(a) (b) 
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2.4.2. PCA model: 

Principal component analysis (PCA) was performed to 
reduce the dimensionality of the spectral data while 
preserving most of the variance. It identifies the principal 
components (PCs) that explain the most variance in the data. 
These PCs are linear combinations of the original spectral 
variables. The variance explained by each PC and the 
cumulative variance explained by multiple PCs were 
examined. A scree plot or variance explained plot helps in 
determining the optimal number of PCs to retain. PCA helped 
in identifying clusters or patterns that could indicate the 
presence of impurities based only on the spectra fingerprints 
of the bean seeds and the impurities. This analysis technique 
provided insights into the overall structure of the data and 
aided in the interpretation of the results.  

2.4.3. PLS model: 

Partial Least Squares (PLS) regression was employed 
to investigate the underlying relationships between the 
spectral data (X), acquired across various wavelengths, and 
the corresponding physical attributes (Y) of the samples, 
including color parameters, mass, and dimensional 
measurements (length, width, and thickness). This 
multivariate analysis technique facilitated the modeling of 
complex correlations between spectral signatures and tangible 
physical characteristics, thereby enabling the effective 
discrimination between bean seeds and foreign impurities. By 
establishing a predictive model, PLS allowed for the 
classification of samples based on their spectral profiles, 
contributing to a more accurate and objective identification of 
impurities within the dataset. 

In the sample set (both faba bean seeds and five unique 
impurity categories, a total of 600 spectral fingerprints were 
employed for calibration, validation, and predictive modeling 
using NIR spectroscopy. Spectral preprocessing methods, 
specifically smoothing techniques, were implemented to 
mitigate baseline drift prior to conducting regression 
modeling. Spectral fingerprints were systematically extracted 
from faba bean seeds as well as from the five impurities at 552 
wavelengths (variables) within the spectral range extending 
from 400 to 1100 nm. The complete spectral range was 
utilized to develop PLS models for each color feature based 
on the average spectra derived from the 600 spectral 
fingerprints during the calibration phase. The dataset was also 
randomly partitioned into 70% for calibration and 30% for 
prediction, to facilitate the construction of the PLS model. 

The analysis involved decomposing the predictor 
matrix (spectral data) and the response matrix (seed and 
impurities features) into latent structures. These latent 
variables (factors) are extracted to capture the most relevant 
information that correlates with the response variables. Full 
cross-validation was employed to determine the optimal 
number of latent factors. Cross-validation helps in evaluating 
the model's performance on unseen data and prevents 
overfitting by ensuring that the model generalizes well to new 
data. The coefficient of determination (R2), and the root mean 
squared error (RMSE) were used to assess the accuracy of 
PLS regression models. High R² values and low RMSE 
values indicate a model that accurately captures the 
relationship between spectral data and seed features 
(Williams & Norris, 2001). 

The value of R² measures the proportion of variance in 
the response variables that is explained by the predictor 
variables and can be calculated as: 

𝑅! = 1 − ∑  !
"#$ (%"&%'")%

∑  !
"#$ (%"&%))%

                        (2.1) 

where: 𝑦! = observed values, �̂�! = predicted values, 
𝑦‾ = mean of observed values, 𝑛 = number of 
observations.     

RMSE measures the average magnitude of the prediction 
error, providing a measure of how well the model's 
predictions match the actual observations and can be 
calculated for calibration as: 

𝑅𝑀𝑆𝐸C = ,∑  !
"#$ (%"&%'")%

)
                            (2.2) 

where: 𝑦! = observed values in the calibration set, �̂�! = 
predicted values in the calibration set, 𝑛 = number of 
observations in the calibration set. 

For cross-validation: 

𝑅𝑀𝑆𝐸CV = ,∑  !
"#$ *%"&%'&',"+

%

)
                      (2.3) 

where: 𝑦! = observed values in the validation set, 
�̂�,-,! = predicted values in the cross- validation set, 
𝑛 = number of observations in the validation set. 

