التلألؤ البيولوجي ودوره في الإضاءة للبيئة الداخلية للمنتجعات السياحية Probiotics and their role in the future of interior architecture م.د/ هدير سيد محمد اسماعيل مدرس بالمعهد العالى للفنون التطبيقية 6 أكتوبر

مدرس بالمعهد العالي العلول التطبيعية 6 المتوبر Dr. Hadeer Sayed Mohamed Mohamed Ismail

Lecturer at Department of Decoration and Interior Architecture At The Higher Institute of Applied Arts in The City of October 6th

Hadeer.sayed@appliedarts.edu.eg

ملخص البحث

يلعب التلألؤ البيولوجي دوراً هاماً في الإضاءة الداخلية للمنتجعات السياحية هو اتجاه مبتكر يمكن أن يعزز من التجربة البيئية ويجعلها أكثر استدامة. من خلال توفير إضاءة طبيعية وساحرة، يمكن للمنتجعات خلق بيئة مريحة وجذابة للزوار، بالإضافة إلى رفع الوعي البيئي وتعزيز التنوع البيولوجي.

التلألؤ البيولوجي هو ظاهرة تنبعث فيها الإضاءة من الكائنات الحية نتيجة تفاعلات كيميائية طبيعية، حيث ينتج الضوء عن طريق تفاعل كيميائي داخل الجسم الحي يُعرف بالتفاعل الكيميائي التلألئي. يظهر هذا التلألؤ في بعض الكائنات مثل اليراعات، وبعض أنواع الأسماك، والكائنات البحرية، والطحالب، والفطريات. يمكن استغلال هذه الظاهرة بشكل مبتكر لتطوير حلول إضاءة بيئية داخل المنتجعات السياحية، مما يساهم في تحسين الأجواء الداخلية بشكل فريد ومستدام.

وتكمن مشكله البحث في كيفية الاستفاده من التلألؤ البيولوجي في الاضاءه الداخليه لبيئه المنتجعات السياحيه. بما أن هذه الظاهرة لا تعتمد على الكهرباء أو مصادر طاقة خارجية، فإنها تساهم في تقليل استهلاك الطاقة وحماية البيئة. كما أنه يضيف لمسة من السحر والجمال للمساحات الداخلية للمنتجع على الرغم من الفوائد الكبيرة للتلألؤ البيولوجي، إلا أن هناك بعض التحديات مثل صعوبة توفير كميات كبيرة من الكائنات المتلألئة بشكل مستدام أو الحفاظ عليها في بيئات معينة. بالإضافة إلى ذلك، قد تكون هذه التقنية أكثر تكلفة من الحلول التقليدية في البداية وبفضل تقدم العلوم والتكنولوجيا في السنوات الأخيرة، تم اكتشاف تقنيات ومواد جديدة يمكن للمعماريين والمصممين الداخليين استخدامها في التصميم والهندسة المعمارية، مع الحفاظ على البيئة.

وهدف البحث هو الوصول الي فكر مستقبلي يهدف الي الاستفاده من ظاهره التلألؤ البيولوجي في وحدات اضاءه تخدم البيئه الداخليه للمنتجعات السياحيه ، من هنا جاءت فكرة استخدامها لتوفير مصادر إضاءة متنوعة باستخدام هذا النوع من البكتيريا، بهدف تحقيق الاستدامة من خلال استخدام موارد بيئية مثل البكتيريا المضيئة، ما يساهم في تقليل استهلاك الطاقة الكهربائية وتقليل التلوث، عن طريق تقليص انبعاثات ثاني أكسيد الكربون الناتجة عن منبهات الإضاءة التقليدية. يعتبر غاز ثاني أكسيد الكربون هو السبب الرئيسي لظاهرة الاحتباس الحراري، لذا يقتضي بدافع المحافظة على البيئة الاستفادة من هذه الكائنات الموجودة من حولنا لتابية احتياجاتنا.

يستعرض هذا البحث آفاق استخدام البكتيريا المضيئة كمصدر إضاءة مبتكر في التصميم الداخلي، مع التركيز على استكشاف ظاهرة التلألؤ البيولوجي التي تنجم عن التفاعلات الكيميائية داخل هذه البكتيريا .تنتج هذه التفاعلات ألوانًا أساسية مثل الأزرق والأخضر، والتي ترجع إلى الترتيب الفريد لجزيئات المركبات داخل البكتيريا .يسعى العلماء حاليًا إلى استغلال إمكانيات الكائنات الحية القادرة على الإضاءة كبديل مستدام للمصابيح التقليدية التي تستهلك الطاقة الكهربائية .ومع ذلك، تواجه هذه التقنية بعض التحديات، أبرزها قصر عمر الكائنات الدقيقة التي قد لا تستمر لأكثر من يومين أو ثلاثة نتيجة

Doi: 10.21608/mjaf.2025.389206.3728

مجلة العمارة والفنون والعلوم الإنسانية - المجلد العاشر - عدد خاص (14) المؤتمر الدولي الأول - (الذكاء الاصطناعي والتنمية المستدامة)

نقص المغذيات أو النمو المفرط في بيئتها لذا يعمل الباحثون على تطوير تقنيات وتجارب تهدف إلى إطالة عمر هذه المصابيح الحيوية من خلال تحسين التغذية المناسبة للبكتيريا وتمديد فترة استخدامها وقد أحرز بعض العلماء تقدمًا ملحوظًا في هذا المجال، حيث نجحوا في تمديد فترة الإضاءة لتصل إلى عام كامل باستخدام بكتيريا معدلة وراثيًا ومع ذلك، تظل الطموحات مفتوحة لتحقيق إنجازات أكبر في تحسين هذه التقنية وجعلها أكثر كفاءة واعتمادية.

الكلمات المفتاحية:

التلألؤ البيولوجي ، الاستدامة ، المنتجعات السياحية ، التصميم المستدام ، كفاءة الطاقة المتجددة في التصميم.

Abstract

Bioluminescence in indoor lighting at tourist resorts is an innovative trend that can enhance the environmental experience and make them more sustainable. By providing natural, enchanting lighting, resorts can create a relaxing and attractive environment for visitors, while also raising environmental awareness and promoting biodiversity.

Bioluminescence is a phenomenon in which light is emitted by living organisms as a result of natural chemical reactions. Light is produced by a chemical reaction within the living body known as chemiluminescence.

This luminescence is found in organisms such as fireflies, certain fish species, marine organisms, algae, and fungi. This phenomenon can be innovatively exploited to develop ecofriendly lighting solutions within resorts, contributing to a unique and sustainable enhancement of the indoor atmosphere.

The research problem lies in how to utilize bioluminescence in indoor lighting for tourist resorts. Since this phenomenon does not rely on electricity or external energy sources, it contributes to reducing energy consumption and protecting the environment. It also adds a touch of magic and beauty to resort interiors.

Despite the significant benefits of bioluminescence, there are some challenges, such as the difficulty of sustainably sourcing large quantities of bioluminescent organisms or maintaining them in specific environments. Additionally, this technology may initially be more expensive than traditional solutions.

Thanks to advances in science and technology in recent years, new techniques and materials have been discovered that architects and interior designers can use in design and architecture, while preserving the environment. For example, luminescent bacteria can be used as an environmentally friendly light source for interior spaces, as an integral part of the exterior design of buildings, and as traffic signals, providing lighting in areas lacking electrical wiring, such as gardens, parks, resorts, isolated tourist areas, and museums.

The aim of the research is to arrive at a future idea that aims to benefit from the phenomenon of bioluminescence in lighting units that serve the internal environment of tourist resorts. Hence, the idea of using it to provide diverse lighting sources using this type of bacteria came about, with the aim of achieving sustainability through the use of environmental resources such as luminous bacteria, which contributes to reducing electricity consumption and reducing pollution By reducing carbon dioxide emissions from traditional light bulbs. Carbon dioxide is the primary cause of global warming, so to protect the environment, we must harness these living things to meet our needs. This research examines the future of interior lighting using

مجلة العمارة والفنون والعلوم الإنسانية - المجلد العاشر - عدد خاص (14) المؤتمر الدولي الأول - (الذكاء الاصطناعي والتنمية المستدامة)

bioluminescent bacteria, providing insights into the phenomenon of bioluminescence, which results from chemical reactions within these bacteria, producing the primary colors blue and green, as a result of the arrangement of the bacteria's internal molecules.

Scientists are currently considering using organisms capable of luminescence to provide energy-efficient lighting as an alternative to conventional light bulbs. However, these microorganisms face some challenges, as their lifespan may be limited to two or three days due to depletion of nutrients or excessive growth in their container.

Scientists are striving to conduct new experiments and discoveries to develop longer-lasting bioluminescent lamps and provide appropriate feeding methods for luminescent bacteria to benefit from them for as long as possible. Some researchers have managed to make the lamps glow for a year using genetically modified bacteria, but scientists are hopeful for more success.

Keywords:

Bioluminescence, Sustainability, Resorts, Sustainable Design, Renewable Energy Efficiency in Design.

مشكله البحث

تكمن مشكله البحث في كيفية الاستفاده من التلألؤ البيولوجي في الاضاءه الداخليه لبيئه المنتجعات السياحيه. صعوبة توفير كميات كبيرة من الكائنات المتلألئة بشكل مستدام أو الحفاظ عليها في بيئات معينة. بالإضافة إلى ذلك، قد تكون هذه التقنية أكثر تكلفة من الحلول التقليدية في البداية.

هدف البحث

يهدف البحث للوصول الي فكر مستقبلي للاستفاده من ظاهره التلألؤ البيولوجي والتعرف علي مصادر متجددة أكثر استدامة وصديقة للبيئة في وحدات اضاءه تخدم البيئه الداخليه للمنتجعات السياحيه.

أهميه البحث

ان استخدام البكتيريا الحيوية المضيئة في الإضاءة أمراً يساهم في تقليل معدل استهلاك غازات الاحتباس الحراري و الحفاظ على طبقة الأوزون.

إلقاء الضوء على الإضاءة الحيوية في بيئة المنتجعات السياحية مما يساهم في تحسين الأجواء الداخلية بشكل فريد ومستدام.

منهجية البحث

يعتمد البحث على:

المنهج الاستقرائي من خلال جمع وتحليل البيانات.

منهج التحليل الوصفي للاستفادة من البكتريا الحيوية المضيئة لخلق بديل للإضاءة التقليدية في وحدات الإضاءة .

مقدمه

تجدر الاشاره الي أن التلألؤ الحيوي، هو ظاهرة تُنتج فيها الكائنات الحية الضوء من خلال تفاعل كيميائي، فضول العلماء والناس على حد سواء. يُلاحظ التلألؤ الحيوي بشكل رئيسي في الكائنات البحرية، مثل أنواع معينة من الأسماك وقناديل البحر والكائنات الدقيقة، عندما ينبعث الضوء نتيجة تفاعل كيميائي حيوي يتضمن جزيئًا باعثًا للضوء وإنزيمًا. وقد وجدت هذه الظاهرة الطبيعية مؤخرًا تطبيقات جديدة تتجاوز أصولها البيولوجية، لا سيما في مجالات التصميم الداخلي وهندسة المناظر الطبيعية والتخطيط الحضري. ويُمثل دمج النباتات والحيوانات ذات التلألؤ الحيوي في التركيبات الصناعية اتجاهًا متناميًا يدمج التلألؤ الطبيعي مع الجماليات المعمارية. ولا يُسلط هذا التحول الضوء على إمكانات حلول الإضاءة المستدامة فحسب، بل يفتح أيضًا أفاقًا جديدة لاستكشاف الترابط بين الظواهر العضوية ومساحات التصميم التي تُركز على الإنسان!.

