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  Abstract 

This research paper examines the possible design optimization of analog circuits 
especially operational transconductance amplifier (OTA) using multi-objective ge-
netic algorithm. All design criteria are developed and simplified and then used to 
run genetic algorithm on MATLAB. Final solutions located on the pareto front are 
examined to show various trad-offs between design parameters. A better more-ad-
vanced solution is also examined, where simulation software (CADENCE) is used to 
evaluate the individuals from each generation, and then results are fed to MATLAB 
to complete the algorithm. OCEAN script is used to perform simulations after netlist 
file is modified using results from MATLAB. Individuals are ranked based on their 
performance and high performing individuals are used in the next step. The best 
fitting solution is simulated using Cadence Virtuoso and all simulation figures are 
explained. The second approach is found to give better performance and meet the 
required objectives, this is due to the considering the device parameters' shift at 
different values for the circuit elements. 
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1. Introduction 

Analog integrated circuits design is not an easy task to 

do, especially in circuits that have many requirements 

to be satisfied and even more parameters to determine. 

This means that designers are forced to abide by the 

trade-offs which causes accomplishment of some re-

quirements and neglecting others.  

One of the circuits that are the most difficult to design 
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manually is OTA, with many requirements to accom-

plish, and yet more parameters. Designer has to carry 

multiple simulations before he can reach the near-opti-

mal design he needs.  

Using multi-objective optimization allows the designer 

to have a set of possible solutions with different results 

that can be examined and filtered based on preferred re-

quirements. 

Multiple optimization techniques have been examined 

over the last two decades; NSGA strategy has proved ac-

ceptable performance with much time needed to design 

a folded-cascode Op-AMP [1]. Particle Swarm Optimiza-

tion (PSO) techniques also could be used to mimic the 

movement of bird groups, in which each parameter is 

considered as a particle, each particle has a history of 

positions, and needs to determine new position by ad-

justing its velocity, and by the knowledge of the food lo-

cation [2]. More recent and widely used method is built 

upon Evolutionary Algorithm (EA). In EA, we mimic the 

evolution theory, where each step might be considered 

as a single reproduction of parameters that is tested us-

ing spice simulators and the result is fed back to the al-

gorithm script (usually on MATLAB). These results are 

then used to evaluate the old population and only su-

preme population (Old and New) are used to reproduce 

new sets of parameters. After multiple rounds of apply-

ing the algorithm, we reach the optimal solution that can 

fit all our requirements [3]. 

There’s also the Machine Learning (ML) based algo-

rithms, which depends on training a network to predict 

the required design parameters. Numerous recent stud-

ies have adopted supervised learning models, primarily 

because of their dependence on labeled data. Regres-

sion and classification algorithms are prominently uti-

lized, particularly tree-based models such as Random 

Forest and Decision Trees, in addition to Support Vector 

Regressor and gradient-based models. Nonetheless, 

there is a noticeable increase in the application of deep 

learning and Neural Networks [4]. However, these 

methods require some powerful machines with more 

experienced data sets to achieve a noticeable 

performance. 

A few optimization techniques that worth mention is 

based on hybrid techniques developed recently like Ar-

tificial Bee Colony Optimization (ABCO), and Grey Wolf 

Optimization (GWO). Those algorithms have compara-

ble performance to the Genetic Algorithm (GA), but with 

less median and standard deviation [5]. 

 

Some literature introduces some surrogate-assisted op-

timization which speeds up the whole process of apply-

ing the Evolutionary Algorithm (EA) [6]. 

Among all optimization techniques, Genetic Algorithms 

(GA) remain the most reliable for applying without need 

to consume huge time for simulation on spice tools. It 

doesn’t limit the script to specific topologies, the algo-

rithm runs to accomplish required fitness functions sup-

plied. 

Multi-Objective Genetic Algorithm (MOGA) allows us to 

consider different objectives simultaneously, this in our 

case, allow us to minimize power consumption and area, 

at the same time, make sure gain and bandwidth are 

above certain limits.  

Also, the time required for GA can be greatly reduced 

using the Rule-Guided Genetic Algorithm (RG-GA) which 

gives the algorithm specific set of rules to follow instead 

of blindly creating new population. For example, cur-

rent value is related directly to the size of transistor. 

 
Figure 1 Symmetric OTA with Load Capacitance 

 



Dakheel, M.M. et al. 
 

