

71

Behavior Encoder Transformer BETR:
A Transformer Encoder for Predicting Agent Behavior

Mahmoud Elhusseni 1 *, Yara Maher 2, Emad Elsayed 3, Mohamed F. Abdelkader 4

1 Communication and Electronics Department, Faculty of Engineering, Port Said University, Port Said, Egypt, email: mahmoud.a.elhusseni@gmail.com
2 Communication and Electronics Department, Faculty of Engineering, Port Said University, Port Said, Egypt, email: yaramaher368@gmail.com

3 Computer and Control Department, Faculty of Engineering, Port Said University, Port Said, Egypt, email: emad.elsayed@eng.psu.edu.eg
4 Communication and Electronics Department, Faculty of Engineering, Port Said University, Port Said, Egypt, email: mdfarouk@eng.psu.edu.eg

*Corresponding author, DOI: 10.21608/pserj.2025.338938.1381

Received 2024 -11-25

Revised 2024 -12 -21

Accepted 2025-1 -1

© 2025 by Author(s) and
PSERJ.

This is an open access article
licensed under the terms of the
Creative Commons Attribution
International License (CC BY
4.0).
http://creativecommons.org/lice
nses/by/4.0/

ABSTRACT
Anticipating the future behavior of road users stands as one of the most formidable

challenges in the realm of autonomous driving. Achieving a comprehensive
understanding of the dynamic driving environment requires an autonomous vehicle to
accurately predict the motion of other traffic participants within the scene. As the
complexity of motion prediction tasks increases, capturing intricate spatial relationships,
temporal dependencies, and nuanced interactions between agents and map elements
becomes crucial. Our proposed hierarchical architecture strategically incorporates
transformers, effectively modeling both local and global representations to extract
multiscale features. Leveraging the potency of transformers, BETR adeptly captures and
encodes intricate patterns of agent interactions, spatial dependencies, and temporal
dynamics. Demonstrating superior performance in predicting agent behavior compared
to conventional methods, BETR proves its efficacy through extensive experiments. Its
capacity to adapt to diverse scenarios establishes BETR as a robust and versatile
solution for the intricate task of agent behavior prediction.

Keywords: Transformers, Encoders, Motion Prediction, Vector Representations.

1 INTRODUCTION

Predicting the motion of agents, such as vehicles,
pedestrians, and other entities in dynamic environments,
holds paramount significance across various domains,
ranging from autonomous driving to crowd management
and robotics. The ability to forecast the future trajectories
of agents facilitates proactive decision-making, enhances
safety measures, and optimizes resource allocation in
numerous real-world scenarios.

To comprehend the driving environment effectively,
an Autonomous Vehicle requires insight into the
intentions and future trajectories of all dynamic agents.
This capability empowers the Autonomous Vehicle to
strategize its trajectory and navigate around obstacles,
whether they are stationary (detectable through Object
Detection algorithms) or in motion (predicted via Motion
Prediction Algorithms).

Therefore, to optimize performance, three primary
factors merit consideration: 1) performance metrics, 2)
memory usage, and 3) inference time. Addressing these
aspects ensures sufficient performance while
accommodating deployment on the constrained
computational resources of Autonomous Vehicles. To
effectively predict an agent’s target destination and attain
optimal performance according to key metrics in this
task, various methodologies have been employed. Some
of these approaches involve predicting the agent’s final
goal and subsequently determining the trajectory from its
current position to each predicted destination. The
primary objective of such approaches is to enhance
accuracy and overall performance, often by leveraging
advanced decoder networks to refine predictions.

Recent advancements in motion prediction
predominantly utilize either Convolutional Neural
Networks (CNNs) [1] or Graph-based message passing
techniques [2], [3], [4], [5], [6] to extract local
information from different sources, However, CNN-

PORT SAID ENGINEERING RESEARCH JOURNAL

Faculty of Engineering - Port Said University
Volume 29 No. 2 pp: 71:79

72

based approaches face challenges in effectively learning
kernels that can adequately cover all scenarios present in
the dataset. Consequently, CNN models may struggle to
generalize well across diverse scenarios. On the other
hand, in graph-based algorithms, all features are typically
accorded equal weight. This uniform treatment of
features means that outliers and rapid maneuvers exert
significant influence on the model’s decision-making
process, rendering the model susceptible to overfitting
due to its complexity.