تعريف البكتيريا الحيوية

البكتيريا المضيئة حيوياً هي بكتيريا منتجة للضوء، وتتواجد بكثرة في مياه البحر، والرواسب البحرية، وعلى أسطح الأسماك المتحللة، وفي أمعاء الحيوانات البحرية. ورغم أنها ليست شائعة، إلا أن التلألؤ الحيوي البكتيري موجود أيضاً في بكتيريا المياه العذبة والأرضية. قد تعيش هذه البكتيريا بحرية (مثل ضمة هارفي) أو تتعايش مع حيوانات مثل حبار هاواي قصير الذيل (Aliivibrio fischeri) أو الديدان الخيطية الأرضية . (Photorhabdus luminescens) توفر الكائنات المضيفة الخيل لهذه البكتيريا (توضيح مطلوب) مسكناً آمناً وتغذية كافية. في المقابل، تستخدم الكائنات المضيفة الضوء الذي تنتجه البكتيريا للتمويه، أو لجذب الفرائس، أو للتزاوج. وقد طورت البكتيريا المضيئة حيوياً علاقات تكافلية مع كائنات أخرى يستفيد فيها كلا الطرفين من بعضهما البعض على قدم المساواة. وتستخدم البكتيريا أيضًا تفاعل التلألؤ لاستشعار النصاب، وهي القدرة على تنظيم التعبير الجيني استجابة لكثافة الخلايا البكتيرية².

صورة (1) توضح شكل البكتيريا الحيويه تحت المنظار

من بين جميع باعثات الضوء في المحيط، تُعد البكتيريا المضيئة حيويًا الأكثر وفرة وتنوعًا. ومع ذلك، فإن توزيع البكتيريا المضيئة حيويًا غير متساو، مما يشير إلى تكيفات تطورية. الأنواع البكتيرية في الأجناس الأرضية مثل Vibrio و هي بكتيريا مضيئة حيويًا. من ناحية أخرى، فإن الأجناس البحرية التي تحتوي على أنواع مضيئة حيويًا مثل Shewanella oneidensis لديها أنواع مختلفة وثيقة الصلة ليست باعثة للضوء.

ومع ذلك، تشترك جميع البكتيريا المضيئة حيويًا في تسلسل جيني مشترك: الأكسدة الأنزيمية للألدهيد وأحادي نيوكليوتيد الفلافين المختزل بواسطة لوسيفيراز الموجودين في أوبيرون لوكس. 3 تحتوي البكتيريا من بيئات بيئية مختلفة على هذا التسلسل الجيني؛ وبالتالي، فإن تسلسل الجينات المتطابق يشير بوضوح إلى أن بكتيريا المضيئة حيويًا ناتجة عن تكيفات تطورية.

تختلف الكيمياء المنتجة للضوء وراء التلألؤ الحيوي عبر سلالات الكائنات الحية المضيئة حيويًا. بناءً على هذه الملاحظة، يُعتقد أن التلألؤ الحيوي قد تطور بشكل مستقل 40 مرة على الأقل. في البكتيريا المضيئة حيويًا، أدى إعادة تصنيف أعضاء مجموعة أنواع Vibrio fischeri كجنس جديد، Aliivibrio، إلى زيادة الاهتمام بالأصول التطورية للتلألؤ الحيوي. بين البكتيريا، يكون توزيع الأنواع المضيئة حيويًا متعدد السلالات.

على سبيل المثال، في حين أن جميع الأنواع في الجنس الأرضي Photorhabdus مضيئة، فإن أجناس Photobacterium و Shewanella و Vibrio تحتوي على أنواع مضيئة وغير مضيئة. على الرغم من أن التلألؤ الحيوي في البكتيريا لا يشترك في أصل مشترك، إلا أنها جميعًا تشترك في تسلسل جيني مشترك. يشير ظهور أوبرون لوكس عالي الحفظ في البكتيريا من بيئات بيئية مختلفة تمامًا إلى ميزة انتقائية قوية على الرغم من التكاليف الطاقية العالية لإنتاج الضوء. يُعتقد أن إصلاح الحمض النووي هو الميزة الانتقائية الأولية لإنتاج الضوء في البكتيريا.

وبالتالي، ربما فقد أوبرون لوكس في البكتيريا التي طورت أنظمة إصلاح حمض نووي أكثر كفاءة، ولكنه احتفظ به في تلك التي أصبح فيها الضوء المرئي ميزة انتقائية. يُعتقد أن تطور استشعار النصاب قد أتاح ميزة انتقائية إضافية لإنتاج الضوء. يسمح استشعار النصاب للبكتيريا بالحفاظ على الطاقة من خلال ضمان عدم تصنيعها للمواد الكيميائية المنتجة للضوء إلا في حالة وجود تركيز كافٍ لتكون مرئية⁵.

قد تعيش هذه البكتيريا حياة حرة مثل: (Vibrio harveyi) أو في علاقة تكافلية مع الحيوانات مثل: حبار هاواي ذو الذيل القصير (Euprymna scolopes) أو الديدان الأسطوانية (Photorhabdus luminescens) حيث توفر الكائنات المضيفة البيئة الأمنة والتغذية الكافية للبكتيريا وفي المقابل، فإن المضيف يقوم باستخدام الضوء التي تنتجه البكتيريا للتمويه، للافتراس أو للجذب. وقد طورت البكتيريا المضيئة علاقات تكافلية مع كائنات حية أخرى بحيث يستفيد فيها الجميع.

البكتيريا المضيئة bioluminescent bacteria هي الأكثر وفرة في البيئات البحرية، تتكاثر خلال الربيع عندما يكون هناك تركيزات عالية من المغذيات. هذه الكائنات الباعثة للضوء موجودة في المياه الساحلية بالقرب من تدفق الأنهار والمعروفة بالبحار الحليبية "milky seas" مثل البحر الأدرياتيكي الشمالي، خليج تريست، الجزء الشمالي الغربي من بحر قزوين، ساحل أفريقيا وغيرها الكثير. ويطلق على توهج آلاف الاميال المربعة من المحيط بالضوء الذي تنتجه البكتيريا المضيئة اسم تأثير البحار الحليبية Milky seas effect.

صورة (2) توضح شكل البكتيريا المضيئة

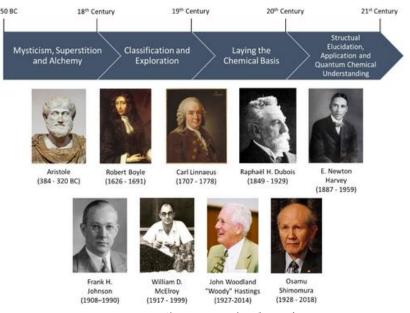
كما توجد البكتيريا المضيئة في بيئات المياه العذبة والبرية ولكنها أقل انتشاراً مما هي عليه في بيئات مياه البحر. وجدت على الصعيد العالمي، كأشكال حرة أو تكافلية أو طفيلية، وربما كمسببات للأمراض الانتهازية.

من المدهش حقاً أن نعلم أن هذه البكتيريا كانت سبباً في كشف علمي رائع وهو ما يعرف بقدرة البكتيريا على معرفة عددها "ظاهرة استشعار النصاب" (quorum sensing)، وهي القدرة على تنظيم التعبير الجيني بالاعتماد على كثافة الخلايا

Dr. Hadeer Sayed Mohamed Mohamed Ismail. Probiotics and their role in the future of interior architecture. Mağallaï Al-ʿimārah wa Al-Funūn wa Al-ʿulūm Al-Īnsāniyyaï• Vol 10, Special No14, Nov 2025

البكتيرية. فقد لاحظ العلماء أن البكتيريا المضيئة لا تنتج إضاءة إلا إذا كان عددها كبيراً وهذه الملاحظة جذبت العديد من الباحثين لفهم الظاهرة وكانت الباحثة بوني باسلر Bonnie Bassler لها فضل السبق في فهم هذه الظاهرة والتي ثبت أنها موجودة في معظم أنواع البكتيريا. 6

سجلات البكتيريا المضيئة موجودة منذ آلاف السنين. تظهر في فولكلور العديد من المناطق، بما في ذلك الدول الاسكندنافية وشبه القارة الهندية. وقد وصف كل من أرسطو وتشارلز داروين ظاهرة توهج المحيطات. أما في العصر الحديث، فمنذ اكتشافه، أدى إنزيم luciferase وجينه التنظيمي"الجين العين الله تقدم كبير في البيولوجيا الجزيئية، من خلال استخدامه كجين مراسل. لقد تم تنقية إنزيم luciferase لأول مرة في عام 1955 من قبل Green & McElroy.



صورة (3) توضح تأثير البكتيريا في البحار

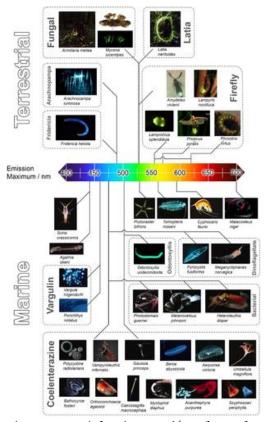
تاريخ التلألؤ الحيوي

ليس كل ما يُرى يعتمد على الضوء في رؤيته. هذا ينطبق فقط على اللون "الخاص" للأشياء. بعض الأشياء المرئية التي تكون غير مرئية في الضوء، تُحفز الحس في الظلام؛ أي الأشياء التي تبدو نارية أو لامعة. ليس لهذه الفئة من الأشياء اسم شائع بسيط، ولكن من أمثلة ذلك الفطريات، واللحم، والرؤوس، والقشور، وعيون الأسماك. لا يوجد في أيِّ منها ما يُرى لونه "الخاص". أرسطو (حوالي 350 قبل الميلاد) - دي أنيما (عن النفس، الكتاب الثاني، الفصل 7).

يمكن تقسيم تاريخ أبحاث التلألؤ الحيوي إلى أربع مراحل متميزة، تميزت كل منها باكتشافات ومنهجيات وفهم علمي مهم. هذه المراحل ليست منفصلة، بل تداخل وتتدفق مع بعضها البعض، مما يعكس التطور التدريجي لهذا المجال.

شكل (1) المراحل التاريخية لدراسة التلألؤ الحيوى من أقدم العصور حتى القرن الحادي والعشرين

المرحلة الأولى - مرحلة التصوف والخرافات والكيمياء - استمرت لأطول فترة، إذ يعود تاريخها إلى أرسطو (كتابه "عن الحيوانات" - حوالي 350 ق.م.). مع أن ملاحظات أرسطو لم تكن علمية بالمعنى الحديث، إلا أن كتاباته تُظهر اهتمامًا بالغًا بالظواهر الطبيعية، بما في ذلك الضوء الذي تُنتجه الكائنات الحية. في كتابه "الحيوان"، وصف أرسطو التوهج الملحوظ في بعض الحيوانات البحرية، مثل بعض أنواع الأسماك والقشريات. ولاحظ أن هذا التلالؤ لا يُنتج حرارة. ورغم أن وصف أرسطو كان حكائيًا في الطبيعة أكثر منه علميًا، إلا أنه مهد الطريق لفضول مستقبلي حول التلالؤ الحيوي والظواهر الطبيعية عمومًا. ورغم غياب المعرفة بالأكسجين في ذلك الوقت، أثبت روبرت بويل عام ١٦٦٧ أن ظاهرة التلالؤ الحيوي تعتمد على الهواء.


رستخ هذا الاكتشاف الفهم الأساسيً لضرورة الأكسجين لجميع تفاعلات التلألؤ الحيوي. وبدأت المرحلة الثانية في نهاية القرن الثامن عشر مع أعمال كارل لينيوس (1707-1778). اشتهر لينيوس، عالم النبات والطبيب وعالم الحيوان السويدي، بتطويره نظام التسمية الثنائية لتصنيف الكائنات الحية. اتسم نهجه بالمنهجية والبرهان، مبتعدًا عن الأوصاف القصصية نحو فهم أكثر علمية. وقد مثّل هذا النهج انتقالًا من الملاحظات القديمة والبحث المدفوع بالفضول إلى تحقيق أكثر منهجية وعلمية، وحفّز طلابه، بالإضافة إلى عدد لا يُحصى من المستكشفين الطموحين والمغامرين، على الذهاب بجرأة إلى حيث لم يسبقهم أحد. وهكذا، أصبح التلألؤ الحيوي موضوع بعثاتهم، وبحلول عام ١٨٥٤، عُرف حوالي مئة كائن بحري حي يُظهر هذه الظاهرة ووُضعت فهرس لها. على اليابسة، وُصفت ديدان الأرض، وحشرات المئويات، وبالطبع اليراعات التي تُبدي التلألؤ الحيوي. في ذلك الوقت، وبسبب نقص الفهم الكيميائي، كانت جميع ظواهر التلألؤ التي لا تُولّد حرارة، سواءً كانت عضوية أو غير عضوية، تُسمى فسفورية .