 

DOI: 10.21608/fuje.2024.334034.1096 57 Fayoum University Faculty of Engineering, 2025, Vol: 8 (2)  

 

Which means in case a current value is below the objec-

tive, we need to increase the width, and not consider 

thinner transistor widths. The RG-GA boosts the time 

performance by 1.5~3.3 times the GA [7]. 

This paper considers symmetric OTA to apply MOGA 

and calculate required dimensions of all transistors as 

well as biasing current. The symmetric OTA is widely 

used due to its better offset and CMRR performance [8]. 

2. Symmetric OTA 

In this paper, we consider the design of 65-nm symmet-

ric OTA with a capacitive load 𝐶𝐿 (Shown in Figure 1). 

The main component of the circuit is differential pair 

(M1, M2), and three current mirrors (M3 – M5, M4 – M6, 

and M7 – M8), both input current mirrors have the same 

ratio B. We also have biasing current source transistor 

(M9). 

The design parameters of our circuit are the dimensions 

(width and length) of all transistors, as well as the ratio 

of the current mirror (B). 

For simplicity, we consider matching the input differen-

tial pair (M1 & M2) we also match (M3 & M4) and finally 

(M7 & M8). We also set length of transistors to a reason-

able value according to 65-nm technology. 

We then try to find the basic formulas to be optimized 

for gain and bandwidth.  

The gain can be calculated simply, 

𝐴𝑣0 =
𝑣𝑜

𝑣𝑖
 =

𝑖6 𝑅𝑁4

𝑣𝑖
                                                             (1)  

Since matching, 

𝑖1 = 𝑖2 = 𝑔𝑚1𝑣𝑖   

And therefore, 

𝐴𝑣𝑜 =
(𝐵𝑔𝑚1𝑣𝑖𝑅𝑁4)

𝑣𝑖
 = 𝑔𝑚1𝐵𝑅𝑁4                                     (2)   

To calculate 𝑅𝑁4 (Output resistance at node 4), 

𝑅𝑁4 = 𝑟𝑑𝑠6 ∥ 𝑟𝑑𝑠8   

𝑅𝑁4 =
1

𝑔𝑑𝑠6
∥

1

𝑔𝑑𝑠8
  

But,  

𝑔𝑑𝑠 = 𝜆𝐼𝐷   

Where,  

𝜆 =
𝜕𝑉𝐷𝑆

𝜕𝐿
=

1

𝑉𝐸𝐿
  

Where 𝑉𝐸  is a fitting parameter similar in concept to 

early voltage in BJT devices. Thus, 

𝑅𝑁4 =
1

𝐼𝐷6
𝑉𝐸6𝐿6

∥
1

𝐼𝐷6
𝑉𝐸8𝐿8

=
1

𝐼𝐷6

.
𝑉𝐸6𝐿6𝑉𝐸8𝐿8

𝑉𝐸6𝐿6+𝑉𝐸8𝐿8
     (3) 

Also, 

𝑔𝑚 =
𝜕𝑖𝐷

𝜕𝑣𝐷𝑆
= √2𝜇𝐶𝑜𝑥 (

𝑊

𝐿
) 𝐼𝐷 =  √2𝑘 (

𝑊

𝐿
) 𝐼𝐷              (4)  

Substitute (3) and (4) into (2), 

𝐴𝑣𝑜 = √2𝑘𝑝  
𝑉𝐸6𝐿6𝑉𝐸8𝐿8

𝑉𝐸6𝐿6 + 𝑉𝐸8𝐿8

√(
𝑊

𝐿
)

1

1

√𝐼
                   (5)  

We can also see that there’s only one dominant pole in 

the circuit at node 4, resulting in bandwidth formula,  

𝐵𝑊 =
1

2𝜋𝑅𝑁4𝐶𝐿
  

And due to differential pair matching, we have 𝐼𝐷6
=

𝐼

2
 

𝐵𝑊 =
1

4𝜋𝐶𝐿

𝑉𝐸6𝐿6+𝑉𝐸8𝐿8

𝑉𝐸6𝐿6𝑉𝐸8𝐿8
𝐼𝐵                                                     (6)  

There are two more design requirements to consider, 

area and power dissipation. 

For area we know that all routing and track widths are 

constant for the same technology, and therefore we can 

minimize are by controlling the dimensions of the tran-

sistors, so we can simplify the formula of the area by 

considering only the area of transistors. 