Despite significant advancements in trajectory
prediction, existing methods have notable limitations.
One key drawback is that none of these approaches
employ a fully transformer-based architecture for
predictions, which limits their ability to fully capture
complex spatial-temporal dependencies and interactions
in dynamic environments. Transformers have proven to
be highly effective in various domains, yet their potential
remains underexplored in trajectory prediction tasks.
Additionally, current methods often fail to effectively
utilize available information, such as detailed road
layouts and data about adjacent objects. These elements
are critical for understanding the driving context, yet
conventional models either underutilize them or treat
them in isolation, leading to suboptimal performance.
Addressing these shortcomings is essential for improving
prediction accuracy and robustness in autonomous
systems.

In our approach, we focus mainly on enhancing feature
extraction of information used as input to our model.
Instead of delving into complex decoding processes to
attain precise trajectories, we concentrate on refining the
feature extraction stage. We employ transformer- based
encoders to better extract features as our data set
comprises multiple sources of information. Each input
scenario may require different sources for decision-
making compared to others, leveraging transformer-
based encoders provides our model with a significant
advantage. It enables the model to learn how to prioritize
the most important information sources and allocate
greater attention to them. Additionally, it allows the
model to disregard misleading information by assigning
them lower attention weights. To accomplish this, we
utilize self-attention mechanisms within the transformers
to determine attention weights dynamically.

 An illustrative diagram of our approach is shown in
Figure 1.

Figure 1: Overview of BETR
To ensure a fair comparison, we standardized all other

configurations, including the decoder architecture, where
we employed a simple decoder design. Additionally, we
utilized the same dataset, Argoverse2 [7], cost function,
and all training configurations across different
approaches. By adopting benchmark metrics, we
facilitated a comprehensive comparison of the various
methodologies.

2 LITERATURE REVIEW

In recent times, there has been significant research on
motion prediction, driven by the increasing focus on
autonomous driving. This prediction commonly relies on
input data such as road maps and the historical state of
agents. Scene representation methods in this context are
generally classified into two categories: rasterized
representation and vectorized representation.

2.1 Rasterized Representation

Rasterized encoding methods involve converting high-
definition map elements and agents into an image. Early
works [8], [9], [10], [11], [12], [13], [14] utilized
Convolutional Neural Networks (CNNs) to encode the
image. However, these methods face limitations in
capturing the structural information present in high-
definition maps. Multipath [15], employed CNNs to
extract features from raster images, enabling the
prediction of probabilities for K predefined anchor
trajectories and the regression of offsets from the anchor
states.

2.2 Vectorized Representation

Vectorization involves the conversion of data into
numerical format represented by vectors. VectorNet [2]
stands out as the first approach to directly integrate
vectorized information for both lanes and agents. It has
gained widespread adoption in recent research efforts
[3], [16], [5], [17] due to its efficiency and scalability. In
VectorNet, road maps and agent trajectories are
represented as polylines.

In the proposed work we utilized Goal-based

Trajectory Prediction. This approach frames the
prediction task as a planning problem by introducing the
pedestrian’s goal as a latent variable. In the TNT method

73

[18], anchors are first sampled from road maps, and
trajectories are generated based on these anchors.
Similarly, LaneRCNN [19] uses a decoding pipeline
where lane segments serve as anchors. Each anchor is
assigned a probability, and non-maximum suppression
(NMS) is applied to remove duplicate goals in close
proximity. DROGON [20], on the other hand, focuses on
intentional destinations for individual agents. It
introduces a trajectory prediction dataset to analyze goal-
oriented behavior and employs a conditional VAE
framework to predict multiple plausible trajectories.
Goal-based modeling has also been used in optimizing
planning policies for autonomous driving [21] and
predicting human trajectories [22]. Unlike these
methods, BETR takes an anchor-free approach to goal-
based modeling, enabling it to be trained in an end-to-
end manner.

3 THE PROPOSED BEHAVIOR ENCODER

TRANSFORMER (BETR)

The proposed BETR (Behavior Encoder Transformer)
method is an end-to-end trajectory prediction approach
utilizing transformer-based architecture to forecast the
complete future trajectory of an agent. In this method,
each future point is treated as an individual prediction
task independent of other predicted time steps. We first
use a vectorized representation [2] to represent our
source of information in each scene. We use a
transformer based local encoder to extract features from
each source of information separately, then combine all
vectors from different sources together into a global
feature encoder. A simple decoder network takes the
latent vector output of the global feature encoder and
predicts the agent’s behavior.