بدأت المرحلة التالية بعمل رافائيل هوراس دوبوا (1849-1929). كان لعالم الصيدلة وعلم وظائف الأعضاء الفرنسي دورٌ محوري في عزل وتحديد عنصرين رئيسيين مشاركين في تفاعلات التلألؤ الحيوي. من خلال دراسة الرخويات المضيئة حيويًا (Pholas dactylus)، وجد أن هناك مادتين ضروريتين لإنتاج الضوء، وقد تمكن من استخلاصهما من الرخويات. أطلق على المادة الأولى، التي حصل عليها عن طريق الاستخلاص بالماء البارد، اسم لوسيفيراز، وهو الإنزيم الذي يحفز التفاعل

المادة الثانية التي تم الحصول عليها عن طريق الاستخلاص بالماء الساخن أطلق عليها اسم لوسيفيرين (باللاتينية: المادة التي تنتج الضوء عند أكسدتها. لا تزال هذه المصطلحات مستخدمة حتى يومنا هذا، وقد أرست المركبات المكتشفة الأساس لأبحاث الأساس الكيميائي للتلألؤ الحيوي التي لا تزال مستمرة حتى يومنا هذا. تمكن دوبوا لأول مرة من إثبات أن العمليات التي تحدث عادةً داخل الكائنات الحية يمكن أيضًا إعادة إنتاجها في المختبر. أبرز عمل دوبوا تعقيد وعالمية التفاعل التلألئي، موضحًا أن عمليات كيميائية حيوية مماثلة تحدث عبر مجموعة واسعة من الكائنات الحية، من الحشرات الأرضية إلى كائنات أعماق البحار. إلى جانب عمل العديد من العلماء الأخرين، مثل كارل نيوبيرج وكلود برنارد، يمثل هذا العمل جزءًا من أصول مجال الكيمياء الحيوية الحديث.

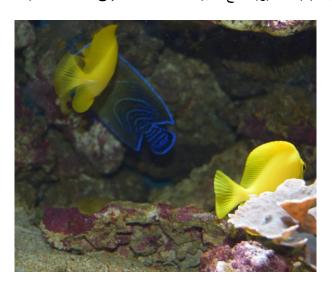
في بداية القرن العشرين، صاغ أحد رواد هذا المجال، إي. نيوتن هارفي من جامعة برينستون، مصطلح التلألؤ الحيوي، مُشيرًا إلى التلألؤ الناتج عن الكائنات الحية. 3 وبحلول عام ١٩٥٧، لحّص تاريخ التلألؤ الحيوي بشكل مُوسّع من أقدم العصور حتى نهاية القرن التاسع عشر. 4،5 مهّدت أعمال إي. نيوتن هارفي الرائدة في مجال التلألؤ الحيوي الطريق لأبحاث لاحقة في هذا المجال. وقد ساهم أحفاده المباشرون وغير المباشرين، بمن فيهم دبليو. ماكيلروي، وإف. إتش. جونسون، وجيه. دبليو. هاستينغز، وأو. شيمومورا، بشكل كبير في تشكيل مسار أبحاث التلألؤ الحيوي. شهد القرنان العشرون والحادي والعشرون دمجًا لعلم الأحياء الجزيئي والهندسة الوراثية، بالإضافة إلى ميكانيكا الكم والكيمياء الحاسوبية، في مجال التلألؤ

الحيوي، مما أتاح للباحثين ليس فقط فهم الأليات التفصيلية وراء التلألؤ الحيوي، بل أيضًا استخدام هذه الجزيئات والبروتينات المضيئة كأدوات حيوية في مختلف المجالات العلمية. تأثرت أبحاث التلألؤ الحيوي في النصف الثاني من القرن العشرين تأثرًا كبيرًا بأعمال أوسامو شيمومورا (1928-2018) وجون وودلاند (وودي) هاستينغز (1927-2014).

شكل (2) توزيع أطياف بعض الكائنات الحية المضيئة حيوياً في بينتها الأرضية (أعلى) والبحري (أسفل) عند أقصى انبعاث تقريبي لها. تُجمَع الأنظمة التي تمتلك معرفة بالكيمياء البنيوية الأساسية ضمن إطارات منقطة. ولا سيما في البيئة البحرية، لا تزال العديد من الكائنات الحية غير مستكشفة كيميائياً.

شملت أعمال هاستينغز أبحاتًا حول لوسيفيراز، ولوسيفيرين، ودور الكالسيوم في تفاعل التلألؤ الحيوي، مع التركيز بشكل أساسي على التلألؤ الحيوي البكتيري والدينوفلاجيلات. كان مؤسس علم الأحياء اليومي، وساهم بشكل خاص في فهم الإيقاعات اليومية للكائنات المضيئة، وربط ظاهرة التلألؤ الحيوي بعمليات بيولوجية أوسع.6 ولعل شيمومورا يشتهر بأعماله على قنديل البحر "أيكوريا فيكتوريا" واكتشافه البروتين الفلوري الأخضر ((GFP)، الذي نال عنه جائزة نوبل في الكيمياء على مددر (مناصفةً مع م. تشالفي و ر. تسين). علاوة على ذلك، أوضح أيضًا التركيب الكيميائي وآليات عمل العديد من الكائنات المضيئة الأخرى، مثل السيبريدينا، واللاتيا، والدينوفلاجيلات.

على مر تاريخها، كانت دراسة التلألؤ الحيوي جهدًا متعدد التخصصات، شارك فيه الكيميائيون والأحياء وعلماء البيئة والفيزيائيون على حد سواء، ولا تزال مجالًا بحثيًا نشطًا، تُسلّط الضوء على العمليات البيولوجية والكيميائية الأساسية والابتكارات التكنولوجية التطبيقية في آنٍ واحد. في القرن الحادي والعشرين الحالي، أصبح تطوير تقنيات التصوير بالتلألؤ الحيوي أمرًا حيويًا في البحث الطبي، مما يسمح بمراقبة تطور الأمراض بطريقة غير جراحية، حتى أن الدراسات البيئية استخدمت التلألؤ الحيوي لتتبع الأنواع وفهم السلاسل الغذائية المعقدة في المحيط. وقد حوّل الجمع بين البحث متعدد التخصصات والابتكار التكنولوجي دراسة التلألؤ الحيوي من ظاهرة طبيعية آسرة إلى أداة فعّالة للاكتشاف العلمي.


صورة (4) اليراعات في بيئتها الطبيعية: الأشجار الكثيفة في الغابات والمروج بعد حلول الليل بقليل (صورة مركبة من صنع بيت ماوني).

ظاهره التلألؤ الحيوى

يمكن تقسيم ظاهرة التلألؤ الحيوي، بناءً على موطنها، إلى تلألؤ حيوي بري وتلألؤ حيوي بحري. في كلا الموطنين، يمكن رصد التلألؤ الحيوي مع انبعاث طاقات عبر كامل الطيف الضوئي، بدءًا من المنطقة الزرقاء العميقة حوالي 430 نانومتر. وصولًا إلى الأشعة تحت الحمراء القريبة حوالي 700 نانومتر.

ينتج التلألؤ الحيوي عن تفاعل كيميائي حيوي محدد، وهي عملية تُنتج فيها بعض الكائنات الحية الضوء وتُصدره. يتضمن هذا التفاعل بشكل أساسي إنزيم لوسيفيراز، الذي يعمل على جزيء ركيزة، عادةً لوسيفيرين، في وجود الأكسجين وثلاثي فوسفات الأدينوزين .(ATP) يُحفز هذا التفاعل أكسدة لوسيفيرين، مُنتجًا الضوء.

يعتمد لون الضوء الحيوي، الذي يتراوح بين الأخضر والأزرق والأحمر، على نوع الكائن الحي وتركيب إنزيمي لوسيفيراز ولوسيفيرين. ومع ذلك، فإن معظم التلألؤ الحيوي البحري يكون لونه أخضر-أزرق. يُعد انبعاث الضوء الأحمر أقل شيوعًا، ولكن بعض أسماك أعماق البحار وحبار أعماق البحار يتوهج باللون الأحمر. إن كفاءة هذا التفاعل المُنتج للضوء تجعله موضوعًا مثيرًا للاهتمام في الكيمياء الحيوية، مع تطبيقات محتملة تمتد إلى مجالات علمية مختلفة8.

صورة (5) توضح شكل اليراعات المضيئة

أنواع التلألؤ الحيوي

تُظهر أنواعٌ مُختلفة، أغلبها بحرية، خصائص التلألؤ الحيوي. ومن أبرزها اليراعات Lampyridae ، المعروفة باستخدامها المُميز للتلألؤ الحيوي أثناء الغسق لجذب الأزواج. هناك حيواناتٌ ونباتاتٌ مُتلألئةٌ حيويًا. في البيئات البحرية، يستخدم قنديل البحر (Aequorea victoria) وبعض أنواع الحبار التلألؤ الحيوي كآلية دفاع، إما لإرباك الحيوانات المُفترسة أو لإضاءتها وتعريضها لمُفترساتٍ أكبر.

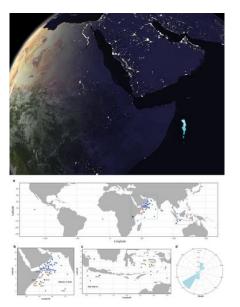
كائنات أعماق البحار، مثل سمك أبو الشص، تُنتج ضوءًا لجذب الفرائس. ومن الأمثلة الرائعة الأخرى العوالق المضيئة حيويًا، مثل الدياتومات، التي تُسبب توهج المحيط من خلال التفاعلات الكيميائية، وغالبًا ما تُشاهد في المياه الساحلية الدافئة. بفضل أعضائها المُنتجة للضوء، تُظهر هذه الأنواع الأدوار الوظيفية المتنوعة التي يلعبها التلالؤ الحيوي في العالم الطبيعي. أدى التطور إلى التكيف مع العديد من الموائل الأرضية. من شجيرات الغابات الكثيفة إلى زوايا الكهوف الخفية، يُحسن وجود التلالؤ الحيوي المشهد البصري ويلعب دورًا فريدًا في هذه النظم البيئية. تعكس هذه القدرة على التكيف التفاعل المعقد بين العوامل البيئية واستراتيجيات البقاء والضغوط التطورية.

طورت مجموعة من الكائنات الحية، من الحشرات مثل اليراعات والديدان المتوهجة إلى أنواع محددة من الفطريات، القدرة على إنتاج الضوء، مستفيدةً من مزاياه الوظيفية المتنوعة عبر مناطق جغرافية متعددة. وتتعدد الوظائف البيئية للتلألؤ الحيوي الأرضي، حيث يلعب دورًا رئيسيًا في سلوكيات الكائنات الحية وتفاعلاتها. ومن أبرز هذه الوظائف جذب الشريك وتختلف أنماط الوميض المتزامنة التي تستخدمها هذه الحشرات باختلاف الأنواع، وتُسهّل تحديد الشريك وجذبه. ويُعد ردع المفترس استخدامًا آخر موثقًا جيدًا للتلألؤ الحيوي، حيث قد يُفزع أو يُربك انبعاث الضوء المفترس المحتمل. ويُظهر إغراء الفرائس، كما لوحظ في أنواع معينة من الديدان المتوهجة، استخدام التلألؤ الحيوي كأداة صيد فعّالة، حيث يجذب الفريسة نحو الضوء والسياق التاريخي والأهمية الثقافية للتألق الحيوي

على مر التاريخ، أثارت الحيوانات والفطريات والنباتات المُنتجة للتلألؤ الحيوي إعجاب وتأثر العديد من الثقافات، التي غالبًا ما كانت محاطة بالأساطير والغموض. وتقت الحضارات القديمة، مثل الإغريق والرومان، ظاهرة التلألؤ الحيوي، لا سيما في الحياة البحرية، معتبرة إياه مظهرًا من مظاهر القوة الإلهية أو الخارقة للطبيعة. في الكتابات العلمية المبكرة، وُصفت الكائنات الحية المضيئة بمزيج من الفضول والتقاليد التخمينية.خلال عصر الاستكشاف، روى البحارة والمستكشفون توهجات غريبة في المحيط، غالبًا ما نسبوها إلى مخلوقات أسطورية أو نذير شؤم. تعكس هذه الروايات التاريخية ليس فقط الغموض والعجائب المحيطة بالتلألؤ الحيوي، بل أيضًا الفهم المحدود لأسسه البيولوجية حتى التطورات العلمية الحديثة.