𝐴𝑟𝑒𝑎 =  ∑ 𝑊𝑖𝐿𝑖

𝑛

𝑖=1

                                                               (7) 

Where 𝑖 is the order of the transistor and n is the num-

ber of transistors in the circuit (= 8) in our case, W and 

L are the width and length of 𝑖𝑡ℎ transistor. 

The power dissipation can be calculated by multiplying 

the voltage across the circuit by the total current sup-

plied to it. 

𝑃 = (𝑉𝐷𝐷 − 𝑉𝑆𝑆)(𝐼 + 𝐵𝐼) = (𝑉𝐷𝐷 − 𝑉𝑆𝑆)(1 + 𝐵)𝐼     (8)  

As we see in the equations above, we need to determine 
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the value of current ratio to simplify the equations, this 

value could be limited if we considered the pole at node 

5. As our OTA is single ended, so the capacitances on the 

other side than the output will be negligible for the 

Phase Margin [9]. 

Therefore, we have non-dominant frequency 𝑓𝑛𝑑, 

𝑓𝑛𝑑 ≈
𝑓𝑇4

3+𝐵
                                                                                    (9)   

According to [9], maximum 𝐵 can be found by equating 

𝑓𝑛𝑑 to 3 × 𝐺𝐵𝑊. Which results in 𝐵 = 5. Many design-

ers use typical value between 3 and 5. 

3. Multi-Objective Genetic Algorithm Optimi-
zation 

Any Multi-Objective Optimization Problem (MOP) can be 

described by the following set of equations,  

Find a vector x that optimizes, 

𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑁(𝑥))
𝑇

       (10) 

Subject to: 

𝑔𝑗(𝑥) < 0, 𝑗 = 1, … 𝑀;  

ℎℎ(𝑥) = 0, 𝑘 = 1, … 𝐾;          (11) 

𝑎(𝑙) ≤ 𝑥(𝑙) ≤ 𝑏(𝑙), 1 ≤ 𝑙 ≤ 𝑛  

The first vector 𝑓(𝑥) , represents a vector of objective 

functions that need to be maximized or minimized during 

the optimization problem. 

Th second set of equation in (11) is called terms, first two 

𝑔𝑗(𝑥)  and ℎℎ(𝑥)  are the inequality and equality con-

straint functions, M and K are the number of constraints. 

Third equation represents the lower and upper bounda-

ries for each gene 𝑥(𝑙). 

As there’s no unique solution for the optimization prob-

lem, Pareto optimality must be used to analyze the objec-

tives [10]. 

A Pareto optimal solution is a solution in which an im-

provement in an objective requires the degradation of an-

other. Optimal solution may be mapped to different objec-

tive vectors. Or to make it clearer, several optimal objec-

tive vectors representing different trade-offs between the 

objectives may exist [10]. 

We need a powerful global optimization technique to 

search the whole solution space. Genetic Algorithms are 

inherently robust and can efficiently search large solution 

spaces containing discrete or discontinuous parameters 

and non-linear constraints, without being trapped in local 

minima [10]. 

Figure 2 shows the flowchart for general GA optimization 

problem. The initial population consists of randomly gen-

erated individuals called “chromosomes”. Next step is to 

evaluate each individual and quantify the result in a fit-

ness value used to judge the quality of an individual. We 

then continue to create new generations by preserving su-

preme chromosomes and creating new ones through se-

lection crossover and mutation. This means that only the 

best individuals reproduce while others are neglected, 

which improves the fitness of successive generations. This 

means that GA evolves until it finds a set of solutions 

where improvements tend to decay approaching no no-

ticeable improvement yielding the Pareto front. 

4. Analytical Expression Based Design 

We consider four parameters to find, 𝑊1,𝑊3,𝑊7, and 𝐼. 

We try to achieve the following specifications listed in 

Table 1. 

 
Table 1 Design Requirements 

No. Specification Desired Value 

1 Gain > 200 

2 Bandwidth > 150 𝑘𝐻𝑧 

3 Layout Area Minimal 

4 Power Consumption Minimal 

 

Using the parameters from 65-nm process, as well as 

formulas derived earlier in section 2.  

We write a MATLAB script considering 𝐿1 = 𝐿2 =

0.36𝜇𝑚, while for current mirrors and to minimize error 

in the mirrored current we choose higher channel 

length 𝐿3 = 𝐿4 = 𝐿5 = 𝐿6 = 3.6𝜇𝑚.We ran our script for 

a population size of 60 individuals, around 730 genera-

tions. We also set all other settings like lower and upper 

boundaries as well as crossover and selection sizes.  