3.1 Sources of Information

Preprocessing our data stands out as one of the pivotal
steps in this task. The input data provided to the model
during both training and evaluation is a critical indicator
of the model’s performance. Our approach to
preprocessing closely aligns with the methodology
proposed by VectorNet [2]. Specifically, we categorize
the information describing each scene into three primary
sources: Agent-related information, Adjacent Objects-
related information, and Lane Lines-related information.

Utilizing a vectorized representation, we segment all
sources into vectors in the spatial domain for L lane lines
and the temporal domain for A, O agent and adjacent
objects data.

The vectors for agent data are structured as follows:

𝑎௜ = {𝑥𝑠, 𝑦𝑠, 𝑥𝑒, 𝑦𝑒, 𝑣𝑥, 𝑣𝑦, ℎ, 𝑐𝑑}
where:
• (xs, ys): Represents the initial (x, y) coordinates of
vector i relative to the agent’s current position.
• (xe, ye): Denotes the final (x, y) coordinates of vector is
related to the agent’s current position.

• (vx, vy): Signifies the average velocity in the x
and y directions during the temporal interval of the
vector.
• h: Indicates the average heading (yaw angle) of the
agent during the temporal interval of the vector.
• cd: Represents the count of dynamic objects within
a predefined threshold surrounding the agent.

For object data, the vectors are represented as:

𝑜௜ = {𝑥𝑠, 𝑦𝑠, 𝑥𝑒, 𝑦𝑒, 𝑡𝑠, 𝐷௔ , 𝜃௔, 𝑣𝑥, 𝑣𝑦, ℎ,object type}
where:
• ts: indicates timestamp of this vector.
• Da: Represents the average distance from the agent
during the vector interval.
• θa : Signifies the average angle between the objects
and the agent during the vector interval.
• Object type: Specifies the type of object represented
by the vector.

Lastly, lane data is organized into vectors denoted by:

𝑙௜ = {𝑥𝑠, 𝑦𝑠, 𝑧𝑠, 𝑥𝑒, 𝑦𝑒, 𝑧𝑒,Intersection, 𝜃ௗ ,type}
where:
• (xs, ys, zs): Depicts the starting (x, y, z) coordinates of
vector i for this lane line relative to the agent’s current
position.
• (xe, ye, ze): Represents the ending (x, y, z) coordinates
of vector i for this lane line relative to the agent’s current
position.
• I(Intersection): binary flag indicates whether the lane
line of this vector is an intersection or not.
• θd : Denotes the angle of the vector.
• lanetype: Specifies the type of lane represented by the
vector.

This preprocessing stage ensures that the data is
appropriately formatted and ready for input into the
model.

3.2 Local Feature Encoder

After vectorizing our information sources, the vectors
are processed by individual local encoders, each tailored
to a specific source. These encoders are built upon the
Transformer architecture, as outlined in [23], utilizing a
self-attention mechanism to effectively encode local
vectors. The model combines vectors of certain elements
with varying weights, reflecting their importance to the
scene. The importance of a vector in a scene is computed
according to the projection of its features. We stack L
layers of transformer blocks, allowing vectors to pass
from one layer to another, thus enriching them with more
information about other vectors. For agent vectors:

𝛼௜௝   =  𝑎௜
௟   ⋅ 𝑊௤

௟   × ൫𝑎௝
௟   ⋅ 𝑊௞

௟൯
்

 (1)

𝑣௜
௟   =   ∑ 𝑎௜௝

ேೌ
௝ୀ଴   × 𝑎௝   ⋅ 𝑊௩

௟ (2)

𝑎௜
௟ାଵ  =  𝑣௜

௟   +  𝜋൫𝑣௜
௟൯ (3)

74

Where 𝛼௜௝ is the attention weight between vector 𝑎௜
and vector 𝑎௝ ,  𝑊௤ ,  𝑊௞,  𝑊௩   are learnable parameters, and
𝜋(.) is a learnable Multi-Layer Perceptron (MLP) with
two linear layers and a ReLU activation function
between them:

𝜋(.) = (𝑊ଶ
௟)்   max ቀ0,  (𝑊ଵ

௟)்   ⋅ ൫𝑣௜
௟൯ቁ (4)

Here, 𝑎௜
ଵ,  𝑜௜

ଵ,  𝑙௜
ଵ  ∈ 𝑅ௗೌ   and 𝑎௜

௟ ,  𝑜௜
௟ ,  𝑙௜

௟   ∈ 𝑅ௗ೓   and
𝑊௤ ,  𝑊௞ ,  𝑊௩   ∈ 𝑅ௗ೔ ×ௗ೓ .