ومع ذلك، فإن تأثير الأنشطة البشرية يهدد التوازن الدقيق لأنظمة الإضاءة الحيوية الأرضية. يمكن لعوامل مثل التحضر وتدمير الموائل، وخاصة التلوث الضوئي، أن تؤثر بشدة على إيقاعات الإضاءة الحيوية الطبيعية، مما يُعطل سلوكيات رئيسية كالتزاوج والتغذية. وقد يكون للعواقب البيئية لهذه الاضطرابات آثار متتالية على بقاء هذه الأنواع واستمرار ها. 14،15 تتطلب اعتبارات الحفاظ على الكائنات الأرضية المضيئة حيويًا فهمًا شاملًا لأدوار ها البيئية والتهديدات البشرية المحتملة. قد تشمل الاستراتيجيات حماية الموائل، والحد من التلوث الضوئي، وجهود الحفاظ المُستهدفة التي تُدرك القيمة الذريدة لهذه الأنظمة ونقاط ضعفها.

على الرغم من وفرة الكاننات الحية المضيئة حيوياً في عالم الأرض، إلا أنها ليست الموطن الأكبر لهذه الأنواع المتوهجة. تغطي المحيطات أكثر من 70% من سطح الأرض، وتمثل نظاماً بيئياً شاسعاً لا مثيل له، يصل إلى أعماق تصل إلى 11,000 متر، كما هو واضح في خندق ماريانا. تغطي هذه البيئة المائية الشاسعة الكرة الأرضية بأكملها، مما يعزز تنوعاً


هائلاً في النباتات والحيوانات. تزخر البيئة البحرية بتفاعلات فيزيائية وكيميائية وبيولوجية معقدة، مما يؤدي إلى ظواهر مثل التلالؤ الحيوى.

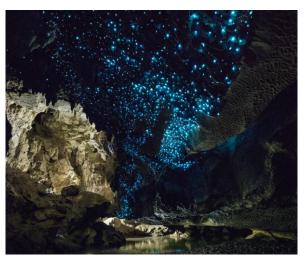
تُوفر المنطقة السطحية للمحيطات، المُقسمة تقليديًا إلى خمس مناطق ذات هيكل رأسي، موائل متنوعة تُؤثر على حدوث التلألؤ الحيوي وآلياته. تمتد المنطقة السطحية المُضاءة بنور الشمس إلى حوالي 200 متر، تليها المنطقة متوسطة العمق التي يصل عمقها إلى 1000 متر، حيث يتضاءل الضوء بسرعة. وخلفها تقع المنطقة العميقة، التي تمتد إلى حوالي 4000 متر، والمنطقة السحيقة، حيث يكاد ينعدم ضوء الشمس. في هذه الأعماق العميقة، يتضاءل تأثير ضوء الشمس على الكائنات البحرية، ويتجلى ذلك في ندرة امتصاص الفوتونات حتى في الأعضاء الحسية المتخصصة، مثل العيون الدقيقة لبعض أنواع الروبيان في أعماق البحار. وعلى الرغم من ندرة ضوء الشمس، فإن أعماق المحيط بعيدة كل البعد عن كونها خالية من الحياة. غالبًا ما يتخلل الظلام الظاهر انبعاثات حيوية من الكائنات الحية المختلفة، مما يحول هذه الأعماق إلى عالم نابض بالحياة حيث يلعب الضوء، الذي يتم توليده بيولوجيًا، دورًا أساسيًا في البقاء والتواصل والافتراس.

يُعد الضوء المُنتَج كيميائيًا حيويًا ظاهرة شائعة في أعماق البحار، حيث ينتشر على أعماق تزيد عن 1000 متر تقريبًا. 17 كلما زاد عمق المحيط، زادت أهمية إمكانيات الاستكشاف، إلا أن الاستكشاف يزداد صعوبة. حتى غواصة الأبحاث المأهولة "ألفين"، التي تعمل منذ أكثر من 50 عامًا بفضل تحديثاتها المستمرة، لا تزال من بين عدد قليل جدًا من الغواصات القادرة على العمل تحت عمق 4000 متر.

تاريخيًا، كانت الظواهر المضيئة على اليابسة وعلى نطاق واسع سهلة الرصد نسبيًا. ومؤخرًا، رُصدت ظاهرة التلألؤ الحيوي بمقياس حوالي 400 كيلومتر، والتي تُنتجها الدياتومات الدوارة، من الفضاء (الشكل 5). ومع ذلك، كانت السجلات العلمية للتلألؤ الحيوي البحري نادرة بشكل مثير للدهشة. يعود أول وصف علمي لهذه الظاهرة إلى عام 1705،22 مع أنها، بلا شك، استحوذت على خيال البشر لفترة أطول بكثير. وقد ساهمت أعمال أدبية، مثل رواية "عشرون ألف فرسخ تحت البحر"

لجول فيرن (1870)، والتصويرات البصرية في أفلام مثل "موانا" من إنتاج ديزني، في إضفاء طابع التوهج الغامض للبحر على الثقافة الشعبية.

شكل (5) أعلى: رصد التلالق الحيوي من الفضاء على الساحل الشرقي لأفريقيا، صور مركبة من أربع طبقات مختلفة بالأقمار الصناعية. السبب هو الانتشار الواسع للديوفلاجيليات المضيئة حيويًا. يبلغ طول المنطقة المضيئة حوالي 400 كيلومتر. (صورة مركبة من إعداد ستيفن هادوك وستيفن ميلر19 ، 20) أسفل: تجميع لتقارير السفن التاريخية (1796-2010) ورصد الأقمار الصناعية للتلائل الحيوي البحري واسع النطاق


على النقيض من هذه التمثيلات الفنية النابضة بالحياة، لا يزال الفهم العلمي الحالي للتلألؤ الحيوي في المحيط محدودًا للغاية. بدأ الباحثون حول العالم للتو في كشف العلاقات البيئية المعقدة للكائنات الحية المضيئة حيويًا، واستكشاف الأليات الكيميائية الكامنة وراء توليد الضوء. على الرغم من هذه التحديات، أحرز تقدم كبير في بعض الأنظمة البحرية، ولا تزال الأبحاث الجارية تُلقي الضوء على هذه الظاهرة الأسرة. ومع ذلك، سنوضح لاحقًا في هذه المراجعة بعض الأنظمة البحرية التي تم توضيحها بالفعل، كما سنقدم نظرة على القضايا التي تُعدّ حاليًا موضوعًا لجهود بحثية مكثفة. 10

الرمزية في مختلف الثقافات

في مختلف الثقافات، يحمل التلألؤ الحيوي معنى رمزيًا هامًا، وغالبًا ما يتداخل مع التراث الشعبي والمعتقدات الروحية. على سبيل المثال، في التراث الشعبي الياباني، تُعتبر اليراعات رمزًا مقدسًا للحب العاطفي، ويعود ذلك جزئيًا إلى ضوئها الزائل والسريع الزوال. وبالمثل، في بعض ثقافات الأمريكيين الأصليين، ثُمثل اليراعات أرواح الموتى، وتُرشد الأحياء بضوئها الخافت. وفي التراث الشعبي الكاريبي، غالبًا ما يرتبط التوهج الغامض لبعض الكائنات البحرية بأرواح البحر وحراس المحيط. تؤكد هذه التفسيرات الثقافية للتلألؤ الحيوي على تأثيره الذي يتجاوز الاهتمام العلمي، مُثريًا التراث الشعبي المحلى والرمزية الروحية في مختلف المجتمعات.

الإضاءة الحيوية في التصميم الداخلي وهندسة المناظر الطبيعية والتخطيط الحضري

يتزايد اعتماد الإضاءة الحيوية في التصميم الداخلي الحديث وتخطيط المدن كحل مبتكر ومستدام للإضاءة. ففي التصميم الداخلي، تُستخدم الكائنات الحية المضيئة حيوياً في عناصر مثل الجدران الحية والمنشآت الزخرفية، مما يوفر مصدر إضاءة ديناميكياً وعضوياً. على سبيل المثال، تُقدم الطحالب المضيئة حيوياً في المنشآت الزجاجية المغلقة بديلاً مستداماً ومنخفض الطاقة للإضاءة المحيطة. في تخطيط المدن، تُجري مبادرات، مثل مشروع رامبوييه في فرنسا، تجارب على البكتيريا المضيئة حيوياً لإضاءة الشوارع، بهدف تقليل استهلاك الطاقة والتأثير البيئي. تُمثل هذه التطبيقات تحولاً نحو دمج العناصر الطبيعية الحية في التصميم، مما يُبرز إمكانات تقنية الإضاءة الحيوية في إحداث نقلة نوعية في مساحاتنا المعيشية والمشتركة.

صورة (6) توضح شكل ديدان متوهجة في كهف في نيوزي

تقنيات التصميم والجماليات

يُدمج المصممون الإضاءة الحيوية في التصميمات الداخلية والمساحات الحضرية باستخدام تقنيات متنوعة تُبرز كلاً من العملية والجاذبية الجمالية. تشمل هذه التقنيات تغليف الكائنات الحية المضيئة حيوياً بمواد شفافة ومتينة لإنشاء وحدات إضاءة أو دمجها في عناصر معمارية كالجدران أو الممرات. من الناحية الجمالية، تُقدم الإضاءة الحيوية تجربة بصرية فريدة، تتميز بتوهجها الرقيق والخفيف. يُوفر هذا المصدر الطبيعي للضوء جواً هادئاً وغامراً، ويُستخدم غالباً في المساحات المصممة للاسترخاء أو التأمل. يمكن أن يختلف لون وكثافة الضوء باختلاف الكائن الحي المُستخدم، مما يسمح بحلول تصميمية إبداعية ومُصممة خصيصاً. لا يقتصر استخدام الإضاءة الحيوية في التصميم على تجاوز حدود الإضاءة التقليدية فحسب، بل يُضيف أيضاً بُعداً جديداً إلى التجربة الحسية للمساحة.

الاستدامة والفوائد البيئية

يُقدم استخدام الإضاءة الحيوية مزايا بيئية ملحوظة مقارنةً بأساليب الإضاءة التقليدية. فمصادر الإضاءة الحيوية، المُشتقة من الكائنات الحية الطبيعية، لا تتطلب طاقة كهربائية، مما يُقلل بشكل كبير من استهلاك الطاقة وانبعاثات الكربون المرتبطة بالإضاءة التقليدية. كما تُغني هذه الطريقة عن استخدام الوقود الأحفوري، مما يُسهم في خفض انبعاثات غازات الاحتباس الحراري.

علاوة على ذلك، ثقلل الإضاءة الحيوية من تلوث الضوء، وهو مصدر قلق متزايد في البيئات الحضرية، بفضل توهجها الطبيعي الناعم. هذه الميزات تجعل من الإضاءة الحيوية بديلاً واعدًا وصديقًا للبيئة، يتماشى مع الجهود العالمية للحد من الأثر البيئي وتبنى ممارسات مستدامة.

