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ABSTRACT 
Anticipating the future behavior of road users stands as one of the most formidable 

challenges in the realm of autonomous driving. Achieving a comprehensive 
understanding of the dynamic driving environment requires an autonomous vehicle to 
accurately predict the motion of other traffic participants within the scene. As the 
complexity of motion prediction tasks increases, capturing intricate spatial relationships, 
temporal dependencies, and nuanced interactions between agents and map elements 
becomes crucial. Our proposed hierarchical architecture strategically incorporates 
transformers, effectively modeling both local and global representations to extract 
multiscale features. Leveraging the potency of transformers, BETR adeptly captures and 
encodes intricate patterns of agent interactions, spatial dependencies, and temporal 
dynamics. Demonstrating superior performance in predicting agent behavior compared 
to conventional methods, BETR proves its efficacy through extensive experiments. Its 
capacity to adapt to diverse scenarios establishes BETR as a robust and versatile 
solution for the intricate task of agent behavior prediction.  

Keywords: Transformers, Encoders, Motion Prediction, Vector Representations. 

 

1 INTRODUCTION 

Predicting the motion of agents, such as vehicles, 
pedestrians, and other entities in dynamic environments, 
holds paramount significance across various domains, 
ranging from autonomous driving to crowd management 
and robotics. The ability to forecast the future trajectories 
of agents facilitates proactive decision-making, enhances 
safety measures, and optimizes resource allocation in 
numerous real-world scenarios. 
 

To comprehend the driving environment effectively, 
an Autonomous Vehicle requires insight into the 
intentions and future trajectories of all dynamic agents. 
This capability empowers the Autonomous Vehicle to 
strategize its trajectory and navigate around obstacles, 
whether they are stationary (detectable through Object 
Detection algorithms) or in motion (predicted via Motion 
Prediction Algorithms). 
 

Therefore, to optimize performance, three primary 
factors merit consideration: 1) performance metrics, 2) 
memory usage, and 3) inference time. Addressing these 
aspects ensures sufficient performance while 
accommodating deployment on the constrained 
computational resources of Autonomous Vehicles. To 
effectively predict an agent’s target destination and attain 
optimal performance according to key metrics in this 
task, various methodologies have been employed. Some 
of these approaches involve predicting the agent’s final 
goal and subsequently determining the trajectory from its 
current position to each predicted destination. The 
primary objective of such approaches is to enhance 
accuracy and overall performance, often by leveraging 
advanced decoder networks to refine predictions. 
 

Recent advancements in motion prediction 
predominantly utilize either Convolutional Neural 
Networks (CNNs) [1] or Graph-based message passing 
techniques [2], [3], [4], [5], [6] to extract local 
information from different sources, However, CNN-
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based approaches face challenges in effectively learning 
kernels that can adequately cover all scenarios present in 
the dataset. Consequently, CNN models may struggle to 
generalize well across diverse scenarios. On the other 
hand, in graph-based algorithms, all features are typically 
accorded equal weight. This uniform treatment of 
features means that outliers and rapid maneuvers exert 
significant influence on the model’s decision-making 
process, rendering the model susceptible to overfitting 
due to its complexity. 
 

Despite significant advancements in trajectory 
prediction, existing methods have notable limitations. 
One key drawback is that none of these approaches 
employ a fully transformer-based architecture for 
predictions, which limits their ability to fully capture 
complex spatial-temporal dependencies and interactions 
in dynamic environments. Transformers have proven to 
be highly effective in various domains, yet their potential 
remains underexplored in trajectory prediction tasks. 
Additionally, current methods often fail to effectively 
utilize available information, such as detailed road 
layouts and data about adjacent objects. These elements 
are critical for understanding the driving context, yet 
conventional models either underutilize them or treat 
them in isolation, leading to suboptimal performance. 
Addressing these shortcomings is essential for improving 
prediction accuracy and robustness in autonomous 
systems. 

In our approach, we focus mainly on enhancing feature 
extraction of information used as input to our model. 
Instead of delving into complex decoding processes to 
attain precise trajectories, we concentrate on refining the 
feature extraction stage. We employ transformer- based 
encoders to better extract features as our data set 
comprises multiple sources of information. Each input 
scenario may require different sources for decision- 
making compared to others, leveraging transformer- 
based encoders provides our model with a significant 
advantage. It enables the model to learn how to prioritize 
the most important information sources and allocate 
greater attention to them. Additionally, it allows the 
model to disregard misleading information by assigning 
them lower attention weights. To accomplish this, we 
utilize self-attention mechanisms within the transformers 
to determine attention weights dynamically. 