After propagation through L layers, we obtain three
matrices of vectors corresponding to agents, objects, and
lanes, each offering an enhanced representation of the
input scene.

3.3 Global Vectors Interaction

Using vector matrices outlined above, we construct a
fully connected graph where each vector corresponds to
a node within the graph, as illustrated in Figure 1. In this
graph, every node is interconnected with all others.
Subsequently, we feed this graph into a Graph Neural
Network (GNN) to encode global features encompassing
all sources of information. We employ the global soft
attention technique introduced in [24], where a Global
Attentional Graph Neural Network dynamically allocates
attention across each node. The attention weights are
based on latent vectors representing individual elements
within the graph:

𝑟௜ = ∑ ቀℎgate(𝑥௡)ቁ
ே೔softmax
௡ୀଵ ⋅ ℎఏ(𝑥௡) (5)

Where ℎ௚௔௧௘  :  𝑅ி   → 𝑅 and ℎఏ denote MLPs.

The GNN generates a final latent vector, denoted as ℎ௜  ∈
𝑅ௗ, which encapsulates all scene information. This
vector serves as a comprehensive representation from
which all features relevant to trajectory prediction within
the scene are extracted.

3.4 Mixture Density Decoder

Our task is to predict the joint probability distribution
for a scene 𝑝(𝑥଴, 𝑥ଵ, … , 𝑥்ିଵ, 𝑦଴, 𝑦ଵ, … , 𝑦்ିଵ ∣∣ 𝐴, 𝑂, 𝐿)
as illustrated in Figure 2, where T is the number of future
frames to predict. Instead of predicting a Gaussian
probability distribution for each coordinate and time step
pair, we predict Mixture Gaussian Components with
Identity variance and with multiple confidences for each
mean. Each 𝜇௞ represents a single pair (𝑥  ∣∣ 𝑦)௧ in
trajectory k. Our goal is to predict K different trajectories
with 𝐶  ∈ 𝑅௄ confidence for each trajectory. This
approach allows for a more flexible representation of
uncertainty in the predicted trajectories.

Figure 2: Sample output distribution where the model
predicts multiple trajectories, each consisting of multivariate
Gaussian distributions. Model Predicts K Trajectories (e.g. 6
trajectories as illustrated in figure), for each trajectory there
are T time steps represented by P(x, y) Gaussian distribution.

3.5 Loss Function

In our experiments, we investigated the impact of two
approaches to improving model performance. Initially,
across all experiments, we trained our model using the
negative log likelihood loss function. To enhance our
model’s effectiveness further, we introduced a
regularization strategy in the BETR-Attn penalty
experiment.

This involved incorporating an attention penalty
during training to regulate the attention mechanism.

1) Negative Log Likelihood: To evaluate the
effectiveness of our predictions, we propose a cost
function l based on the negative likelihood of the output
probability distribution. This cost function serves as a
measure of how well our model’s predictions align with
the observed data, with lower values indicating better
performance:
𝑙ఏ = − log൫𝑝(𝑥0,   … , 𝑦்ିଵ ∣∣ 𝐴, 𝑂, 𝐿; 𝜃)൯ (6)

𝑙ఏ =   − log ൭෍ 𝑒
ቀ୪୭୥(௖ೖ)ି

ଵ
ଶ

∑ ൫௫೒೟,೟ି௫ೖ,೟൯
మ೅

೟సభ ି൫௬೒೟,೟ି௬ೖ,೟൯
మ

ቁ

௄

௞ୀଵ

൱  (7)

2) Attention Penalty: Our model primarily focused on the
agent and often neglected critical information about lanes
and objects in the scene. This limitation hindered the
model’s ability to comprehensively understand the
environment and make informed decisions. To address
this issue, we introduced the attention penalty to enforce
the model to focus across all relevant information within
the scene. The penalty aimed to enhance the model’s
capacity to capture essential details during training. This
regularization technique was instrumental in
discouraging overly diffuse or unfocused attention
patterns, ultimately leading to improved performance.

75

Through this enhancement, our model became more
adept at processing complex scenes and making
informed decisions based on a comprehensive
understanding of its surroundings.

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝜆
ଵ

ே
∑ (𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛௜ − 𝑡 arg 𝑒 𝑡௜)

ଶே
௜ୀଵ (8)

Where:

 𝑡 arg 𝑒 𝑡௜ =
ଵ

ௌ௘௤௅௘௡

 𝐿௧௢௧௔௟ = 𝐿௡௟௟ + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦

3.6 Handling Variable Number of Objects

In the proposal discussed, a challenge arose from the
variable number of adjacent objects and lane lines
present in each scene. Consequently, each local encoder
has to handle variable batch sizes during forward and
backward propagation for each scene. To mitigate this
issue, we endeavored to maintain a constant number of
objects and lanes in each scene. This adjustment aimed
to enable the utilization of transformers in local encoders
without instability arising from the variable input size
across scenes.