 



Dakheel, M.M. et al. 
 

 

DOI: 10.21608/fuje.2024.334034.1096 59 Fayoum University Faculty of Engineering, 2025, Vol: 8 (2)  

 

 

Figure 2. Flowchart for General GA Optimization Problem. 

The final Pareto front including 18 different individuals 

is shown in Table 2. We can see different objectives to 

consider trade-off between them. 

As we notice from the Pareto front table, there are many  

individuals that meet our requirements, we selected an 

individual that not only meets both requirements but 

also have lower area and power consumption, 

individual No. 17 and carried the simulation using Vir-

tuoso Cadence. 

As seen in figure 3, the OTA with the proposed dimen-

sions have gain of about 45 dB ≈180, and bandwidth 

of about 140 kHz. 

Of course, this shift of results is expected as we’re using 

same values to calculate the objective functions after 

each generation, not the simulated results from real 

model. 

5. Using Circuit Simulation as Objective Cri-
teria Evaluation 

To have more accurate design, the new generation result-

ing from each mutation step is fed into simulation soft-

ware to be evaluated. Based on this step a decision is 

reached to whether repeat the reproduction step, or to 

end the algorithm with this output.  

We used a pre-installed Cadence version on a virtual ma-

chine, and MATLAB for Windows, so we setup a server 

(using ngrok) on the machine as well as on the Windows. 

Once MATLAB finishes the step it writes outputs to a file 

which is posted to the server. 

On the virtual machine the server receives the file write 

component values to the OCEAN script, and then runs it. 

Once the simulation is completed, the results are sent to 

the server on Windows side where they are used for the 

evaluation step.  

Figure 4 shows the basic steps for applying genetic algo-

rithm with repetitive simulation using Cadence software. 

We use the exact same procedure as used before, the only 

difference is that we don’t evaluate the new generations 

using the objective functions, instead we use the results 

from the simulations to decide whether the output is ac-

ceptable or not. 
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Table 2 Pareto Front Individuals for first approach

  

Indiv. 𝑾𝟏 
(𝝁𝒎) 

𝑾𝟑 
(𝝁𝒎) 

𝑾𝟕 
(𝝁𝒎) 

𝑰𝒃𝒊𝒂𝒔 
(𝝁𝑨) 

Gain BW 

(KHz) 

Area 

(𝝁𝒎𝟐) 

Power 

(𝝁𝑾) 

1 1.24 1.99 0.95 0.744 181.6 210 22.17 8.93 

2 1.22 2.09 0.96 0.66 191.3 180.23 22.25 7.92 

3 1.106 3.03 3.38 0.547 200.1 151.4 46.98 6.57 

4 1.107 2.617 1.47 0.549 199.8 151.7 30.288 6.58 

5 1.107 2.634 1.64 0.548 199.9 151.4 31.56 6.57 

6 1.106 3.04 3.14 0.547 200 151 45.33 6.57 

7 1.106 3.15 3.79 0.547 200 151 50.76 6.57 

8 1.12 2.256 0.98 0.563 198.4 155.5 24 6.76 

9 1.106 2.994 2.68 0.547 200 151.01 41.66 6.57 

10 1.106 2.94 2.53 0.547 200 151 40.19 6.57 

11 1.24 1.99 0.956 0.75 180.9 207 22.168 8.93 

12 1.236 2.0123 0.946 0.69 188.3 190.65 22.19 8.293 

13 1.106 2.7268 1.79 0.547 200 151.01 33.367 6.574 

14 1.108 2.459 1.13 0.549 199.9 151.69 26.68 6.59 

15 1.1105 2.266 1.19 0.56 198 154.73 25.68 6.72 

16 1.2339 1.99 0.96 0.749 180.59 206.96 22.168 8.94 

17 1.106 2.983 1.98 0.547 200 151 36.53 6.57 

18 1.1369 2.0368 0.97 0.58 196.99 160.26 22.45 6.96 

 
Figure 3 Frequency Response of The Designed Circuit 
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5.1. OCEAN Script 

Open Command Environment for Analysis (OCEAN) is a 

programming language built upon SKILL language. It’s 

used in Cadence Analog Design Environment (ADE) to 

perform circuit simulations from the command line [11].  

Any circuit simulation performed using ADE can generate 

an OCEAN script which can be used to perform the simu-

lation more than once.  

We’ve written the OCEAN script to simulate the circuit 

once new values are written to the values file.  