And, for prediction: 

𝑅𝑀𝑆𝐸P = ,∑  )
*#$ */*&/0+,*+

%

1
                        (2.4) 

where: 𝑦! = observed values in the prediction set,  
�̂�2,! = predicted values in the prediction set,  𝑛 = 
number of observations in the prediction set.  

2.4.4. LDA model 

Linear discriminant analysis (LDA) was utilized to 
classify and distinguish between different impurity types. 
The LDA is a statistical technique that aims to find a 
linear combination of features that maximally separates 
the classes and to create a discriminant function that 
could accurately classify the bean seeds and impurities 
into their respective categories. This analysis technique 
allowed for the identification of impurities based on their 
unique characteristics and spectral profiles, improving 
the accuracy of impurity detection. A confusion matrix 
was built to evaluate the classification performance of the 
LDA model. It displays the number of correct and 
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incorrect classifications for each class, allowing for the 
calculation of accuracy, sensitivity, and specificity. The 
performance of the LDA model was assessed using 
several metrics, including accuracy. Accuracy measures 
the proportion of correctly classified samples among all 
samples. 

 

RESULTS  

3.1. PCA analysis: 

The PCA was performed on the raw spectra of faba 
bean seeds and the selected five different kinds of 
impurities (Figure 1 and 2). The PCA analysis 
effectively reduced the dimensionality of the spectral 
data, summarizing the variance across the wavelengths 
into a smaller number of principal components (PCs). 
The first two principal components (PC1 and PC2) 
accounted for 100% of the total variance, indicating that 
these components captured most of the meaningful 
information in the spectral data as shown in Figure (5). 
These score plots of the samples show that there is a clear 
clustering of the spectral data observed in the PCA score 
plot, with distinct two groups representing the faba bean 
seeds and the different impurity types (Figure 5). 

The PC1 accounted for 67% of the total 
variance, primarily capturing differences between bean 
seeds and other impurity types based on their spectral 
features. The PC2 explained 33% of the variance, 
distinguishing subtle variations within impurity types. 
The high level of data explanation highlights the 
effectiveness of the analysis in converting the original 
dataset and the absorbances linked to the vibrational 
modes of the NIR spectra into principal components. 
The dispersion of the five different impurities in faba 
bean seeds as shown in PC1-PC2 coordinates shows that 
PC1 is the component that most effectively explains the 
data distribution. In other words, PC1 is the key factor 
responsible for differentiating the clusters. 

A tightly grouped clusters for faba bean seeds 
in the PCA score plot reflect high uniformity in the 
spectral characteristics of the seeds. Distinct grouping 
between faba bean seeds and impurities validates the 
effectiveness of PCA in capturing spectral differences 
between faba. minimal overlap observed between some 
impurity clusters, such as seed cotyledon fractions and 
uneven pulp, indicates areas where higher-resolution 
data or additional preprocessing may enhance 
separation. The distinct clusters in the score plot 
highlight PCA’s capability in detecting impurities non-
destructively, making it a valuable preprocessing step for 
further analyses like PLS or LDA.  

The PCA score plot Figure (6) reveals two well-
separated clusters. The cluster on the right side of the 
plot represents the spectral signatures of faba bean seeds, 
while the distinct cluster on the left corresponds to the 
insect samples. The clear distinction between the two 
clusters validates the effectiveness of near-infrared 
(NIR) spectroscopy in detecting insects. The first 
principal component (PC1) accounted for 99% of the 