1) Padding Objects and Lanes: To ensure efficient
utilization of transformers, we opted to pad the objects
and lanes in all scenes to a fixed number. This approach
allows for consistent processing across scenes. When
padding objects and lanes, it is advisable to incorporate
redundant or less crucial elements. This strategy
encourages transformers to allocate less attention or
disregard these padded elements during the decision-
making process.

Padded Objects vectors: We chose to pad objects with
distant stationary objects from the remote past, thus
defining:
 𝑥𝑠, 𝑦𝑠, 𝑥𝑒, 𝑦𝑒 = (∞, ∞, ∞, ∞)
 𝑇𝑠 = −∞
 𝐷𝑎, 𝜃௔ = (∞, 0)
 𝑣𝑥, 𝑣𝑦 = (0,0)
 Object type = 0

𝑜𝑖 = [∞, ∞, ∞, ∞, −∞, ∞, 0.0,0.0,0.0,0.0,0.0]

We chose to pad lanes with distant lanes, thus

defining:
 𝑥𝑠, 𝑦𝑠, 𝑧𝑠, 𝑥𝑒, 𝑦𝑒, 𝑧𝑒 = (∞, ∞, ∞, ∞, ∞, ∞)
 𝐼(Intersection), 𝜃ௗ = (0,0)
 𝐷𝑎, 𝜃௔ = (∞, 0)
 𝑣𝑥, 𝑣𝑦 = (0,0)
 Lane type = 0

𝑙௜ = [∞, ∞, ∞, ∞, ∞, ∞, 0,0.0,0]

2) Averaging Objects and Lane: Another approach

utilized involves aggregating all object vectors and lane
vectors into two distinct groups. This aggregation
simplifies the representation of objects and lanes,
enhancing computational efficiency and reducing
complexity.

4 EXPERIMENTS

4.1 Experimental Setup

Dataset. BETR is trained on Argoverse2 [7]. The motion
forecasting dataset is a curated collection comprising
three datasets tailored for perception and forecasting
research within the self-driving domain. Among these
datasets, the annotated Sensor Dataset stands out. This
comprehensive dataset encompasses high-resolution
imagery captured by seven ring cameras and two stereo
cameras, in addition to LIDAR point clouds and 6-DOF
map-aligned pose information. Each sequence within the
dataset is annotated with 3D cuboid annotations for 26
object categories, ensuring thorough sampling to
facilitate the training and evaluation of 3D perception
models. The dataset comprises a total of 303,039 real-
world driving scenarios, which have been divided into
distinct training, validation, and test sets. Specifically,
the training set consists of 199,908 scenarios, while the
validation set comprises 24,988 scenarios. Additionally,
the test set contains 78,143 scenarios, ensuring a
comprehensive and balanced distribution across the
dataset subsets for robust evaluation and training
purposes. In both the training and validation sets, all
scenarios are represented as 11-second sequences
sampled at 10 Hz. Each sequence is divided into two
segments: the first 6 seconds consist of past tracking
data, while the subsequent 5-second segment contains
ground truth information. However, it’s important to
note that only the first 6-second trajectories are publicly
available in the test set, implying that the ground truth
information for the final 5 seconds is not included in the
test set.

Training details. In our training process, which spanned
over 10 days, we trained the model for 100 epochs
utilizing a single NVIDIA RTX A4000 GPU. We
employed a learning rate of 0.001 and implemented a
cosine learning rate scheduler. It’s important to note that
we did not utilize any data augmentation techniques
during the training phase.

BETR Implementation. We began by offline
transforming the Argoverse2 raw dataset into an
intermediate format, which consists of matrices of
vectors representing each source of information. These
transformed data were stored for subsequent use.

During forward propagation, the data are loaded for each
source separately and encoded using Transformer-based
Local Encoders. Specifically, agent data per batch is
represented by a matrix 𝐴  ∈ 𝑅௕௦ ×ହ଴ ×଼, adjacent objects

are represented by a matrix 𝑂  ∈ 𝑅∑ ௢ೀ
೚సభ  ×଺଴ ×ଵଵ, and road

lane lines are represented by a matrix 𝐿  ∈ 𝑅∑ ௟ಿಽ
೗సభ  ×଺଴ ×ଽ.