We modify the ocean script originally generated by ADE 

to follow our desired flow. 

Here is the content of our OCEAN script which writes its 

output into a CSV file to be sent to MATLAB for individuals 

ranking.  

 

5.2. Simulation and Results 

To control the time required for our algorithm operation, 

we set the maximum allowable number of generations to 

100, which will act as a termination criterion if no suitable 

solution is found during this time.  

 

Start

Initial 
Population

Evaluation

Mutation

Cross 
Selection

Reproduction

Good?

End

Yes

Simulation 
Cadence

No

Gen = Gen + 1

 
Figure 4 Simulation-Based Genetic-Algorithm Flowchart 

 

simulator( 'spectre ) 

design("/home/cadence/simulation/Sim-

ple_OTA/spectre/schematic/netlist/netlist") 

resultsDir( "/home/cadence/simulation/Sim-

ple_OTA/spectre/schematic" ) 

modelFile(  

   '("/home/cadence/my_pro-

ject/tsmc65/tsmcN65/../models/spectre/toplevel.scs" 

"tt_lib")) 

analysis('ac ?start "1"  ?stop "10G"  ?dec "10"  ) 

envOption( 

        'firstRun  t  

 'analysisOrder  list("dc" "ac")  

) 

outPort = outfile( "/home/cadence/oceanresult.csv" "w"); 

fprintf(outPort "GainBW\tBW\n") 

temp( 27 ) 

inPort = infile("matlabOut.txt") 

simulator( 'spectre ) 

design("/home/cadence/simulation/Sim-

ple_OTA/spectre/schematic/netlist/netlist") 

resultsDir( "/home/cadence/simulation/Sim-

ple_OTA/spectre/schematic" ) 

modelFile(  

   '("/home/cadence/my_pro-

ject/tsmc65/tsmcN65/../models/spectre/toplevel.scs" 

"tt_lib")) 

analysis('ac ?start "1"  ?stop "10G"  ?dec "10"  ) 

envOption( 

        'firstRun  t  

 'analysisOrder  list("dc" "ac")  

) 

outPort = outfile( "/home/cadence/oceanresult.csv" "w"); 

fprintf(outPort "GainBW\tBW\n") 

temp( 27 ) 

inPort = infile("matlabOut.txt") 

 

envOption( 

        'firstRun  t  

 'analysisOrder  list("dc" "ac")  

) 

outPort = outfile( "/home/cadence/oceanresult.csv" "w"); 

fprintf(outPort "GainBW\tBW\n") 

temp( 27 ) 

inPort = infile("matlabOut.txt") 
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The size of individuals per generation is set again to 60. 

So, we are required to run a total of (60×100=6000) sim-

ulations on Cadence. After completion, a pareto front of 

the best non-dominated individuals is fed to Cadence. We 

select the best 10 individuals as shown in table 3. 

Figure 5 shows the pareto front for the two objectives 

against each other.  

Figure 5 Pareto Front for The MOGA Problem 

Again, we consider the best design which gives consider-

able low area and power and accomplishes both gain and 

bandwidth criteria. We choose individual No. 8. 

The final gain and phase plots are shown in Figure 6. 

As one might notice, this time algorithm’s outputs match 

the simulation results, as we already base calculations 

upon results driven from Cadence.  

To judge our circuit, we consider time required for the al-

gorithm completion, the algorithm converge with satu-

rated performance after 56 generations. This means a to-

tal of (56×60=3360) simulations. Total time required for 

the algorithm on a machine with an Intel Core-i7 proces-

sor with 4.7 GHz, is about 7.3 hours. Of course, this perfor-

mance can be greatly boosted using a native software for 

the simulation (not through VMware).  

6. Conclusion 

This paper inspects the usage of evolutionary Mult-objec-

tive Optimization Genetic Algorithm (MOGA) to design an 

Operational Transconductance Amplifier (OTA) in the 

65nm CMOS technology. A simple approach was used by 

concluding analytical expressions for the circuit’s charac-

teristics, and extracting the device parameters using 

CADENCE simulator, and then using MATLAB alone to 

work out a solution. Good but not optimal results were 

found. We then used more advanced technique, which in-

cluded feeding the results from each generation from 

MATLAB to CADENCE and simulating those results to 

evaluate their performance. The second method gave op-

timal solutions meeting all required objectives. 

 

Table 3 Pareto Front Individuals for Second Approach 
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Figure 6 Gain and Phase of Simulated OTA 
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