الممارسات المتجددة والمستدامة

تُجسّد الإضاءة الحيوية نهجًا مستدامًا للإضاءة، مع آفاق طويلة الأمد لاستخدامها في مجالات متجددة. تُوفّر طبيعة مصادر الضوء الحيوية المُتجددة ذاتيًا، في ظلّ ظروف مثالية، دورة إضاءة مستمرة دون استنزاف الموارد. ويمكن أن تُؤدي جهود زراعة الكائنات الحية المُضيئة حيويًا في بيئات مُتحكم فيها إلى أساليب إنتاج مستدامة ومتجددة.

يكمن التحدي في تطوير أنظمة فعّالة للحفاظ على هذه الكائنات ورعايتها لضمان إنتاج ضوء ثابت وطويل الأمد. يُعدّ التقدم في التكنولوجيا الحيوية والتصميم المستدام أمرًا بالغ الأهمية لتحقيق كامل إمكانات الإضاءة الحيوية المضيئة كبديل عملي وطويل الأمد لحلول الإضاءة التقليدية.

تحديات وقيود استخدام الضوء المنبعث من النباتات والفطريات والبكتيريا

يُواجه تسخير الإضاءة الحيوية للاستخدام العملي في البيئات الداخلية العديد من التحديات التقنية. ومن أهمها طول عمر واستقرار ناتج الضوء. تتطلب الكائنات الحية المضيئة حيويًا ظروفًا بيئية خاصة لتزدهر وتُنتج ضوءًا مستمرًا. وقد يكون الحفاظ على هذه الظروف، مثل درجة الحرارة المناسبة، وتوازن العناصر الغذائية، ومستويات الأكسجين، أمرًا معقدًا ويتطلب موارد كثيرة.

علاوة على ذلك، فإن شدة الضوء التي تُنتجها هذه الكاننات أقل عمومًا مقارنةً بالإضاءة الاصطناعية التقليدية، مما قد يحد من إمكانية تطبيقها في بعض البيئات. علاوة على ذلك، يتطلب دمج الكائنات الحية في عناصر التصميم الوظيفية مراعاةً دقيقةً للعوامل الأخلاقية والبيولوجية، بما يضمن سلامة الكائنات الحية مع تحقيق أهداف التصميم.

القيود الحالية والإمكانيات المستقبلية

حاليًا، تشمل قيود تقنية الإضاءة الحيوية انخفاض مستوى سطوعها نسبيًا، بالإضافة إلى التحديات اللوجستية المتعلقة بالحفاظ على مصادر الضوء الحية لفترات طويلة. تُعيق هذه القيود إمكانية التوسع والاعتماد الواسع لحلول الإضاءة الحيوية. ومع ذلك، تُبشر الأبحاث والتطورات التكنولوجية الجارية بمستقبل واعد.

تشمل التطورات المحتملة تحسين سطوع الضوء الحيوي وإطالة عمره، بالإضافة إلى هندسة كائنات حية حيوية أكثر متانة وقابلية للتكيف. ويمكن أن تؤدي الابتكارات في مجال التكنولوجيا الحيوية إلى أساليب أكثر كفاءة واستدامة لزراعة هذه الكائنات والاستفادة منها، مما يوسع نطاق التطبيقات العملية للضوء الحيوي في سياقات مختلفة.

مع تقدم الأبحاث، أصبح للإضاءة الحيوية القدرة على أن تصبح خيارًا أكثر قابلية للتطبيق وتنوعًا في مجال التصميم المستدام والصديق للبيئة. 11

أضواء شوارع رامبوييه

في رامبوبيه، فرنسا، يجري حاليًا مشروعٌ متميّز لاستخدام البكتيريا المضيئة حيويًا كبديلٍ لإضاءة الشوارع التقليدية. هذا النهج المبتكر هو ثمرة تعاونٍ بين المدينة وشركة "غلوي" الناشئة. يهدف المشروع إلى خلق أجواءٍ فريدةٍ في الشوارع، وتوفير حلِّ مستدامٍ وموفر للطاقة للإضاءة.

تُصنع الإضاءة الحيوية عن طريق تخزين بكتيريا بحرية تُعرف باسم ALIIVIBRIO FISCHERI في أنابيب مملوءة بالمياه المالحة. تُصدر هذه البكتيريا ضوءًا أزرق خافتًا، مما يُنير الشوارع. هذه الطريقة في الإضاءة ليست موفرة للطاقة فحسب، بل تُضفي أيضًا لمسة جمالية فريدة على البيئة الحضرية. يتطلب التلألؤ الحيوي البحري الأكسجين لإنتاج الضوء، لذا يتضمن نظام الإضاءة آلية صغيرة تُوزع الأكسجين في الخزانات.

تُعدّ هذه المبادرة جزءًا من توجّه أوسع نحو حلول حضرية مستدامة وصديقة للبيئة. لا يزال استخدام البكتيريا المضيئة حيويًا لإضاءة الشوارع في مراحله التجريبية، مع جهود متواصلة لتحسين هذه التقنية وجعلها أكثر عملية للاستخدام على نطاق واسع. حتى الأن، يُعدّ الضوء الذي تُتتجه هذه الكائنات المضيئة حيويًا أقل كثافةً مقارنةً بأساليب الإضاءة التقليدية، إلا أن هذا المشروع يُمثّل خطوةً هامةً نحو حلول إضاءة حضرية مبتكرة وصديقة للبيئة.

يوضح هذا المشروع في رامبوبيه إمكانات التكنولوجيا الحيوية لإعادة تشكيل نهجنا تجاه التصميم الحضري والاستدامة، مما يوفر لمحة عن مستقبل الإضاءة العامة.

مستقبل الإضاءة الحيوية في العمارة

الاتجاهات و الابتكار ات الناشئة

من المتوقع أن يتأثر مستقبل الإضاءة الحيوية المضيئة في التصميم الداخلي بالاتجاهات والابتكارات الناشئة. ومن المتوقع أن يعزز التقدم في التكنولوجيا الحيوية جدوى وكفاءة الإضاءة الحيوية المضيئة، مما يجعلها خيارًا عمليًا أكثر للاستخدام على نطاق واسع.

قد تشمل الابتكارات تطوير كائنات معدلة وراثيًا ذات سطوع وعمر أطول، بالإضافة إلى إنشاء أنظمة هجينة تجمع بين عناصر الإضاءة الحيوية والإضاءة التقليدية لتطبيقات أكثر تنوعًا.

إضافةً إلى ذلك، قد يتيح دمج التقنيات الذكية تحكمًا أكبر في الإضاءة الحيوية وتخصيصها، بما يتكيف مع مختلف البيئات

ومن المرجح أن تؤدي هذه التطورات إلى موجة جديدة من التصميم الصديق للبيئة والموفر للطاقة، مما يعكس التركيز المتزايد على الاستدامة والجماليات الطبيعية في التصميم الداخلي.

الأفكار النهائية حول الإضاءة الحيوية في البيئة المبنية

يبرز استكشافنا للإضاءة الحيوية اتجاهًا متناميًا في التصميم يجمع بين الجمال الجوهري للظواهر الطبيعية والإبداع البشري. ولا يقتصر التكامل السلس للإضاءة الحيوية في البيئات التي صنعها الإنسان على إبراز جماليات الطبيعة المتأصلة فحسب، بل يُسهم أيضًا في إرساء نهج مستدام للإضاءة والتصميم.

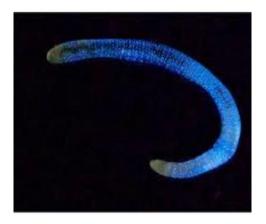
مع تطلعنا نحو المستقبل، تبدو إمكانات الإضاءة الحيوية في التصميم الداخلي واعدة، إذ تُتيح آفاقًا للابتكار والاستدامة، وتُوطّد الصلة بين مساحاتنا المعيشية والعالم الطبيعي. هذا التقاء البيولوجيا والتصميم يفتح آفاقًا واعدة لحلول صديقة للبيئة وموفرة للطاقة، ما يُعيد صياغة طريقة تفكيرنا وتفاعلنا مع بيئاتنا المبنية.

لا شك أن الاستمرار في استكشاف وتطوير تقنية الإضاءة الحيوية سيلعب دورًا محوريًا في تطور ممارسات التصميم، مع التركيز على الانسجام مع الطبيعة والالتزام بالاستدامة 12.

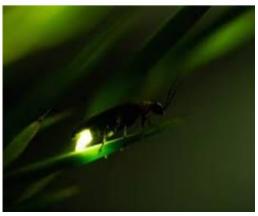
على الرغم من أن العلم لم يكن قاد را على إثبات أن هناك ما يكفي من البكتيريا لخلق مثل هذا التوهج الطويل، توجد هذه البكتيريا على شكل:

أ. قضبان بحرية تسبح في المياه البحرية الاستوائية ويمكن العثور عليها في الأمعاء الدقيقة للحيوانات البحرية .تعطي التجمعات الهائلة من هذه البكتيريا ضوءاً ملحوظ في مساحات كبيرة من المحيط؛ سمحت هذه الظاهرة للعلماء بمشاهدة ما يقرب من 6000 ميل مربع من المياه المتوهجة من المساحة.

صورة (10، 11) لقطات منظورية توضح البحار اللبنية


مجلة العمارة والفنون والعلوم الإنسانية - المجلد العاشر - عدد خاص (14) المؤتمر الدولي الأول - (الذكاء الاصطناعي والتنمية المستدامة)

ب. نوع من الفطريات الموجودة في الخشب المتحلل¹³ . يُعزى التوهج الأخضر المزرق إلى أكسدة بعض المواد الكيميائية الموجودة داخل البكتريا الحيوية نتيجة تعرضها للأكسجين¹⁴.


صورة (12، 13) لقطة منظورية توضح الفطريات المضيئة على الخشب المتحلل

ج. اليرقة المضيئة والمعروفة أيضاً باسم حشرات البرق، هي نوع من أنواع الحشرات التي تستخدم التلألؤ الحيوي لجذب الفرائس

صورة (14) توضح شكل اليرقات المضيئ

د. (الديدان المتوهجة) ديدان الأرض(هي حشرات تتوهج في الظلام نتيجة أكسدة البروتين المضيء الموجود داخلها 15.

صورة (15) توضح شكل الديدان المتوهجه

مجلة العمارة والفنون والعلوم الإنسانية - المجلد العاشر - عدد خاص (14) المؤتمر الدولي الأول - (الذكاء الاصطناعي والتنمية المستدامة)

ذ-قنديل البحر والمرجان الذي يحتوى على البروتين الفلوري الأخضر (Protein Fluorescent Green (GFP)) والمستخدم في صناعة المستشعر ات الحيوية 16.

صورة (16) قنديل البحرالمضئ

ر-عوالق دينوفالجيالت الصغيرة تنتج نفس البروتين المؤكسد الموجود في البكتريا المضيئة 17.

صورة (17) عوالق دينوفالجيالت

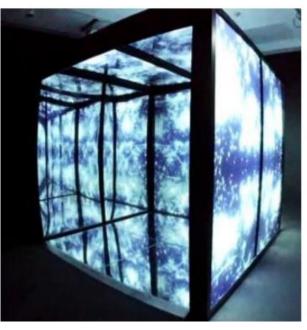
التأثير المحتمل على الهندسة المعمارية والتصميم

تتمتع الإضاءة الحيوية بإمكانية إحداث نقلة نوعية في الممارسات المعمارية والتصميمية المستقبلية. وبصفتها مصدر إضاءة مستدامًا وموفرًا للطاقة، فهي تتماشى مع التركيز المتزايد على المباني الخضراء ومبادئ التصميم الصديقة للبيئة.

قد تُفضي الإضاءة الحيوية إلى نماذج تصميمية جديدة تُدمج فيها مصادر الإضاءة الحية بسلاسة في العناصر المعمارية، مما يُطمس الفوارق بين الطبيعة والبيئة المبنية. وقد يُلهم هذا النهج تصاميم معمارية مبتكرة تُولي الأولوية للتناغم البيئي و فاهية المستخدم.

علاوة على ذلك، تُتيح الخصائص الجمالية الفريدة للإضاءة الحيوية للمهندسين المعماريين والمصممين طرقًا مبتكرة لتعزيز أجواء المساحات وجوانبها التجريبية. وبشكل عام، يُبشر دمج الإضاءة الحيوية في الهندسة المعمارية والتصميم بتحول نحو مناهج تصميم أكثر عضوية واستدامة وتركيزًا على المستخدم.