After each Local Encoder layer block, each block of
Agent Encoder, Object Encoder, Lane Encoder produces
matrices𝐴መ  ∈ 𝑅௕௦ ×ଵ଺, 𝑂෠  ∈ 𝑅௕௦ ×ே௢ ×ଵ଺, 𝐿෠  ∈ 𝑅௕௦ ×ே௟ ×ଵ଺

76

where for training bs=64 and for evaluation bs=128
respectively. Subsequently, the Global Feature Encoder
(Global Vectors Interaction Layer) combines these three
matrices into a number of fully connected graphs, one for
each scene. Each graph is represented by a data matrix
𝐷  ∈ 𝑅(ଵାே೚ ା ே೗)×ଵ଺ and an adjacency matrix
representing all edges between all nodes in the graph.
These graphs are then passed through an Attentional
Graph Neural Network to generate a latent vector that
holds features for the global scene 𝐻  ∈ 𝑅଺ସ෣ . We
implemented a simple decoder consisting of three Multi-
Layer Perceptrons (MLPs) to decode the latent vector
extracted by the Encoder Network. The decoder outputs
K=6 trajectories represented by two vectors: a
Confidence Vector and a predicted Trajectory vector
𝑦ො  ∈ 𝑅଺ ×ହ଴ ×ଶ

For parameter optimization, we utilized the Negative
Likelihood cost function. This function aids in
optimizing the parameters of the model during training,
ensuring effective learning and prediction performance.

Other models implementation. We introduced certain
modifications to ensure comparability with our approach.
These modifications were aimed at maintaining
consistency across all models’ components, while
varying only the encoder architecture.

DenseTNT: In the case of Dense TNT, we adjusted by
replacing its complex decoder with our standard decoder,
consisting of three multi-layer Perceptrons. Furthermore,
we replaced the loss function utilized in DenseTNT with
the negative log likelihood loss function to align it with
our approach.

Metrics. In our evaluation process, we adopt metrics
proposed by the Waymo Open Motion Dataset [25].
Specifically, we utilize the following metrics to assess
the performance of our model:

1) Minimum Final Displacement Error (minFDE):
This metric measures the minimum Euclidean distance
between the predicted final position and the ground truth
final position of the agent.

2) Minimum Average Displacement Error (minADE):
This metric calculates the minimum average Euclidean
distance between the predicted trajectory and the ground
truth trajectory over a specified time horizon.

3) Miss Rate (MR): The Miss Rate quantifies the
proportion of predictions that fail to capture the ground
truth trajectory within a certain threshold. Given that
each prediction consists of 50 (x, y) pairs, we calculate
the Miss Rate at different time frames, denoted as
MR@{10, 30, 50}.

These metrics provide comprehensive insights into the
accuracy and reliability of our predictions across various
aspects of motion forecasting, enabling thorough
evaluation and comparison with benchmark datasets.

4.2 Main Results

We conducted an evaluation of our approach on the
Argoverse validation set and presented the results in
Table 1. It is evident that BETR outperforms all other
models, which are built on the same encoder and other
configurations, across most proposed metrics with a
remarkable margin. Even when compared to models with
more sophisticated decoders and more complex
architectures, our approach demonstrates competitive
performance and achieves state-of-the-art results.

Table 1. Comparison of performance metrics usage
for various encoder approaches.

Encoder Mode

l

min

FDE

avgA

DE

avg

MR

MR

@10

MR

@30

MR

@50

Traditional

Techs

Poly-

fit

4.5

5

2.78 - - - -

Interp

1d

2.6

7

1.25 - - - -

Convolution

based

CNN

Motio

n

1.6

5

1.07 0.02 0.03 0.03 0.00

Graph based Dense

TNT

1.5

5

1.03 0.02 0.02 0.02 0.00

Transformer

based

BETR 1.4

2

1.06 0.03 0.03 0.03 0.01

BETR-

Norm

1.5

2

1.00 0.01 0.01 0.01 0.00

BETR-

pad

1.3

9

0.95 0.02 0.02 0.02 0.00

BETR-

penalt

y

0.8

7

1.25 0.01 0.00 0.00 0.00

Table 2. Comparison of performance resource usage for
various encoder approaches.