 An illustrative diagram of our approach is shown in 
Figure 1. 

 
 

 
 

Figure 1: Overview of BETR 
To ensure a fair comparison, we standardized all other 

configurations, including the decoder architecture, where 
we employed a simple decoder design. Additionally, we 
utilized the same dataset, Argoverse2 [7], cost function, 
and all training configurations across different 
approaches. By adopting benchmark metrics, we 
facilitated a comprehensive comparison of the various 
methodologies. 

2 LITERATURE REVIEW 

In recent times, there has been significant research on 
motion prediction, driven by the increasing focus on 
autonomous driving. This prediction commonly relies on 
input data such as road maps and the historical state of 
agents. Scene representation methods in this context are 
generally classified into two categories: rasterized 
representation and vectorized representation. 
 

2.1 Rasterized Representation 

Rasterized encoding methods involve converting high-
definition map elements and agents into an image. Early 
works [8], [9], [10], [11], [12], [13], [14] utilized 
Convolutional Neural Networks (CNNs) to encode the 
image. However, these methods face limitations in 
capturing the structural information present in high-
definition maps. Multipath [15], employed CNNs to 
extract features from raster images, enabling the 
prediction of probabilities for K predefined anchor 
trajectories and the regression of offsets from the anchor 
states. 

2.2 Vectorized Representation 

Vectorization involves the conversion of data into 
numerical format represented by vectors. VectorNet [2] 
stands out as the first approach to directly integrate 
vectorized information for both lanes and agents. It has 
gained widespread adoption in recent research efforts 
[3], [16], [5], [17] due to its efficiency and scalability. In 
VectorNet, road maps and agent trajectories are 
represented as polylines. 

 
In the proposed work we utilized Goal-based 

Trajectory Prediction. This approach frames the 
prediction task as a planning problem by introducing the 
pedestrian’s goal as a latent variable.  In the TNT method 
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[18], anchors are first sampled from road maps, and 
trajectories are generated based on these anchors. 
Similarly, LaneRCNN [19] uses a decoding pipeline 
where lane segments serve as anchors. Each anchor is 
assigned a probability, and non-maximum suppression 
(NMS) is applied to remove duplicate goals in close 
proximity. DROGON [20], on the other hand, focuses on 
intentional destinations for individual agents. It 
introduces a trajectory prediction dataset to analyze goal-
oriented behavior and employs a conditional VAE 
framework to predict multiple plausible trajectories. 
Goal-based modeling has also been used in optimizing 
planning policies for autonomous driving [21] and 
predicting human trajectories [22]. Unlike these 
methods, BETR takes an anchor-free approach to goal-
based modeling, enabling it to be trained in an end-to-
end manner. 

3 THE PROPOSED BEHAVIOR ENCODER 

TRANSFORMER (BETR)  

The proposed BETR (Behavior Encoder Transformer) 
method is an end-to-end trajectory prediction approach 
utilizing transformer-based architecture to forecast the 
complete future trajectory of an agent. In this method, 
each future point is treated as an individual prediction 
task independent of other predicted time steps. We first 
use a vectorized representation [2] to represent our 
source of information in each scene. We use a 
transformer based local encoder to extract features from 
each source of information separately, then combine all 
vectors from different sources together into a global 
feature encoder. A simple decoder network takes the 
latent vector output of the global feature encoder and 
predicts the agent’s behavior. 

3.1   Sources of Information 

Preprocessing our data stands out as one of the pivotal 
steps in this task. The input data provided to the model 
during both training and evaluation is a critical indicator 
of the model’s performance. Our approach to 
preprocessing closely aligns with the methodology 
proposed by VectorNet [2]. Specifically, we categorize 
the information describing each scene into three primary 
sources: Agent-related information, Adjacent Objects-
related information, and Lane Lines-related information. 

Utilizing a vectorized representation, we segment all 
sources into vectors in the spatial domain for L lane lines 
and the temporal domain for A, O agent and adjacent 
objects data. 

 
The vectors for agent data are structured as follows: 

𝑎௜ = {𝑥𝑠, 𝑦𝑠, 𝑥𝑒, 𝑦𝑒, 𝑣𝑥, 𝑣𝑦, ℎ, 𝑐𝑑} 
where: 
• (xs, ys): Represents the initial (x, y) coordinates of 
vector i relative to the agent’s current position. 
• (xe, ye): Denotes the final (x, y) coordinates of vector is 
related to the agent’s current position. 