البكتريا المضيئة في العمارة الداخلية


تستخدم البكتريا الحيوية المضيئة في التصميم الداخلي حيث يمكننا الاتجاه نحو عالم أكثر اخضر اراً، باستخدام المواد العضوية فهى ستغير بشكل أساسي الطريقة التي ننظر بها إلى الإضاءة والتصميم. على سبيل المثال يتم تغليف البكتيريا في غلاف شفاف مملوء بوسط مكون من عناصر الغذائية لخلق حل بديل للإضاءة الكهربائية. يمكن أن يساعد في تقليل معدل استهلاك الكهرباء العالمي بنسبة 19 %وإجمالي انبعاثات غازات الاحتباس الحراري بنسبة 5 %

دراسه حاله: المكعب المضئ Cube Infinity

تم بناء الحيز المكعبي Cube Infinity ليكون أكثر من مجرد معرض للإضاءة الحيوية للزائرين مزوده بالدينوفالجيالت. أنه "تم إعداد المعرض بحيث يمكن الدخول دون معرفة حقيقة ما يجري وتجربة هذا المكعب ليس بناء على العلم 18 وحدث استجابة لهذه التجربه من خلال الزائرين بشكل كبير، كالاستجابة لأصوات مختلفة كالموسيقي ونبضات قلب الإنسان. حيث أن ذلك كان عامل مساعد للزائرين لخلق فرص لمعرفة - كيف تنتج المخلوقات الضوء وكم عدد الأنواع البحرية التي تستخدم الضوء للتمويه والحماية والتواصل.

صورة (18) توضح لقطات منظورية لكاننات بحرية وحيدة الخلية تسمى دينوفالجيالت تتفاعل مع المنشطات المختلفة، مثل نبضات قلب الإنسان، والموسيقى، وتدفق المياه ، وضغط الهواء

صورة (19) توضح شكل المكعب المضئ، وهو معرض مؤقت قام بالفعل في بيرش أكواريوم

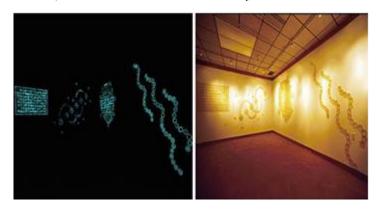
وحدة للإضاءة: Phillips

هو تصميم ابتكره فيليبس يستكشف استخدام البكتيريا الحيوية لخلق أجواء منخفضة الإضاءة أو بروتينات فلورية لمزيد من ترددات الضوء، تم تصميم الإضاءة الحيوية light-Bio ليس فقط لتقليل مقدار الطاقة اللازمة، ولكن أيضاً لإعادة تدوير النفايات والميثان الناتج عن النفايات لتغذية البكتيريا ذات الإضاءة الحيوية 19.

مكونات وحدة الإضاءة:

يتضمن التصميم خلايا زجاجية منفوخة يدويًا مدعومة بإطار فولاذي حيث تحتوي كل خلية على بكتيريا الإضاءة الحيوية وتتغذى من خلال أنابيب السيليكون.

صورة (21) توضح شكل البكتيريا الحيوية وعملية التغنيه التي تقوم من خلال أنابيب السيليكون


صورة (20) توضح شكل التصميم الحيوي

استخدام الإضاءة في الحيزات الداخلية:

نظراً لأن الضوء منخفض الكثافة وطبيعة البكتيريا الحية تحد من القدرة على إنتاج الضوء بسرعة، فإن استخدام الضوء الحيوي أقل ملاءمة للإضاءة العملية. ومع ذلك، فإن هذا لا يقلل من أهميتها وإمكانياتها حيث إن لها استخداماً هاماً في التتبع، والإنذار، والإشارة. ومن الأمثلة على هذا الاستخدام علامات الطرق الليلية، وعلامات المعلومات في أماكن الاضاءة المنخفضة.

وحدة معرض بيوجليفBioglyphs

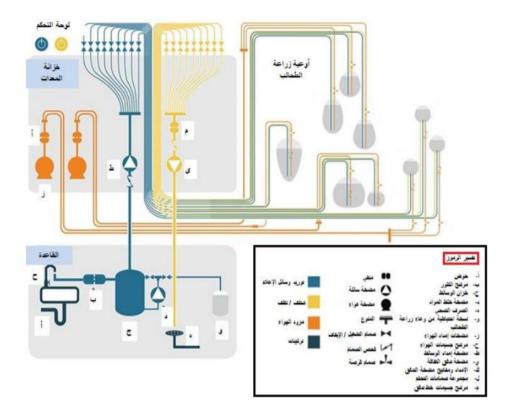
افتتح معرض بيوجليف Bioglyphs في حرم جامعة ولاية مونتانا بوزمان للمصمم أنجيلا بولدز Bioglyphs وهو معرض للوحات الحيوية المضيئة التي جمعت العلم والفن معًا، بحيث يمكن رؤية تركيب أطباق بتري petri ،التي تحتوي على وسط مغذي من شأنه أن يحافظ على البكتيريا لفترة زمنية محدودة، فعند إطفاء الأنوار، يمكن الحصول على إحساس بالجمال الذي خلقته البكتيريا بضوءها الخاص. كما أنها تنتج الضوء الأزرق من خلال تفاعل كيميائي، ستنتج أنواع فيبريو مثل فيبريو فيشيري Vibrio fischeri الضوء بعد تراكم عدد معين من الكائنات الحية 20.

صورة (22، 23) لقطة منظورية داخلية توضح توهج البكتيريا الحيوية المضيئة في لوحة "Bioglyphs"

وحدة إضاءة باستخدام العوالق البحرية المتوهجة

تعتمد العوالق البحرية على ضوء الشمس، وعند تحريكها، ينبعث منها ضوء أزرق – أخضر يسمى الإضاءة الحيوية – لإضاءة المصابيح ذات التوهج الناعم، تعتمد هذه الإضاءة على الدينوفالجيالت ما يكفي من ضوء الشمس خلال النهار لتحويله إلى طاقة كيميائية من خلال عملية التمثيل الضوئي ، حتى تتمكن وحدة الإضاءة من التوهج عند حلول الليل وتتدفق من السقف.

مكونات وحدة الإضاءة: هو حوض مائي صغير مليء بالعوالق التي نتوهج عند اهتزازها – عبر أنبوب لإضاءة المصباح.


صورة (24) توضح شكل المصباح الحيوي

الطحالب المضيئة

توجد العديد من الكائنات الحية المضيئة مثل الطحالب المضيئة التي تستخدم في الأثاث ، وذلك يتم من خلال إنشاء مصباح به طحالب دقيقة - وهي كائنات حية مغذية يمكنها امتصاص ثاني أكسيد الكربون وإطلاق الضوء والحرارة .الطحالب الدقيقة دمجت في خزانات فقاعية من الطحالب المضيئة في الأثاث المستوحي من منتصف القرن. فالأوعية المغذية موصلة بأسلاك لتدفئة الغرفة وإضاءتها؛ عند القيام بذلك، فإنها تتسبب أيضاً في نمو الطحالب الموجودة داخل الخزانات، مما يضخ الأكسجين إلى الغرفة. في نهاية المطاف، تنمو الطحالب بشكل كثيف .مثال لغرفة المعيشة، يتم استخدام أوعية أكبر، والتي توفر وهجاً للقراءة وتشع الحرارة من الأضواء الداخلية والسخانات الاحتياطية للأشخاص الجالسين في مكان قريب. وفي منطقة تناول الطعام، تكون الأوعية أصغر حجما، ربما تكون صغيرة بما يكفي لتوفير وجبة خفيفة.

صورة (25) مصابيح مثبتة على الحانط مليئة بسائل سبيرولينا المتوهجة، مما يسمح للتوهج الأخضر الناعم من المصابيح العلوية

شكل (5) يوضح أنظمة المرافق والصيانة للطحالب المضيئة في الأوعية الزجاجية.

الأوعية الزجاجية هي المسؤولة عن كل من الإضاءة والتدفئة، حيث توفر المفاعلات الحيوية الضوئية الحرارة والضوء وإمداد الهواء والمغذيات والتحكم في النفايات إلى الطحالب الحية بالداخل. يتم توصيل النظام بأكمله من خلال الأسلاك وتوصيلها بشبكة الدعم الرئيسية في المطبخ، حيث يمكن ضبط كل من الأوعية التسعة على حدة. تعمل مقابض النايلون المطبوعة ثلاثية الأبعاد على تشغيل ثمانية عشر صماماً تسمح بحصاد الطحالب عندما تصبح كثيفة بدرجة كافية لتزويد التركيب بالطاقة.

وحدة الاضاءة الليلية لوما LUMA

يتميز المصباح المفاهيمي" LUME" من تصميم كريستوفر كوتنغ Christopher Kötting ولوكاس أوليتس Lukas ولوكاس أوليتس Christopher Kötting بنمو على سطحه بكتريا حيوية مضيئة، تتوهج لتوفير إضاءة مهدئة، تتصل وحدة الإضاءة" LUME" بالهاتف الذكي للمستخدم لإعلامه بما إذا كانت مستويات الرطوبة والضوء والتربة على قدم المساواة لضمان تمكين النبات من الازدهار . يمكن لجهاز حاوية النبات بالسماح بقليل من الاضاءة الطبيعية 21.

يقوم مستشعر الرطوبة الصغير بتوصيل الكهرباء إلى التربة لقياس مستوى الرطوبة فيها لإبقائها، ويتم دمجها في الجزء الخلفي من الغلاف المعدني. فقط شريط معدني صغير مدمج في جراب النبات يكشف عن موقعه.

من الضروري مراقبة مستوى ملء وعاء الماء لمنع الماء من الانسكاب. يوجد مقياس يقيس وزن الماء، كما أنها تعمل كقضيب توجيه للحاوية وتدفعها لأعلى قليلاً لتحافظ على وضعها22.

صورة (25، 26) يوضح وحدة الإضاءة لوما أثناء الليل والنهار

تحكم الهاتف الذكي في الإضاءة:

خزان السائل يمكن التحقق من معرفة وقت تنظيف خزان السائل وتفريغه. بالإضافة إلى ذلك، فإنه يخبر إذا لم يكن الخزان في الموضع الصحيح لذلك لا يمكن للمياه أن تتسرب.

ضوء الشمس

أسهل طريقة للتأكد من حصول النبات على إضاءة كافية هي تغيير موقعه، لضمان العثور على الموقع الأمثل، يمكن للتطبيق أن يقدم ملاحظات حول حالة الإضاءة الحالية فيLUME

الرطوية

لمعرفة وقت عطش النبات من خلال LUME يخبر النبات عندما يحتاج إلى بعض المياه العذبة ويمنع أيضاً من الإفراط في ريه.

صورة (27) توضح شكل برنامج خاص بتشغيل وحدة الإضاءة الليلية لوما LUMA موجود على الهاتف الذكى

شكل (4) يوضح الخطوات الروتين اليومي لوحدة الإضاءة الليلية لوما LUMA

مصباح تيريزا فان دونجن أمبيوTERESA VAN DONGEN'S AMBIO LAMP

قبل أن تنطلق تيريزا فان دونجن في مسيرتها المهنية كمصممة، درست علم الأحياء لمدة عامين. وخلال دراستها، اكتشفت أن الطبيعة، ومختبرات العلوم الدولية التي تُعنى بالطبيعة، تزخر بعجائب لا تزال مجهولة نسبيًا للعامة. وقد لعب هذا التعرّف المبكر على علم الأحياء والعالم الطبيعي دورًا هامًا في تشكيل نهجها في التصميم، لا سيما اهتمامها بدمج العناصر والظواهر الطبيعية، مثل التلالؤ الحيوي، في عملها يتجلى هذا المزيج الفريد من الفهم العلمي والابتكار التصميمي في ابتكاراتها، مثل مصباح أمبيو، الذي يستخدم بكتيريا مضيئة بيولوجيًا لإنتاج الضوء. وكما كتبت ليز ستينسون في هذا المقال لمجلة :WIRED

"ابتكرت المصممة الهولندية مصباح أمبيو لمشروع تخرجها في أكاديمية التصميم في آيندهوفن" قبل نحو عقد من الزمان. مصباح أمبيو من تصميم تيريزا فان دونجن هو تصميم إضاءة حيوي فريد يُسخّر قدرات البكتيريا الطبيعية على إصدار الضوء. هذه البكتيريا، التي توجد غالبًا في البحر، تُصدر الضوء عند اختلاطها بالأكسجين في الماء. مصباح أمبيو، المصمم مستدامًا و خلابًا بي ستفيد من هذه الظاهرة الطبيعية، مما يسمح للبكتيريا بالإضاءة أثناء حركة المصباح، مما يُنتج مصدر إضاءة مستدامًا و خلابًا بصربًا.