Encoder Model Model Size

(MB)

CPU

Time(s)

GPU

Time(ms)

Traditional

techs

Poly-fit - 0.0003 0.344

Interp1d - 0.0002 0.248

Convolution

based

CNN

Motion

158.42 0.146 1.515

77

Graph based DenseTNT 0.7156 11.495 2.993

Transformer

based

BETR 0.6061 0.8001 0.208

BETR-

Norm

0.6061 0.7989 0.208

BETR-pad 0.6147 2.0186 0.525

BETR-

penalty

0.6061 0.8001 0.208

These findings underscore the efficacy and robustness

of BETR in motion forecasting tasks, highlighting its
potential for real-world applications in the self-driving
domain. When evaluating model complexity and
inference time, prioritizing these metrics becomes
essential to facilitate efficient deployment on lightweight
microcontrollers and support real-time applications. The
data presented in Table 2 underscores the suitability of
BETR for such deployments, particularly in contexts like
self-driving cars, where speed and efficiency are
paramount.

4.3 Ablation Study

Transformer-Based Local Encoder. As shown in
Figure 3, Transformers are utilized to capture spatial
relationships, temporal dependencies, and interactions
between agents and map elements. Our architecture
adopts a hierarchical approach, enabling the learning of
both local and global representations. This hierarchical
strategy proves beneficial for the model, as it facilitates
the acquisition of multiscale features while maintaining
efficiency.

Figure 3: A comparison between different models in this
scenario. Black Solid line represents Ground Truth for this

scenario, Red Solid Line represents Past trajectory input to the
model, CNN Motion [1] model (Blue dotted line), based on

CNN feature extractor, could not extract much information
about road lane lines, thereby failing to accurately understand

correct behavior of the agent.

It appears that using transformers, the model can better
capture all sources of information and choose the most
important set of input sources to make its decision.

Mixture Density Decoder. The decoder in our model

exhibits a multimodal prediction output, as illustrated in
Figure 2, where it generates multiple potential
trajectories and assigns a confidence score to each
trajectory.

Transformer Penalty. Figure 4 illustrates the evaluation
of regularization’s impact on the model’s attention
behavior and performance. Prior to integrating the
attention penalty, depicted in Figure 4(a), the model
predominantly focused on gathering information about
the agent while neglecting details about objects and
lanes. This limitation is evident in the global attention
map of Figure 4(a), where crucial information remains
uncaptured, leading to suboptimal decision-making.

Figure 4: Attention maps generated by each encoder and
the global attention map. (a) Before the integration of the

attention penalty. (b) After integrating the attention penalty
into the model.

However, upon integrating the attention penalty into our
model, depicted in Figure 4(b), significant improvements
are observed. The attention penalty encourages the
model to capture essential details about objects and
lanes, in addition to information about the agent. As a
result, our model demonstrates improved proficiency in
analyzing complex scenes and making well-informed
decisions.

5 CONCLUSION

The Behavior Encoder Transformer (BETR)
introduced in this paper represents an advancement in the
domain of predicting agent behavior. By harnessing the
power of transformer encoders, BETR excels in
capturing intricate patterns and dependencies within
agent trajectories, offering a robust solution for dynamic
scenario predictions. The model’s ability to efficiently
encode and learn representations of complex behaviors at
various scales contributes to its superior performance.
The empirical evaluation showcased the effectiveness of
BETR across diverse datasets, demonstrating its
adaptability and generalization capabilities. As we move
forward, the insights gained from BETR’s success pave
the way for further research in refining transformer-
based approaches for a broader range of applications in
autonomous systems.

78

REFERENCES

[1] S. Konev, K. Brodt, and A. Sanakoyeu, “Motioncnn:
A strong baseline for motion prediction in autonomous
driving,” arXiv preprint, 2022.

[2] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C.
Li, and C. Schmid, “Vectornet: Encoding HD maps and
agent dynamics from vectorized representation,”
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 11 525–11
533.

[3] J. Gu, C. Sun, and H. Zhao, “Densetnt: End-to-end
trajectory prediction from dense goal sets,” Proceedings
of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 15 303–15 312.

[4] S. Shi, L. Jiang, D. Dai, and B. Schiele, “Motion
transformer with global intention localization and local
movement refinement,” Advances in Neural Information
Processing Systems, vol. 35, 2022, pp. 6531–6543.

[5] J. Ngiam, B. Caine, V. Vasudevan, Z. Zhang, H.-T.
L. Chiang, J. Ling, R. Roelofs, A. Bewley, C. Liu, A.
Venugopal, and D. Weiss, “Scene transformer: A unified
architecture for predicting multiple agent trajectories,”
arXiv preprint, 2021.