total variance, indicating that it captures the primary 
spectral differences between the faba bean seeds and the 
insect-infested samples. The second principal 
component (PC2) explained only 1% of the variance, 
suggesting that it captures minor variations within each 
group. As shown in Figure (7) PCA was applied to the 
spectral data of faba bean seeds and small rocks to 
reduce dimensionality and highlight significant variance 
patterns. The first principal component (PC1) accounted 
for 98% of the total variance, while the second principal 
component (PC2) explained only 2%. The high variance 
captured by PC1 suggests that it effectively 
differentiates between faba bean seeds and small rocks 
based on their spectral characteristics. The cluster on the 
right represents the spectral signatures of small rocks, 
while the cluster on the left corresponds to faba bean 
seeds. The strong separation along PC1 indicates that the 
primary spectral differences arise from variations in 
material composition. Small rocks, being inorganic, 
exhibit distinct spectral absorbance patterns compared to 
the organic faba bean seeds, which likely contribute to 
the high variance explained by PC1. PC2, which 
explains only 2% of the variance, captures minor 
variations within each group, suggesting that the spectral 
responses of the materials are relatively consistent 
within their respective clusters. The PCA score plot 
Figure (8) demonstrates two distinct clusters. The cluster 
on the right corresponds to faba bean seeds, while the 
cluster on the left represents bean peels. The first 
principal component (PC1) accounted for 99% of the 
total variance, while the second principal component 
(PC2) accounted for only 1%. The dominant variance 
captured by PC1 indicates that the primary spectral 
differences between these two materials are well 
represented along this axis. 

Based on the results obtained, it may conclude 
that the near infrared reflectance spectroscopy (NIRS) 
can be used to detect faba bean impurities. The NIRS 
combined with PCA models can be utilized to 
discriminate and cluster between faba bean seeds and 
their impurities. These results are in agreement with 
those reported by Oliveira et al.(2023), who used NIR 
spectroscopy to detect impurities in cocoa shell powder 
through PCA analysis. In their study, the data obtained 
with a benchtop device showed that the first two 
principal components (PCs) explained 99.75% of the 
total variance, with 92.86% attributed to PC1 and 6.69% 
to PC2. For the portable device data, PC1 accounted for 
87.57% and PC2 for 11.01%, together explaining 
98.58% of the variance in the data. 

 

3.2. Prediction of color using PLS model: 
 
The results, as presented in Table 1, show clear 

distinctions in the color properties between pure faba 
bean seeds and the various impurities. For instance, the 
L value (lightness) of pure seeds is significantly higher 
than that of insect-contaminated seeds, which have lower 
lightness values due to discoloration. 
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Figure (5): Scatter plot of the PCA scores of raw spectral data for pure faba bean seeds and five different kinds of impurities. 
 

 
Figure (6): Scatter plot of the PCA scores of raw spectral data for pure faba bean seeds and insects. 

 
Figure (7): Scatter plot of the PCA scores of raw spectral data for pure faba bean seeds and small rocks. 
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Figure (8): Scatter plot of the PCA scores of raw spectral data for pure faba bean seeds and bean peels. 
 
 

 
 

Figure (9): Scatter plot of the PCA scores of raw spectral data for pure faba bean seeds and small rocks. 
 

 
 

The red-green component a shows variability 
across different impurities, with pure seeds showing the 
highest value, indicating a more balanced red-green 
intensity, whereas insect-contaminated and rock 
samples exhibit significantly lower values. For the 
yellow-blue component b, pure seeds exhibit the highest 
values, clearly differentiating them from insect-
damaged seeds, which show much lower values. The 
one-way ANOVA results reveal statistically significant 
differences (P ≤ 0.05) between pure seeds and all 
impurity classes across color features. 
Color features such as L, a, and b show significant 
differences between pure seeds and impurities, 
especially in the case of insects and rocks, which display 
 