• (vx, vy): Signifies the average velocity in the x 
and y directions during the temporal interval of the 
vector. 
• h: Indicates the average heading (yaw angle) of the 
agent during the temporal interval of the vector. 
• cd: Represents the count of dynamic objects within 
a predefined threshold surrounding the agent. 
 
For object data, the vectors are represented as: 

𝑜௜ = {𝑥𝑠, 𝑦𝑠, 𝑥𝑒, 𝑦𝑒, 𝑡𝑠, 𝐷௔ , 𝜃௔, 𝑣𝑥, 𝑣𝑦, ℎ,object type} 
where: 
• ts: indicates timestamp of this vector. 
• Da: Represents the average distance from the agent 
during the vector interval. 
• θa : Signifies the average angle between the objects 
and the agent during the vector interval. 
• Object type: Specifies the type of object represented 
by the vector. 
 
Lastly, lane data is organized into vectors denoted by: 

𝑙௜ = {𝑥𝑠, 𝑦𝑠, 𝑧𝑠, 𝑥𝑒, 𝑦𝑒, 𝑧𝑒,Intersection, 𝜃ௗ ,type}  
where: 
• (xs, ys, zs): Depicts the starting (x, y, z) coordinates of 
vector i for this lane line relative to the agent’s current 
position. 
• (xe, ye, ze): Represents the ending (x, y, z) coordinates 
of vector i for this lane line relative to the agent’s current 
position. 
• I(Intersection): binary flag indicates whether the lane 
line of this vector is an intersection or not. 
• θd : Denotes the angle of the vector. 
• lanetype: Specifies the type of lane represented by the 
vector. 
 
This preprocessing stage ensures that the data is 
appropriately formatted and ready for input into the 
model. 

3.2 Local Feature Encoder 

After vectorizing our information sources, the vectors 
are processed by individual local encoders, each tailored 
to a specific source. These encoders are built upon the 
Transformer architecture, as outlined in [23], utilizing a 
self-attention mechanism to effectively encode local 
vectors. The model combines vectors of certain elements 
with varying weights, reflecting their importance to the 
scene. The importance of a vector in a scene is computed 
according to the projection of its features. We stack L 
layers of transformer blocks, allowing vectors to pass 
from one layer to another, thus enriching them with more 
information about other vectors. For agent vectors: 

𝛼௜௝   =  𝑎௜
௟   ⋅ 𝑊௤

௟   × ൫𝑎௝
௟   ⋅ 𝑊௞

௟൯
்

                            (1) 

𝑣௜
௟   =   ∑ 𝑎௜௝

ேೌ
௝ୀ଴   × 𝑎௝   ⋅ 𝑊௩

௟                              (2) 

𝑎௜
௟ାଵ  =  𝑣௜

௟   +  𝜋൫𝑣௜
௟൯                               (3) 
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Where 𝛼௜௝      is the attention weight between vector 𝑎௜ 
and vector 𝑎௝ ,  𝑊௤ ,  𝑊௞,  𝑊௩   are learnable parameters, and 
𝜋(. ) is a learnable Multi-Layer Perceptron (MLP) with 
two linear layers and a ReLU activation function 
between them: 

𝜋(. ) = (𝑊ଶ
௟)்   max ቀ0,  (𝑊ଵ

௟)்   ⋅ ൫𝑣௜
௟൯ቁ                (4) 

Here, 𝑎௜
ଵ,  𝑜௜

ଵ,  𝑙௜
ଵ  ∈ 𝑅ௗೌ   and 𝑎௜

௟ ,  𝑜௜
௟ ,  𝑙௜

௟   ∈ 𝑅ௗ೓   and 
𝑊௤ ,  𝑊௞ ,  𝑊௩   ∈ 𝑅ௗ೔ ×ௗ೓ . 

 
After propagation through L layers, we obtain three 
matrices of vectors corresponding to agents, objects, and 
lanes, each offering an enhanced representation of the 
input scene. 