[6] L. Zhang, P. Li, J. Chen, and S. Shen, “Trajectory
prediction with graph-based dual-scale context fusion,”
in 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, October
2022, pp. 11 374–11 381.

[7] B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh,
S. Khandelwal, B. Pan, R. Kumar, A. Hartnett, J. K.
Pontes, and D. Ramanan, “Argoverse 2: Next generation
datasets for self-driving perception and forecasting,”
arXiv preprint, 2023.

[8] S. Park, G. Lee, J. Seo, M. Bhat, M. Kang, J. Francis,
A. Jadhav, P. P. Liang, and L.-P. Morency, “Diverse and
admissible trajectory forecasting through multimodal
context understanding,” in Computer Vision–ECCV
2020, ser. Proceedings, Part XI, vol. 16. Springer
International Publishing, 2020, pp. 282–298.

[9] F. Marchetti, F. Becattini, L. Seidenari, and A. D.
Bimbo, “Mantra: Memory augmented networks for
multiple trajectory prediction,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 7143–7152.

[10] S. Casas, C. Gulino, R. Liao, and R. Urtasun,
“Spatially-aware graph neural networks for relational
behavior forecasting from sensor data,” arXiv preprint,
2019.

[11] N. Djuric, V. Radosavljevic, H. Cui, T. Nguyen, F.
Chou, T. Lin, N. Singh, and J. Schneider, “Uncertainty-
aware short-term motion prediction of traffic actors for
autonomous driving,” in Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision,
2020, pp. 2095–2104.

[12] Y. Zhang, J. Zhang, J. Zhang, J. Wang, K. Lu, and
J. Hong, “A novel learning framework for sampling-
based motion planning in autonomous driving,” in
Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 01, 2020, pp. 1202–1209.

[13] Y. Biktairov, M. Stebelev, I. Rudenko, O.
Shliazhko, and B. Yangel, “Prank: Motion prediction
based on ranking,” in Advances in Neural Information
Processing Systems, vol. 33, 2020, pp. 2553–2563.

[14] S. Casas, A. Sadat, and R. Urtasun, “Mp3: A unified
model to map, perceive, predict and plan,” in
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 14 403–14
412.

[15] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov,
“Multipath: Multiple probabilistic anchor trajectory
hypotheses for behavior prediction,” arXiv preprint,
2019.

[16] Q. Sun, X. Huang, J. Gu, B. Williams, and H. Zhao,
“M2i: From factored marginal trajectory prediction to
interactive prediction,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, 2022, pp. 6543–6552.

[17] B. Varadarajan, A. Hefny, A. Srivastava, K. Refaat,
N. Nayakanti, A. Cornman, K. Chen, B. Douillard, C.
Lam, D. Anguelov, and B. Sapp, “Multipath++: Efficient
information fusion and trajectory aggregation for
behavior prediction,” in 2022 International Conference
on Robotics and Automation (ICRA). IEEE, 2022, pp.
7814–7821.

[18] H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B.
Varadarajan, Y. Shen, C. Li, and C. Schmid, “TNT:
Target driven trajectory prediction,” in Conference on
Robot Learning. PMLR, 2021, pp. 895–904.

[19] W. Zeng, M. Liang, R. Liao, and R. Urtasun,
“Lanercnn: Distributed representations for graph-centric
motion forecasting,” arXiv preprint, 2021.

[20] C. Choi, A. Patil, and S. Malla, “Drogon: A causal
reasoning framework for future trajectory forecast,”
arXiv preprint, vol. 2, no. 3, p. 4, 2019.

[21] S. Albrecht, C. Brewitt, J. Wilhelm, B. Gyevnar, F.
Eiras, M. Dobre, and S. Ramamoorthy, “Interpretable
goal-based prediction and planning for autonomous
driving,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp.
1043–1049.

[22] H. Tran, V. Le, and T. Tran, “Goal-driven long-term
trajectory prediction,” in Proceedings of the IEEE/CVF

79

Winter Conference on Applications of Computer Vision,
2021, pp. 796–805.
[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L.
Jones, A. Gomez, Kaiser, and I. Polosukhin, “Attention
is all you need,” Advances in Neural Information
Processing Systems, vol. 30, 2017, pp. 5998–6008.

[24] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel,
“Gated graph sequence neural networks,” arXiv preprint,
2015.

[25] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S.
Pradhan, Y. Chai, B. Sapp, C. Qi, Y. Zhou, and Z. Yang,
“Large scale interactive motion forecasting for
autonomous driving: The waymo open motion dataset,”
in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 9710–9719.