 
 
 
significantly different color profiles. This analysis 
demonstrates that color features are effective for 
detecting impurities in faba bean seeds. The significant 
differences observed between the pure seeds and various 
impurities across all evaluated features highlight the 
reliability of these features for impurity detection. The 
incorporation of ANOVA for feature selection enhances 
the robustness of this method, allowing for accurate 
classification of seed impurities. Table (1): Color 
attributes of faba bean seeds and impurities “Values 
followed by different letters are significantly different 
(P<0.05)”. 
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PLS regression models were built to predict color 
intensity values for L* (Lightness), a* (Green Red), and 
b* (Blue Yellow). The relationship between the 
measured values of color parameters (L*, a* and b*) and 
those predicted by the PLS models are shown in Figures 
10. The results indicate that the PLS models were highly 
accurate in predicting L* (Lightness), achieving 
correlation coefficients (R2) higher than 0.96 and RMSE 
lower than 2.98. Similarly, predictions of a* (Green 
Red) and b* (Blue-Yellow) yielded an equal R2 value of 
about 0.93 and RMSE values ranged from 0.83 to 2.72. 
The high R² values across calibration and validation 
phases underscore the model’s accuracy and reliability, 
making it suitable for impurity detection and enabling 
timely intervention during seed sorting and processing. 
This capability is particularly valuable for quality 
control systems in the agricultural industry, where rapid, 
non-destructive monitoring can enhance efficiency and 
reduce waste. The integration of NIR spectral data and 
physical measurements offers scalability for automated 
impurity detection systems in seed processing plants. 
While the PLS model effectively reduced 
dimensionality and identified key features particularly 
for complex or overlapping impurity profiles. 

The results also showed that the analysis needed 
2 latent factors for the color variables (L*, a*, b*) which 
reflects the straightforward relationship between these 
attributes and impurity presence. The low number of 
latent factors suggests that color-based variations were 
relatively simple and well-defined, making them easy to 
model with minimal complexity. This optimization 
ensured that the model effectively captured relevant 
patterns while minimizing the risk of overfitting. The 
optimized number of latent factors for each Partial Least 
Squares (PLS) model plays a crucial role in detecting 
impurities in bean seeds. With an optimized number of 
latent factors, the model’s ability to detect impurities 
without overfitting is improved, making it a valuable 
tool for non-invasive, rapid quality control in different 
agricultural applications. 

 

3.3. Classification of faba bean seeds impurities using 
the linear discriminant analysis (LDA) model 

Spectral fingerprints extracted from faba bean 
seeds and impurities at 552 wavelengths (variables) in 
the spectral range from 400–1100 nm was used to 
develop linear discriminant analysis (LDA) models to 
classify the seeds into different categories based on the 
presence of impurities. The LDA model developed for 

classifying faba bean seeds and their impurities 
achieved an overall accuracy of 84%. The model utilized 
20 components and employed a quadratic discriminant 
function to classify the samples into six categories. 

Figure (10): Measured and predicted (L*, a*, b*) values 
for calibration and prediction sets using PLS models. 
 

These categories included pure seeds, insects, 
bean peels, small rocks, uneven bean pulp fractions, and 
cotyledon fractions. The 84% accuracy indicates a high 
level of classification performance, suggesting the 
model effectively distinguished most of the categories 
based on their spectral fingerprints in the range of 400–
1100 nm. As shown in table (2), the confusion matrix 
provides a detailed breakdown of how well the model 
performed in categorizing the seeds into six classes. The 
confusion matrix presented above summarizes the 
classification performance of the Linear Discriminant 
Analysis (LDA) model used for detecting impurities in 
faba bean seeds. The matrix evaluates the actual 
categories (rows) against the predicted categories 

Table (1): Average values of measured color 
attributes of faba bean seeds and impurities 

Attributes L a b 
Pure faba bean seeds a69.4 a11.8 a74.08 
Cotyledon fraction b51.1 a11.0 a74.77 
Un even faba bean 
fraction 