على الرغم من وجود العديد من الأنواع المختلفة من الكائنات الحية الدقيقة ذات الإضاءة الحيوية، فقد اختار المصممه فان نوعاً من البكتريا الحيوية المضية يمكن كشطها من جلد الحبار Dongen Van حيث إنه يتأثر بكل من درجة اللمعان، كما أنه عند تحريكه تؤدي إما إلى نبضة من الضوء أو رد فعل أطول²³ ومع ذلك، لا تزال هذه البكتيريا حيةً وتُصدر ضوءًا أزرق-أخضر خافتًا لفترة قصيرة فقط، مع استمرار الأبحاث لإطالة عمر ها للاستخدام العملي في الحياة اليومية. يُجسد عمل فان دونجن إمكانية استخدام الكائنات الحية المضيئة بيولوجيًا لإنتاج ضوء أكثر استدامة.

صورة (24) لقطة منظورية لوحدة إضاءة فيها يتوهج مصباح بيولوجي من تصميم تيريزا فان دونجن باللون الأزرق من بكتيريا الحبار

فكرة المصباح:

من أجل أن تتوهج البكتريا باستمرار، كان الدفع الخفيف للمصباح هي الفكرة التي تزعج البكتيريا، كما أنه لا يمكن الاعتماد على الاتصال البشري المستمر لتشغيل تلك الحركة، قامت المصممة بعمل تجربة صنع جهاز متنقل دائم واستقرت على فكرة استخدام أوزان متفاوتة الأوزان. عند الدفع، يؤدي الوزن النحاسي المستدير إلى عدم توازن المصباح، مما يؤدي إلى تحريك مياه البحر الاصطناعية والبكتيريا ذهاباً وإياباً لمدة تصل إلى 20 دقيقة. مما يؤدي إلى توهجها. سوف تطيل الأوزان هذه الحركة، وتحافظ على إضاءة المصباح لأطول فترة ممكنة

مكونات وحدة الإضاءة:

يتكون من أنبوب زجاجي ببكتيريا الأخطبوط لإنشاء مصباح بدون كهرباء يتوهج باللون الأزرق عند الازعاج والأنبوب معلقة بين أثنين من الأوزان النحاسية. غطاء من الصوف يضمن تدفق منتظماً للأكسجين.

دراسه حالة افتراضية داخل أحدى الغرف الموجودة في الفنادق السياحية

يضيء التوهج الناعم للكائنات الحية حيزات داخلية مستقبلية كما بالتصميم الافتراضي ،حيث تسبح الكائنات الحية أو تنام في خزانات السقف وتوجد هذه الكائنات في اسطوانة زجاجية بقطر 5 سم مليئة بالعوالق النباتية ذات الإضاءة الحيوي تنتج ضوءاً طبيعيًا في الليل وتُحدث (تلألؤ بيولوجي) عند تحريكها برفق²⁴. ستقوم الأسطوانة بإزالة ثاني أكسيد الكربون والسموم الأخرى المحمولة في الهواء خلال النهار أثناء تجديد الأكسجين النقي لبيئة الغرفة²⁵.

صورة (25) لقطة منظورية توضح استخدام البكتريا الحيوية في السقف من تصميم بيركنز وويل

البكتريا المضيئة في الوجهات المعمارية (الاضاءة الخارجية)

تُصنع هذه الأضواء عن طريق ملء علب شفافة صغيرة بهلام يحتوي على بكتيريا مضيئة حيوياً. تستخدم شركة "غلوي" بكتيريا تُسمى "أليفيبريو فيشيري"، والتي تُعطي الحيوانات البحرية، مثل حبار هاواي قصير الذيل، القدرة على التوهج بضوء أزرق مخضر. يوفر هذا الجل العناصر الغذائية التي تُبقى البكتيريا حية.

في البداية، لم تعمل الأضواء إلا لبضع ثوانٍ. ولكن من خلال تعديل قوام الجل لتوصيل العناصر الغذائية بكفاءة أكبر، تمكن الفريق من إطالة عمر ها إلى ثلاثة أيام.

يعمل الباحثون باستخدام البكتيريا الموجودة في الحبار على استبدال مصابيح الشوارع الكهربائية بالإضاءة الحيوية ووضعها على الأشجار وعلى الواجهات المعمارية في جميع أنحاء العالم. فالأشجار ذاتية التوهج صديقة للبيئة أكثر من المصابيح الكهربائية، حتى بدون تشغيل أي مصابيح كهربائية، فهي تعمل على توجيه الأشخاص في الظلام كما بالتصميم الافتراضي للواجهات المعمارية وممرات الحركة 26.

مصابيح الإضاءة الحيوية ليست جديدة. لكن شركة غلوي من أوائل الشركات التي طورت منتجًا تجاريًا، ويُسوّق حاليًا للمتاجر. في فرنسا، لا يُسمح لتجار التجزئة بإضاءة واجهات متاجرهم بين الساعة الواحدة صباحًا والسابعة صباحًا للحد من تلوث الضوء واستهلاك الطاقة. تُتيح هذه المصابيح البكتيرية المتوهجة بشكل خافت - والتي تُضاهي سطوع مصابيح الليل - وسيلةً للالتفاف على الحظر.

صورة (26) استخدام الإضاءة الحيوية على واجهات المعمارية إفتراضية وعلى الأشجار وفي ممرات الحركة

ترغب شركة Glowee في استخدامها لأغراض أخرى أيضًا، بما في ذلك الإضاءة الزخرفية، وواجهات المباني، ولوحات الشوارع، بالإضافة إلى توفير الإضاءة في الأماكن التي لا توجد بها كابلات كهرباء، مثل الحدائق.

شركة ERDF، وهي شركة مرافق عامة مملوكة للدولة بشكل كبير وتدير 95% من شبكة الكهرباء في فرنسا، من بين الداعمين لحملة التمويل الجماعي الأخيرة التي أطلقتها .Gloweeيقول ري: "لم يُقصد بـ Glowee أن تحل محل الإضاءة الكهربائية؛ بل إنها توفر إمكانيات مختلفة". ولكن ما مدى جدوى هذه الفكرة على المدى البعيد؟ تعتقد إديث ويدر، من جمعية أبحاث المحيطات والحفاظ عليها في فورت بيرس، فلوريدا، أن تكاليف إنتاج أعداد كبيرة من البكتيريا المضيئة حيوياً والحفاظ عليها في ظروف بيئية مناسبة باهظة للغاية بالنسبة لمعظم احتياجات الإضاءة التجارية.

وتقول إن جعل البكتيريا تستمر في العمل لأكثر من بضعة أيام يتطلب إضافة عناصر غذائية إضافية والتخلص من الفضلات. "إذا حسبنا ذلك، فلن يكون منطقياً، خاصةً عند الأخذ في الاعتبار الكفاءة المذهلة التي أصبحت عليها إضاءة ". LED. لكن شركة غلوي لم تتراجع. فبعد تعديل تركيب هلامها، تقوم الأن بهندسة البكتيريا وراثياً. وتقول راي إن فريقها يطور مفتاحاً جزيئياً يُفعَل التلألؤ الحيوي ليلاً فقط. وهذا سيسمح للبكتيريا بتوفير الطاقة خلال النهار ويطيل عمر العناصر الغذائية. يخطط الفريق أيضًا لجعل البكتيريا أكثر توهجًا وتحمل تقلبات درجات الحرارة التي تصل إلى ٢٠ درجة مئوية. يقول راي إن الشركة ستطلق منتجًا تجاريًا في عام ٢٠ ١٧ بدوم لمدة شهر.

يقول راي إن الحلول موجودة في الطبيعة. "الآن وقد أصبح لدينا الأدوات اللازمة لتقليدها، يمكننا بناء عمليات ومنتجات أكثر استدامة بكثير."

إضاءة وحدات عرض المحلات بمصباح جلوGlowee

صممت ساندرا ري Sandra Rey وحدات إضاءة من البكتريا الحيوية لإعطاء إضاءة ناعمه بدوناستخدام الكهرباء ليلاً.

صورة (27، 28، 29) صور توضح شكل واجهات المحلات التجارية مضاءة من مصدر ضوئي يستخدم نفس البكتيريا الموجودة في الحبار العطاء إضاءة ناعمة خالية من الكهرباء في الليل

في فرنسا، تمنع قوانين التلوث الضوئي تجار التجزئة من إضاءة واجهات متاجر هم بين الساعة الواحدة صباحًا والسابعة صباحًا. ولكن في أحد الأيام، تحلم ساندرا راي بأنه إذا ذهبت في نزهة في منتصف الليل على طول شارع الشانزليزيه، فإن واجهات المتاجر واللافتات ستتوهج بوهج من عالم آخر، من مصدر إضاءة لا يُرى عادةً إلا من خلال المياه المظلمة للمحيط في الليل.

لتحقيق ذلك، أطلقت شركة راي، "جلوي"، أول منتج تجاري لها: ضوء يعمل بالبكتيريا، وتسوقه الشركة لتجار التجزئة في فرنسا. يعمل هذا الضوء عن طريق حبس بكتيريا تُسمى "أليفيبريو فيشيري"، التي تُعطي الكائنات البحرية، مثل حبار هاواي قصير الذيل، توهجها الحيوي المزرق، داخل عبوة شفافة من هلام مغذي. عندما تأكل البكتيريا، تُصدر توهجًا أزرق مخضرًا، بقوة تُقارب قوة ضوء الليل. قد لا يبدو هذا كبيرًا، لكن "الجميل في الأمر أنه حتى لو كانت القوة أقل، فإن كون الضوء مُسلطًا على السطح بالكامل يُوفر مناطق إضاءة أكبر"، كما أوضح راي عبر البريد الإلكتروني.

مع ذلك، لا تكفي طاقة الإضاءة الخام هذه لاستبدال المصابيح التقليدية أو مصابيح .LED ولكن ليس بالضرورة. فبالإضافة الى واجهات المتاجر، تتخيل غلوي استخدامًا للإضاءة الزخرفية، ولافتات المدن، وإضاءة الأرضيات، وإضاءة السلامة، وفي المهرجانات، وغيرها. وهناك مزايا أخرى: لا يتطلب غلوي بنية تحتية كهربائية. فالعلب التي تحتوي على جل غلوي مصنوعة من راتنج عضوي قابل للتخصيص بالكامل، بسمك سنتيمتر واحد تقريبًا؛ ورغم أنها تبدو الأن أشبه بالغلاف، إلا أنه يمكن للفنانين والمصممين تشكيلها حسب الطلب بأي شكل يرغبون في ابتكار تصاميمهم الخاصة المدعومة بغلوي.