3.3 Global Vectors Interaction 

Using vector matrices outlined above, we construct a 
fully connected graph where each vector corresponds to 
a node within the graph, as illustrated in Figure 1. In this 
graph, every node is interconnected with all others. 
Subsequently, we feed this graph into a Graph Neural 
Network (GNN) to encode global features encompassing 
all sources of information. We employ the global soft 
attention technique introduced in [24], where a Global 
Attentional Graph Neural Network dynamically allocates 
attention across each node. The attention weights are 
based on latent vectors representing individual elements 
within the graph: 

𝑟௜ = ∑ ቀℎgate(𝑥௡)ቁ
ே೔softmax
௡ୀଵ ⋅ ℎఏ(𝑥௡)             (5) 

Where ℎ௚௔௧௘  :  𝑅ி   → 𝑅 and ℎఏ denote MLPs. 

The GNN generates a final latent vector, denoted as ℎ௜  ∈
𝑅ௗ, which encapsulates all scene information. This 
vector serves as a comprehensive representation from 
which all features relevant to trajectory prediction within 
the scene are extracted. 

3.4 Mixture Density Decoder 

Our task is to predict the joint probability distribution 
for a scene 𝑝( 𝑥଴, 𝑥ଵ, … , 𝑥்ିଵ, 𝑦଴, 𝑦ଵ, … , 𝑦்ିଵ ∣∣ 𝐴, 𝑂, 𝐿 ) 
as illustrated in Figure 2, where T is the number of future 
frames to predict. Instead of predicting a Gaussian 
probability distribution for each coordinate and time step 
pair, we predict Mixture Gaussian Components with 
Identity variance and with multiple confidences for each 
mean. Each 𝜇௞    represents a single pair ( 𝑥  ∣∣ 𝑦 )௧ in 
trajectory k. Our goal is to predict K different trajectories 
with 𝐶  ∈ 𝑅௄  confidence for each trajectory. This 
approach allows for a more flexible representation of 
uncertainty in the predicted trajectories. 
 

Figure 2: Sample output distribution where the model 
predicts multiple trajectories, each consisting of multivariate 
Gaussian distributions. Model Predicts K Trajectories (e.g. 6 
trajectories as illustrated in figure), for each trajectory there 
are T time steps represented by P(x, y) Gaussian distribution. 

3.5 Loss Function 

In our experiments, we investigated the impact of two 
approaches to improving model performance. Initially, 
across all experiments, we trained our model using the 
negative log likelihood loss function. To enhance our 
model’s effectiveness further, we introduced a 
regularization strategy in the BETR-Attn penalty 
experiment. 

This involved incorporating an attention penalty 
during training to regulate the attention mechanism. 

1) Negative Log Likelihood: To evaluate the 
effectiveness of our predictions, we propose a cost 
function l based on the negative likelihood of the output 
probability distribution. This cost function serves as a 
measure of how well our model’s predictions align with 
the observed data, with lower values indicating better 
performance: 
𝑙ఏ = − log൫𝑝( 𝑥0,   … , 𝑦்ିଵ ∣∣ 𝐴, 𝑂, 𝐿; 𝜃 )൯  (6) 
 

𝑙ఏ =   − log ൭෍ 𝑒
ቀ୪୭୥(௖ೖ)ି

ଵ
ଶ

∑ ൫௫೒೟,೟ି௫ೖ,೟൯
మ೅

೟సభ ି൫௬೒೟,೟ି௬ೖ,೟൯
మ

ቁ

௄

௞ୀଵ

൱  (7) 

  
2) Attention Penalty: Our model primarily focused on the 
agent and often neglected critical information about lanes 
and objects in the scene. This limitation hindered the 
model’s ability to comprehensively understand the 
environment and make informed decisions. To address 
this issue, we introduced the attention penalty to enforce 
the model to focus across all relevant information within 
the scene. The penalty aimed to enhance the model’s 
capacity to capture essential details during training. This 
regularization technique was instrumental in 
discouraging overly diffuse or unfocused attention 
patterns, ultimately leading to improved performance. 
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Through this enhancement, our model became more 
adept at processing complex scenes and making 
informed decisions based on a comprehensive 
understanding of its surroundings. 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝜆
ଵ

ே
∑ (𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛௜ − 𝑡 arg 𝑒 𝑡௜)

ଶே
௜ୀଵ  (8) 

Where:  

 𝑡 arg 𝑒 𝑡௜ =
ଵ

ௌ௘௤௅௘௡
 

 𝐿௧௢௧௔௟ = 𝐿௡௟௟ + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 
 

3.6 Handling Variable Number of Objects 

In the proposal discussed, a challenge arose from the 
variable number of adjacent objects and lane lines 
present in each scene. Consequently, each local encoder 
has to handle variable batch sizes during forward and 
backward propagation for each scene. To mitigate this 
issue, we endeavored to maintain a constant number of 
objects and lanes in each scene. This adjustment aimed 
to enable the utilization of transformers in local encoders 
without instability arising from the variable input size 
across scenes. 