b50.8 b7.26 a74.31 

Faba bean peels c41.4 b6.41 a68.18 
Small rocks d33.9 c1.93 c46.16 
Insects d24.1 d4.85 d34.82 
-Values in same column followed by different letters 
are significantly different (P<0.05) 
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(columns), showing the number of correctly and 
incorrectly classified samples. The classification 
performance of the model highlights important insights 
into the detection of faba bean seed impurities. The key 
observations based on the confusion matrix and model 
evaluation can be summarized as follows: The model 
achieved 100% accuracy in identifying pure seeds, 
successfully distinguishing them from all other impurity 
categories. This indicates that the spectral fingerprints 
of pure seeds are highly distinct, allowing for clear 
differentiation from contaminants. The model 
performed flawlessly in identifying pure seeds (again), 
confirming the strong spectral contrast between 
untainted seeds and other types of impurities, ensuring 
no misclassifications within this category, the model 
identified cotyledon fractions with 99% accuracy. 
However, there was a slight misclassification, with 16 
cotyledon fraction samples being incorrectly classified 
as uneven pulp fractions. This indicates a minor overlap 
between the spectral characteristics of these two 
impurity classes, The model correctly identified 84% of 
uneven pulp fractions. However, 1 sample was 
misclassified as a cotyledon fraction, which suggests 
that both categories share some spectral characteristics 
that caused this confusion, The accuracy for bean peels 
was lower, at 58%. Several samples were misclassified 
as small rocks (7%) and insects (26%). This suggests 
that bean peels have spectral similarities with small 
rocks and insect-damaged seeds, which made them 
harder to distinguish in this model, small rocks were 
identified with an accuracy of 91%, although 5% of the 
samples were misclassified as uneven pulp fractions and 
2% as insect-damaged seeds. The model performed well 
in distinguishing small rocks, but some overlap with 
other impurities still exists and the model identified 
insect-damaged seeds with 72% accuracy. A significant 
portion (37%) of insect-damaged samples was 
misclassified as bean peels, indicating a strong overlap 
between insect-damaged seeds and bean peels in terms 
of spectral characteristics. A small percentage (2%) of 
insect samples were misclassified as small rocks.  
Table (2): Confusion matrix of LDA analysis to 
classify faba bean seeds and impurities into six 
categories with 84% accuracy 

 

DISSCUSSION 
 

The results obtained from the PLS model in this study 
recorded R2 higher than that obtained by Chen et 
al.(2024) who utilized near-infrared spectroscopy 
(NIRS) combined with partial least squares regression 
(PLSR) to detect low-price rice adulteration in high-
price rice blends, achieving correlation coefficients 
exceeding 87% for accurate estimation of contamination 
levels in rice samples.  Moreover, the results obtained 
from this study are in agreement with those reported by 
Han et al.(2023) who applied NIRS combined with PLS 
to analyze spectral data from cotton seeds and achieved 
high correlation coefficients (R2 = 0.98) for impurity 
detection in cotton seeds.  The results also in agreement 
with Xue et al.(2023) who utilized Partial Least Squares 
Discriminant Analysis (PLS-DA) to classify hybrid 
maize seeds achieving a recognition accuracy of 84.4% 
to 100%. Furthermore, the result are also close to those 
obtained by Zhang et al.(2022) who applied PLS-DA 
model using transmittance hyperspectral imaging, 
achieving high accuracy in detecting impurities in 
hybrid wheat seeds, with accuracy rates of 95.69%, 
98.25%, and 97.25% for different hybrid varieties, 
effectively distinguishing them from female parent 
seeds. Compared to this result, Zhang et al.(2022) 
achieved better result when detecting seed purity using 
hyperspectral imaging and partial least squares-
discriminant analysis (PLS-DA), rather than NIR 
spectroscopy and LDA analysis. It highlights the 
effectiveness of transmittance spectra in distinguishing 
hybrid and female parent seeds. The accuracy rates in 
the testing sets of three hybrid wheat varieties were 
95.69%, 98.25%, and 97.25% respectively.  study was 
carried out to improve the semen quality of rabbits by 
removing dead, immotile and morphologically 
abnormal sperm by filtering ejaculated extended semen 
through five different filters Sephadex-G15, Albumin, 
Cotton, Synthetic Fiber, Sand and Sperm Swim-up 
procedure. 