ومع ذلك، هناك تحديات تنتظرنا. أولًا، يُعد استبدال المصابيح الكهربائية بما هي في جوهرها أكياس طعام مليئة بالبكتيريا مشكلة فريدة من نوعها - خاصة فيما يتعلق بمدة عملها. في الوقت الحالي، لا يُصدر مصباح Glowee الضوء إلا لمدة ثلاثة أيام قبل أن ينطفئ. عندها، ستأتي Glowee لاستبداله؛ تعمل الشركة الناشئة بنظام الاشتراك، حيث يستأجر تجار التجزئة مصابيحهم. وبالنظر إلى أن العديد من مصابيح LED يمكنها إصدار ضوء يكفي لمدة عامين أو أكثر، فإن ثلاثة أيام تبدو ضئيلة. لكنها أفضل بكثير من النماذج الأولية لشركة Glowee، والتي لم تُصدر سوى بضع ثوانٍ. في الواقع، من خلال تعديل هلامها المغذي، تعتقد Glowee أنه بحلول عام 2017، ستدوم مصابيحها بسهولة لمدة شهر واحد. ولأن عمل خلال تعديل هلامها المغذي، العملاء الذين يستأجرون مصباحًا الأن سيلاحظون تحسنًا تدريجيًا بمرور الوقت مع المزيد من التطوير 27.

على المدى البعيد، تعمل شركة Glowee بجد على هندسة بكتيرياها وراثيًا لتنشيط قدرتها على التلألؤ الحيوي ليلًا فقط، بالإضافة إلى تكاثرها بمعدل أبطأ. قد يؤدي ذلك إلى إطالة عمر مصباح Glowee لمدة تصل إلى عام أو أكثر. ويقول راي إن إمكانية تحسين شدة إضاءة Glowee من خلال الهندسة الوراثية "هائلة" أيضًا. في الوقت الحالي، تُستخدم Glowee بشكل أفضل في اللافتات المؤقتة، ولهذا السبب، فإن أوائل عملائها - وإن كانوا لا يزالون سريين - يعملون في قطاعات مثل تجارة التجزئة والبناء، في مجال أضواء السلامة والتحذير.

لكن بدعم من شركات مثل ERDF، التي تدير 95% من شبكة الكهرباء الفرنسية، تقول راي إنها تأمل في نهاية المطاف أن تُحدث أضواء Glowee تأثيرًا ملحوظًا على استهلاك الكهرباء في العالم، حيث يُخصص حوالي 19% منها لإنتاج الإضاءة. إذا نجحت، فقد يكتسي الليل في المدن بريقًا سايبربانكيًا مميزًا.

مكونات وحدة الإضاءة:

مصباح يعمل بالبكتيريا، إنه يعمل عن طريق حبس بكتيريا وراثية مستخلصة من الحبار تسمى أليفيبريو فيشيري Aliivibrio fischeri لتنشيط تلألؤها الحيوي في الليل فقط - وكذلك التكاثر بمعدل أبطأ. قد يؤدي ذلك إلى زيادة عمر

مصباح جلو Glowee لمدة عام أو أكثر، والتي تعطي الكائنات البحرية مثل الحبار هاواي بوبتيل Hawaiian bobtail توهجها الحيوي المزرق، داخل حزمة شفافة من هلام المغذيات جنبًا إلى جنب مع السكر والأكسجين للحفاظ على البكتيريا حية.

عندما تأكل البكتيريا، فإنها تعطي توهجاً أخضر ، كما أن العلب التي تحتوي على المغذيات مصنوعة من راتينج عضوي قابل للتخصيص بالكامل، يبلغ سمكه حوالي مزرقاً 1سم، يمكن تشكيلها حسب الطلب في أي شكل من قبل الفنانين والمصممين الذين يرغبون في إنشاء تصميماتهم الخاصة.

مقاعد حيويه مضيئة في الشوارع

أول اختبار لمصابيح الشوارع "الحية" وهو مفهوم استخدام الإضاءة الطبيعية وليس ضوء الشمس، فهي كما أن هذه المصابيح العضوية أرخص وأقل تلويث تستغل التلألؤ الحيوي للبكتيريا لإضاءة الطريق بطريقة بيئيه. كما أنها تستخدم كميات أقل من المياه 28. مكونات وحدة الإضاءة:

تتكون من أنابيب مياه مالحة خاصة بها بكتيريا ذات إضاءة حيوية مع (العناصر الغذائية الأساسية والأكسجين .) لإيقاف تشغيلها، يمكن ببساطة "إيقاف" الأكسجين الذي يغذي البكتيريا. هذا يضع الكائنات الحية في حالة الهوائية لا يستمر فيها التمثيل الغذائي، الذي يسير جنبًا إلى جنب مع التلألؤ البيولوجي.

صورة (30) لقطة منظورية توضح فرضية أثاث الشوارع على أساس مصابيح الإضاءة الحيوية

النتائج:

- تلعب البكتيريا الموجوده في الحبار علي استبدال المصابيح الكهربائيه بالاضاءة الحيويه مما يعمل علي توفير الطاقه الكهربائيه.
 - إن استخدام البكتريا الحيوية المضيئة يساعد على الحد من التلوث الضوئي باستخدام إضاءة ناعمة بدون استخدام الكهرباء.
- استخدام فكرة البكتيريا الحيويه المضيئة تغير بشكل أساسي الطريقة التي ننظر بها إلى الإضاءة والتصميم. يعمل التوهج الناتج للكائنات الحيه على اضاءه الحيزات الداخلية مما يساعد الكائنات الحيه على الاضاءه وزياده التوهج.

التوصيات:

- تشجيع المصممين على الاستمرار في البحث عن الكائنات الحية التي تتمتع بقدرة طبيعية على التوهج، إذ لا تزال هناك إمكانية لتطوير توهج قوي بما يكفي ليصبح بديلاً فعّالاً للمصابيح التقليدية.
 - تقليل استهلاك الطاقات غير المتجددة لأنه يؤثر بالسلب على البيئة.

المراجع

المراجع الأجنبية

Campisi,D., Gitto, S., and Morea, d., Light Emitting Diodes Technology in Public Light System of the Municipality of Rome: An Economic and Financial Analysis. International Journal of Energy Economics and Policy, Vol 7, Issue 1, International Journal of Energy Economics and PolicyISSN: 2146-4553. 200:208 (2017)

Czyz, A.; Wróbel, B.; Wegrzyn, G. (2000-02-01). "Vibrio harveyi bioluminescence plays a role in stimulation of DNA repair". Microbiology. 146 (2): 283–288. doi:10.1099/00221287-146-2-283. ISSN 1350-0872. PMID 10708366.

T. L. Phipson, Phosphorescence – or the Emission of Light by minerals, Plants and animals 1862, London,

S. Aditya, K. Kalpna, in Bioluminescence (Eds.: S. Hirobumi, O. Katsunori), IntechOpen, Rijeka, 2021, p. Ch. 7.

Waters, Christopher M.; Bassler, Bonnie L. (2005-10-07). "QUORUM SENSING: Cell-to-

Cell Communication in Bacteria". Annual Review of Cell and Developmental

Biology. 21 (1): 319-346. doi:10.1146/annurev.cellbio.21.012704.131001

Widder, E. A. (2010-05-07). "Bioluminescence in the Ocean: Origins of Biological,

Chemical, and Ecological Diversity". Science. 328 (5979): 704–708.

)المواقع الإلكترونية (الإنترنت

https://arsco.org/articles/article-detail-15410/

https://www.architectmagazine.com/

https://aquarium.ucsd.edu/visit/exhibits/infinity-cube

https://biofilm.montana.edu/bioglyphs/project-1/gallery.html

https://bloomtrigger.wordpress.com/2012/04/28/eco-design-bio-light-your-home-with-

bioluminescent-bacteria

https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cbic.202400106

https://designdash.com/design/bioluminescent-lighting-natures-illumination-in-man-made-fixtures/

https://en.futuroprossimo.it/2022/04/in-francia-partono-i-test-per-i-lampioni-bioluminescenti/https://www.earthisland.org/journal/index.php/magazine/entry/engineered-glowing-plants-nanotech-environment/

https://www.fastcompany.com/3057873/this-french-startup-thinks-the-future-of-lighting-is-bioluminescent

https://interiordesign.net/designwire/16-futuristic-hospitality-ideas-presented-virtually-at-sleep-and-eat/

https://interiordesign.net/

https://latzlab.ucsd.edu/

https://www.newsweek.com/milky-seas-bioluminescence-white-glow-1723956

https://www.rambouillet-tourisme.fr/

https://roughdiplomacy.com

https://siberiantimes.com/science/casestudy/news/the-worm-has-turnedluminous-blue/

https://www.trendhunter.com/trends/lighting-solution

https://www.tmc.edu/news/2020/07/fireflies-help-kindle-new-tests-and-treatments-for-covid-

19/https://www.wired.com/01/2015/lamp-whose-light-comes-bioluminescent-bacteria/

مجلة العمارة والفنون والعلوم الإنسانية - المجلد العاشر - عدد خاص (14) المؤتمر الدولي الأول - (الذكاء الاصطناعي والتنمية المستدامة)

- ² Waters, Christopher M.; Bassler, Bonnie L. (2005–10–07). "QUORUM SENSING: Cell–to–Cell Communication in Bacteria". *Annual Review of Cell and Developmental Biology*. **21** (1): 319–346. doi:10.1146/annurev.cellbio.21.012704.131001
- ³ Widder, E. A. (2010–05–07). "Bioluminescence in the Ocean: Origins of Biological, Chemical, and Ecological Diversity". *Science*. **328** (5979): 704–708.
- ⁴ https://www.newsweek.com/milky-seas-bioluminescence-white-glow-1723956
- ⁵ Czyz, A.; Wróbel, B.; Wegrzyn, G. (2000–02–01). "Vibrio harveyi bioluminescence plays a role in stimulation of DNA repair". Microbiology. **146** (2): *283*–288. <u>doi: 10.1099/00221287–146–2–283</u>. <u>ISSN 1350–0872</u>. <u>PMID 10708366</u>. https://arsco.org/articles/article-detail-15410/
- ⁷ T. L. Phipson, *Phosphorescence or the Emission of Light by minerals, Plants and animals* 1862, London,
- ⁸ https://designdash.com/design/bioluminescent-lighting-natures-illumination-in-man-made-fixtures/
- ⁹ S. Aditya, K. Kalpna, *in Bioluminescence* (Eds.: S. Hirobumi, O. Katsunori), IntechOpen, Rijeka, 2021, p. Ch. 7.
- ¹⁰ https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cbic.202400106
- 11 https://designdash.com/design/bioluminescent-lighting-natures-illumination-in-man-made-fixtures/
- 12 https://designdash.com/design/bioluminescent-lighting-natures-illumination-in-man-made-fixtures/
- 13 https://www.earthisland.org/journal/index.php/magazine/entry/engineered-glowing-plants-nanotech-environment/
- ¹⁴https://roughdiplomacy.com
- 15 https://www.tmc.edu/news/2020/07/fireflies-help-kindle-new-tests-and-treatments-for-covid-19/
- 16 https://siberiantimes.com/science/casestudy/news/the-worm-has-turnedluminous-blue/
- 17 https://latzlab.ucsd.edu/
- https://aquarium.ucsd.edu/visit/exhibits/infinity-cube
- ¹⁹ https://bloomtrigger.wordpress.com/2012/04/28/eco-design-bio-light-your-home-with-bioluminescent-bacteria
- ²⁰ https://biofilm.montana.edu/bioglyphs/project-1/gallery.html
- ²¹ Dr..Hadeel Maher Hassan Mohamed Elkot The role of bioluminescent bacteria in the future of lighting in interior architecture spaces Mağallat Al-'imārah wa Al-Funūn wa Al-'ulūm Al-Īnsāniyyat vol10 no.50 March 2025
- ²² https://www.trendhunter.com/trends/lighting-solution
- ²³ https://www.wired.com/01/2015/lamp-whose-light-comes-bioluminescent-bacteria/
- ²⁴ https://interiordesign.net/designwire/16-futuristic-hospitality-ideas-presented-virtually-at-sleep-and-eat/
- ²⁵ https://interiordesign.net/
- ²⁶ https://www.rambouillet-tourisme.fr/
- ²⁷ https://www.fastcompany.com/3057873/this-french-startup-thinks-the-future-of-lighting-is-bioluminescent
- ²⁸ https://en.futuroprossimo.it/2022/04/in-francia-partono-i-test-per-i-lampioni-bioluminescenti/

¹ https://designdash.com/design/bioluminescent-lighting-natures-illumination-in-man-made-fixtures/