1) Padding Objects and Lanes: To ensure efficient 
utilization of transformers, we opted to pad the objects 
and lanes in all scenes to a fixed number. This approach 
allows for consistent processing across scenes. When 
padding objects and lanes, it is advisable to incorporate 
redundant or less crucial elements. This strategy 
encourages transformers to allocate less attention or 
disregard these padded elements during the decision-
making process. 

 
Padded Objects vectors: We chose to pad objects with 
distant stationary objects from the remote past, thus 
defining: 
 𝑥𝑠, 𝑦𝑠, 𝑥𝑒, 𝑦𝑒 = (∞, ∞, ∞, ∞)  
 𝑇𝑠 = −∞ 
 𝐷𝑎, 𝜃௔ = (∞, 0) 
 𝑣𝑥, 𝑣𝑦 = (0,0) 
 Object type = 0 

𝑜𝑖 = [∞, ∞, ∞, ∞, −∞, ∞, 0.0,0.0,0.0,0.0,0.0] 
 
We chose to pad lanes with distant lanes, thus 

defining: 
  𝑥𝑠, 𝑦𝑠, 𝑧𝑠, 𝑥𝑒, 𝑦𝑒, 𝑧𝑒 = (∞, ∞, ∞, ∞, ∞, ∞) 
 𝐼(Intersection), 𝜃ௗ = (0,0) 
 𝐷𝑎, 𝜃௔ = (∞, 0) 
 𝑣𝑥, 𝑣𝑦 = (0,0) 
 Lane type = 0 

𝑙௜ = [∞, ∞, ∞, ∞, ∞, ∞, 0,0.0,0] 
 
2) Averaging Objects and Lane: Another approach 

utilized involves aggregating all object vectors and lane 
vectors into two distinct groups. This aggregation 
simplifies the representation of objects and lanes, 
enhancing computational efficiency and reducing 
complexity. 

4 EXPERIMENTS 

4.1 Experimental Setup 

Dataset. BETR is trained on Argoverse2 [7]. The motion 
forecasting dataset is a curated collection comprising 
three datasets tailored for perception and forecasting 
research within the self-driving domain. Among these 
datasets, the annotated Sensor Dataset stands out. This 
comprehensive dataset encompasses high-resolution 
imagery captured by seven ring cameras and two stereo 
cameras, in addition to LIDAR point clouds and 6-DOF 
map-aligned pose information. Each sequence within the 
dataset is annotated with 3D cuboid annotations for 26 
object categories, ensuring thorough sampling to 
facilitate the training and evaluation of 3D perception 
models. The dataset comprises a total of 303,039 real-
world driving scenarios, which have been divided into 
distinct training, validation, and test sets. Specifically, 
the training set consists of 199,908 scenarios, while the 
validation set comprises 24,988 scenarios. Additionally, 
the test set contains 78,143 scenarios, ensuring a 
comprehensive and balanced distribution across the 
dataset subsets for robust evaluation and training 
purposes. In both the training and validation sets, all 
scenarios are represented as 11-second sequences 
sampled at 10 Hz. Each sequence is divided into two 
segments: the first 6 seconds consist of past tracking 
data, while the subsequent 5-second segment contains 
ground truth information. However, it’s important to 
note that only the first 6-second trajectories are publicly 
available in the test set, implying that the ground truth 
information for the final 5 seconds is not included in the 
test set. 
 
Training details. In our training process, which spanned 
over 10 days, we trained the model for 100 epochs 
utilizing a single NVIDIA RTX A4000 GPU. We 
employed a learning rate of 0.001 and implemented a 
cosine learning rate scheduler. It’s important to note that 
we did not utilize any data augmentation techniques 
during the training phase. 
 
BETR Implementation. We began by offline 
transforming the Argoverse2 raw dataset into an 
intermediate format, which consists of matrices of 
vectors representing each source of information. These 
transformed data were stored for subsequent use. 
 