 
CONCLUSION 

 
The findings of this study highlight the effectiveness of 
near-infrared spectroscopy (NIR) as a rapid, non-
destructive, and reliable analytical tool for assessing seed 
quality and detecting impurities in faba bean seeds. 
Traditional methods of impurity detection, though precise, 
are often limited by labor intensity and time consumption. 
In contrast, NIR, combined with advanced multivariate 
techniques such as Partial Least Squares (PLS)and 
Principal Component Analysis (PCA) has demonstrated 
strong potential for accurately predicting compositional 
attributes, identifying foreign materials. The use of 
chemometric modeling has enhanced the robustness of 
calibration models and improved the classification 
accuracy for impurity detection, even under diverse 
genotypes and environmental conditions. Furthermore, 
cross-validation techniques have validated the predictive 
reliability of these models, making them applicable for 
large-scale screening in breeding programs and quality 
control. Overall, the integration of NIR spectroscopy with 
multivariate analysis represents a valuable advancement 
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Pure 
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100 0 0 0 0 0 

0 99 16 0 0 0 

0 1 84 0 0 0 

0 0 0 58 7 26 

0 0 0 5 91 2 

0 0 0 37 2 72 
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for seed science and food safety. The methodology is not 
only scalable and efficient but also adaptable for use across 
various legumes and cereal crops. Future studies are 
recommended to explore the combination of NIR with 
complementary spectroscopic methods, such as MIR and 
FTIR, to further expand the range and precision of impurity 
detection in seed systems. 
 

REFERENCES 

Bhatti, S. K. (2018). Using Near-Infrared Reflectance 
Spectroscopy (NIRS) for Qualitative determination 
of undesirable chemical component of high nitrogen 
content in protein raw material used for fish feed 
(Master's thesis, The University of Bergen). 

Boccia, P., Meconi, C., Mecozzi, M., & Sturchio, E. 
(2013). Molecular modifications induced by 
inorganic arsenic in Vicia faba investigated by FTIR, 
FTNIR spectroscopy and genotoxicity testing. 
Journal of Toxicology and Environmental Health, 
Part A, 76(4-5), 281-290. 

Carbas, B., Machado, N., Oppolzer, D., Ferreira, L., 
Brites, C., Rosa, E. A., & Barros, A. I. (2020). 
Comparison of near-infrared (NIR) and mid-infrared 
(MIR) spectroscopy for the determination of 
nutritional and antinutritional parameters in 
common beans. Food Chemistry, 306, 125509. 

Chen, M., Song, J., He, H., Yu, Y., Wang, R., Huang, 
Y., & Li, Z. (2024). Quantitative analysis of high-
price rice adulteration based on near-infrared 
spectroscopy combined with chemometrics. Foods, 
13(20), 3241. 

FAO. (2018). Seeds toolkit. In Food and Agriculture 
Organization of the United Nations (Issue 
November). 

FAO Statistical Programme of Work 2020–2021. 
(2020). FAO Statistical Programme of Work 2020–
2021. 

Fortier, C., Rodgers, J., Cintron, M. S., Cui, X., & Foulk, 
J. (2010, January). Preliminary studies of cotton 
non-lint content identification by near-infrared 
spectroscopy. In Proc. Beltwide Cotton Conf., New 
Orleans, LA (pp. 4-7). 

Han, X., et al. (2023). JsiPLS model for impurity 
detection in seed cotton. Infrared Physics & 
Technology, 134, 104732. 

Haughey, S. A., Graham, S. F., Cancouët, E., & Elliott, 
C. T. (2013). The application of near-infrared 
reflectance spectroscopy (NIRS) to detect melamine 
adulteration of soya bean meal. Food Chemistry, 
136(3-4), 1557-1561. 

Hernández-Hernández, C., Fernández-Cabanás, V. M., 
Rodríguez-Gutiérrez, G., Fernández-Prior, Á., & 
Morales-Sillero, A. (2022). Rapid screening of 
unground cocoa beans based on their content of 
bioactive compounds by NIR spectroscopy. Food 
Control, 131, 108347. 

Johnson, J. B., Walsh, K., & Naiker, M. (2020). 
Application of infrared spectroscopy for the 
prediction of nutritional content and quality 
assessment of faba bean (Vicia faba L.). Legume 
Science, 2(3), e40. 

Johnson, J. B., Walsh, K. B., & Naiker, M. (2023). 
Assessment of bioactive compounds in faba bean 
using infrared spectroscopy. Legume Science, 5(4), 
e203. 

Li, D., Yang, W., & Wang, S. (2010). Classification of 
foreign fibers in cotton lint using machine vision and 
multi-class support vector machine. Computers and 
Electronics in Agriculture, 74(2), 274-279. 

Lippolis, A., Polo, P. V., de Sousa, G., Dechesne, A., 
Pouvreau, L., & Trindade, L. M. (2024). High-
throughput seed quality analysis in faba bean: 
leveraging Near-InfraRed spectroscopy (NIRS) data 
and statistical methods. Food Chemistry: X, 23, 
101583. 

Liu, N., Liu, C., Chen, L., Yu, J., Sun, X., Zhang, S., & 
Wu, J. (2024). Research on model transfer strategies 
based on the fusion of NIR-MIR spectral data. 
Infrared Physics & Technology, 142, 105545. 

Malone, A., Santi, P., Cabana, Y. C., Smith, N. M., 
Manning, J., Zeballos, E. Z., & Zhou, W. (2022). 
Cross-validation as a step toward the integration of 
local and scientific knowledge of geologic hazards 
in rural Peru. International Journal of Disaster Risk 
Reduction, 67, 102682. 

Oliveira, M. M., Ferreira, M. V., Kamruzzaman, M., & 
Barbin, D. F. (2023). Prediction of impurities in 
cocoa shell powder using NIR spectroscopy. Journal 
of Pharmaceutical and Biomedical Analysis Open, 
2, 100015. 

Plans, M., Simó, J., Casañas, F., Sabaté, J., & 
Rodriguez-Saona, L. (2013). Characterization of 
common beans (Phaseolus vulgaris L.) by infrared 
spectroscopy: comparison of MIR, FT-NIR and 
dispersive NIR using portable and benchtop 
instruments. Food Research International, 54(2), 
1643-1651. 

Rahman, A., & Cho, B. K. (2016). Assessment of seed 
quality using non-destructive measurement 
techniques: a review. Seed Science Research, 26(4), 
285-305. 

Reddy, P., Guthridge, K. M., Panozzo, J., Ludlow, E. J., 
Spangenberg, G. C., & Rochfort, S. J. (2022). Near-
infrared hyperspectral imaging pipelines for pasture 
seed quality evaluation: An overview. Sensors, 
22(5), 1981. 

Tian-xin, L., Shi-qiang, J., Xu, L., Sheng-yi, Z., Hang, 
R., Yan-lu, Y., & Dong, A. (2015). Maize Hybrid 
Seed Purity Identification Based on Near Infrared 
Reflectance (NIR) and Transmittance (NIT) Spectra. 
Spectroscopy and Spectral Analysis, 35(12), 3388-
3392. 

Williams, P., & Norris, K. (2001). Near-infrared 
technology in the agricultural and food industries 
(2nd ed.). American Association of Cereal Chemists. 

Winkler-Moser, J. K., Singh, M., Rennick, K. A., 
Bakota, E. L., Jham, G., Liu, S. X., & Vaughn, S. F. 
(2015). Detection of corn adulteration in Brazilian 
coffee (Coffea arabica) by tocopherol profiling and 
near-infrared (NIR) spectroscopy. Journal of 
Agricultural and Food Chemistry, 63(49), 10662-
10668. 

Xue, H., Yang, Y., Xu, X., Zhang, N., & Lv, Y. (2023). 
Application of near infrared hyperspectral imaging 



Detection of impurities on faba bean (Vicia faba L.) by NIR spectroscopy 53 
 

technology in purity detection of hybrid maize. 
Applied Sciences, 13(6), 3507. 