During forward propagation, the data are loaded for each 
source separately and encoded using Transformer-based 
Local Encoders. Specifically, agent data per batch is 
represented by a matrix 𝐴  ∈ 𝑅௕௦ ×ହ଴ ×଼, adjacent objects 

are represented by a matrix 𝑂  ∈ 𝑅∑ ௢ೀ
೚సభ  ×଺଴ ×ଵଵ, and road 

lane lines are represented by a matrix 𝐿  ∈ 𝑅∑ ௟ಿಽ
೗సభ  ×଺଴ ×ଽ. 

After each Local Encoder layer block, each block of 
Agent Encoder, Object Encoder, Lane Encoder produces 
matrices𝐴መ  ∈ 𝑅௕௦ ×ଵ଺, 𝑂෠  ∈ 𝑅௕௦ ×ே௢ ×ଵ଺, 𝐿෠  ∈ 𝑅௕௦ ×ே௟ ×ଵ଺ 
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where for training bs=64 and for evaluation bs=128 
respectively. Subsequently, the Global Feature Encoder 
(Global Vectors Interaction Layer) combines these three 
matrices into a number of fully connected graphs, one for 
each scene. Each graph is represented by a data matrix  
𝐷  ∈ 𝑅(ଵାே೚ ା ே೗)×ଵ଺ and an adjacency matrix 
representing all edges between all nodes in the graph. 
These graphs are then passed through an Attentional 
Graph Neural Network to generate a latent vector that 
holds features for the global scene 𝐻  ∈ 𝑅଺ସ෣ . We 
implemented a simple decoder consisting of three Multi-
Layer Perceptrons (MLPs) to decode the latent vector 
extracted by the Encoder Network. The decoder outputs 
K=6 trajectories represented by two vectors: a 
Confidence Vector and a predicted Trajectory vector 
𝑦ො  ∈ 𝑅଺ ×ହ଴ ×ଶ 
 
For parameter optimization, we utilized the Negative 
Likelihood cost function. This function aids in 
optimizing the parameters of the model during training, 
ensuring effective learning and prediction performance. 
 
Other models implementation. We introduced certain 
modifications to ensure comparability with our approach. 
These modifications were aimed at maintaining 
consistency across all models’ components, while 
varying only the encoder architecture. 
 
DenseTNT: In the case of Dense TNT, we adjusted by 
replacing its complex decoder with our standard decoder, 
consisting of three multi-layer Perceptrons. Furthermore, 
we replaced the loss function utilized in DenseTNT with 
the negative log likelihood loss function to align it with 
our approach. 
 
Metrics. In our evaluation process, we adopt metrics 
proposed by the Waymo Open Motion Dataset [25]. 
Specifically, we utilize the following metrics to assess 
the performance of our model: 
 
1) Minimum Final Displacement Error (minFDE):  
This metric measures the minimum Euclidean distance 
between the predicted final position and the ground truth 
final position of the agent. 
 
2) Minimum Average Displacement Error (minADE): 
This metric calculates the minimum average Euclidean 
distance between the predicted trajectory and the ground 
truth trajectory over a specified time horizon. 
 
3) Miss Rate (MR): The Miss Rate quantifies the 
proportion of predictions that fail to capture the ground 
truth trajectory within a certain threshold. Given that 
each prediction consists of 50 (x, y) pairs, we calculate 
the Miss Rate at different time frames, denoted as 
MR@{10, 30, 50}. 
 

These metrics provide comprehensive insights into the 
accuracy and reliability of our predictions across various 
aspects of motion forecasting, enabling thorough 
evaluation and comparison with benchmark datasets. 

4.2 Main Results 

We conducted an evaluation of our approach on the 
Argoverse validation set and presented the results in 
Table 1. It is evident that BETR outperforms all other 
models, which are built on the same encoder and other 
configurations, across most proposed metrics with a 
remarkable margin. Even when compared to models with 
more sophisticated decoders and more complex 
architectures, our approach demonstrates competitive 
performance and achieves state-of-the-art results. 

Table 1. Comparison of performance metrics usage 
for various encoder approaches. 

Encoder Mode

l 

min 

FDE 

avgA

DE 

avg 

MR 

MR 

@10 

MR 

@30 

MR 

@50 

Traditional 

Techs 

Poly-

fit 

4.5

5 

2.78 - - - - 

Interp 

1d 

2.6

7 

1.25 - - - - 

Convolution 

based 

CNN 

Motio

n 

1.6

5 

1.07 0.02 0.03 0.03 0.00 

Graph based Dense 

TNT 

1.5

5 

1.03 0.02 0.02 0.02 0.00 

Transformer 

based 

BETR 1.4

2 

1.06 0.03 0.03 0.03 0.01 

BETR-

Norm 

1.5

2 

1.00 0.01 0.01 0.01 0.00 

BETR-

pad 

1.3

9 

0.95 0.02 0.02 0.02 0.00 

BETR-

penalt

y 

0.8

7 

1.25 0.01 0.00 0.00 0.00 

 

 

 

Table 2. Comparison of performance resource usage for 
various encoder approaches. 

Encoder Model Model Size 

(MB) 

CPU 

Time(s) 

GPU 

Time(ms) 

Traditional  

techs 

 

Poly-fit - 0.0003 0.344 

Interp1d - 0.0002 0.248 

Convolution  

based 

CNN 

Motion 

158.42 0.146 1.515 
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Graph based DenseTNT 0.7156 11.495 2.993 

Transformer  

based 

BETR 0.6061 0.8001 0.208 

BETR-

Norm 

0.6061 0.7989 0.208 

BETR-pad 0.6147 2.0186 0.525 

BETR-

penalty 

0.6061 0.8001 0.208 

 
These findings underscore the efficacy and robustness 

of BETR in motion forecasting tasks, highlighting its 
potential for real-world applications in the self-driving 
domain. When evaluating model complexity and 
inference time, prioritizing these metrics becomes 
essential to facilitate efficient deployment on lightweight 
microcontrollers and support real-time applications. The 
data presented in Table 2 underscores the suitability of 
BETR for such deployments, particularly in contexts like 
self-driving cars, where speed and efficiency are 
paramount. 

4.3 Ablation Study 

Transformer-Based Local Encoder. As shown in 
Figure 3, Transformers are utilized to capture spatial 
relationships, temporal dependencies, and interactions 
between agents and map elements. Our architecture 
adopts a hierarchical approach, enabling the learning of 
both local and global representations. This hierarchical 
strategy proves beneficial for the model, as it facilitates 
the acquisition of multiscale features while maintaining 
efficiency. 
 

 
 
 

Figure 3: A comparison between different models in this 
scenario. Black Solid line represents Ground Truth for this 

scenario, Red Solid Line represents Past trajectory input to the 
model, CNN Motion [1] model (Blue dotted line), based on 

CNN feature extractor, could not extract much information 
about road lane lines, thereby failing to accurately understand 

correct behavior of the agent. 
 
It appears that using transformers, the model can better 
capture all sources of information and choose the most 
important set of input sources to make its decision. 

 
Mixture Density Decoder. The decoder in our model 

exhibits a multimodal prediction output, as illustrated in 
Figure 2, where it generates multiple potential 
trajectories and assigns a confidence score to each 
trajectory. 
 
Transformer Penalty. Figure 4 illustrates the evaluation 
of regularization’s impact on the model’s attention 
behavior and performance. Prior to integrating the 
attention penalty, depicted in Figure 4(a), the model 
predominantly focused on gathering information about 
the agent while neglecting details about objects and 
lanes. This limitation is evident in the global attention 
map of Figure 4(a), where crucial information remains 
uncaptured, leading to suboptimal decision-making. 
 
 
 

Figure 4: Attention maps generated by each encoder and 
the global attention map. (a) Before the integration of the 

attention penalty. (b) After integrating the attention penalty 
into the model. 

 
 
However, upon integrating the attention penalty into our 
model, depicted in Figure 4(b), significant improvements 
are observed. The attention penalty encourages the 
model to capture essential details about objects and 
lanes, in addition to information about the agent. As a 
result, our model demonstrates improved proficiency in 
analyzing complex scenes and making well-informed 
decisions. 
 

5 CONCLUSION 

The Behavior Encoder Transformer (BETR) 
introduced in this paper represents an advancement in the 
domain of predicting agent behavior. By harnessing the 
power of transformer encoders, BETR excels in 
capturing intricate patterns and dependencies within 
agent trajectories, offering a robust solution for dynamic 
scenario predictions. The model’s ability to efficiently 
encode and learn representations of complex behaviors at 
various scales contributes to its superior performance. 
The empirical evaluation showcased the effectiveness of 
BETR across diverse datasets, demonstrating its 
adaptability and generalization capabilities. As we move 
forward, the insights gained from BETR’s success pave 
the way for further research in refining transformer-
based approaches for a broader range of applications in 
autonomous systems. 
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