Zhang, H., Hou, Q., Luo, B., Tu, K., Zhao, C., & Sun, 
Q. (2022). Detection of seed purity of hybrid wheat 
using reflectance and transmittance hyperspectral 
imaging technology. Frontiers in Plant Science, 13, 
1015891. 

Zhang, J., Li, M., Pan, T., Yao, L., & Chen, J. (2019). 
Purity analysis of multi-grain rice seeds with non-
destructive visible and near-infrared spectroscopy. 
Computers and Electronics in Agriculture, 164, 
104882. 

 

 
 

  ءارملحا تتح  نم ةبيرقلا ةعشلأا فايطم مادختساب ىدلبلا لوفلا روذب ف بئاوشلا نع فشكلا
 

 يرصلما لامج ,ناوضر فيرش ,لملجا ناضمر ,ةتاحش ءاعد
 

 رصم ,41522 ةيليعامسلإا ,سيوسلا ةانق ةعماج ,ةعارزلا ةيلك ,ةيعارزلا ةسدنهلا مسق

 
 لثم بئاوشلاب هروذب ثولت نأ لاإ ,ملاعلا ىوتسم ىلع ةيلاعلا ةيئاذغلاو ةيداصتقلاا ةميقلا تاذ ةيلوقبلا ليصالمحا نم (.Vicia faba L) لوفلا دعيُ :صلختسلما

 .ةريبك ةيداصتقا رئاسخ ف ببستي امم ,تابنلإا لدعم ضافخناو ,روذبلا ةدوج روهدت ىلإ يدؤي ىرخلأا ةبيرغلا داولماو ,روشقلا اياقب ,تاقلفلا روسك ,تارشلحا ءازجأ

 مييقت ىلإ ةساردلا هذه فدهت .روذبلا ةدوج يستحو بئاوشلا هذه نع فشكلل ةيريمدت ريغو ,ةقيقد ,ةعيرس نوكت ةثيدح تاينقت مادختسا ىلإ دادزت ةجالحا نإف ,اذلو

 ليجست ت .اهفينصتو لوفلا روذب ف بئاوشلا نع فشكلل )رتمونان 1000–400( يفيطلا قاطنلا ف (NIR) ءارملحا تتح نم ةبيرقلا ةعشلأا ةيفايطم مادختسا ةيلاعف

 مادختساب رادحنلااو ,(PCA) ةيسيئرلا تانوكلما ليلتح لثم ,تاريغتلما ددعتم يئاصحلإا ليلحتلا تاينقت مادختساب اهليلتحو ,بئاوشلاو ةيقنلا روذبلل ةيفيطلا تامصبلا

 وحن PLS جذونم ف طابترلاا لماعم غلب ثيح ;ةمدختسلما جذامنلل ةيلاع ةءافك جئاتنلا ترهظأ .(LDA),   يطلخا زييمتلا ليلتحو ,(PLS) ةيئزلجا ىرغصلا تاعبرلما

 دكؤت .بئاوشلاو ةيقنلا روذبلا يب زييمتلا ف %84 تغلب فينصت ةقد LDA جذونم ققح امك ,(RMSE ≈ 2.98) أطلخا عبرم طسوتم رذلج ةضفخنم ةميق عم 0.97

 نع فشكلاو لوفلا روذب ةدوج مييقتل ةيريمدت ريغو ةعيرسو ةلاعف ةادأك ,يرتموميكلا ليلحتلا تاودأ عم اهجمد دنع ,NIR ةينقت ىلع دامتعلاا ةيناكمإ جئاتنلا هذه

 .اهل ةبحاصلما بئاوشلا

 .تاريغتلما ددعتم ليلتح ,بئاوش , ءارملحا تتح نم ةبيرقلا ةعشلأا فايطم ,روذبلا ةواقن ,لوف :ةيحاتفلما تاملكلا


