
38 

 

 
Performance Enhancement of DC-Motor Based on Multi Different  

Control Techniques  

Amgad Salem1, M.A.Abdelghany2, Shorouk Osama3 

 

1,2,3Department of Electrical Engineering, Faculty of Engineering, October 6University,6thof 

October City, 12585, Giza, Egypt. 

 
*Corresponding author email: amgadaboraya.eng@ o6u.edu.eg 

DOI : 10.21608/ijeasou.2025.387627.1052 
 

 

 

 

 

 

 

 

Received:21-05-2025 

Accepted:1-07-2025 

Published:07-07-2025 

 

Abstract: DC servo motors are critical in automation, robotics, and precision control 

systems due to their rapid response and high torque capabilities. However, traditional 

Proportional-Integral-Derivative (PID) controllers suffer from inefficiencies in dynamic 

environments, including manual tuning challenges and poor adaptability to nonlinearities. 

This study systematically evaluates advanced control strategies—Genetic Algorithm 

(GA)-optimized PID, Self-Tuning PID, Fuzzy Logic Control (FLC), Fractional-Order 

PID (FOPID), and Relative Rate Observer (RRO)-based Self-Tuning Fuzzy PID 

(FPID)—to address these limitations. Through MATLAB/Simulink simulations, each 

method is assessed using performance metrics such as settling time, overshoot, and 

robustness under parametric variations. Results demonstrate that GA-optimized PID 

reduces overshoot by 40%, while the RRO-based Self-Tuning FPID achieves the fastest 

settling time (0.6 seconds) and near-zero steady-state error. The Self-Tuning FOPID 

controller emerges as the most robust, combining fractional calculus with real-time 

adaptation. This study underscores the synergy between computational intelligence and 
control theory, proposing future integration of deep learning for enhanced real-time 

optimization. 

 

Keywords: DC servo motor; PID control; Genetic Algorithm; Fuzzy logic; Fractional-

order control; Self-tuning; Metaheuristic optimization. 

 

 

I. Introduction 

DC servo motors are the cornerstone of modern automation and 

precision control systems, playing a pivotal role in applications 

ranging from industrial robotics and CNC machinery to 

aerospace actuators and medical devices. Their ability to deliver 

high torque, rapid acceleration, and precise angular positioning 

makes them indispensable in dynamic environments [1]. 

However, achieving optimal performance under variable loads, 

nonlinear dynamics, and external disturbances remains a 

significant challenge. Traditional control methodologies, 

particularly Proportional-Integral-Derivative (PID) controllers, 

have long been the industry standard due to their simplicity and 

reliability. Yet, their fixed-gain architecture and reliance on 

manual tuning render them inadequate for systems with time-

varying parameters or complex operational demands [2]. 

 

 

 

 

 

 

 

 

The limitations of conventional PID controllers are well-

documented. Manual tuning methods, such as Ziegler-Nichols, 

often yield suboptimal gains that fail to adapt to real-time 

changes in system dynamics, leading to excessive overshoot, 

prolonged settling times, and instability under disturbances [3]. 

For instance, in applications like robotic arms or electric vehicle 
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Fig.1Schematic diagram of DC-servo motor 
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traction systems, sudden load variations or mechanical wear can 

degrade PID performance, necessitating frequent recalibration 

[4]. These challenges have spurred the adoption of advanced 

control strategies that synergize classical control theory with 

computational intelligence. 

Recent advancements in metaheuristic optimization, fuzzy 

logic, and fractional calculus have introduced transformative 

solutions. Genetic Algorithms (GA), inspired by natural 

evolution, automate PID tuning by iteratively refining gains to 

minimize error metrics such as the Integral of Time-weighted 

Absolute Error (ITAE) [5]. Similarly, Self-Tuning PID 

controllers leverage fuzzy logic to dynamically adjust 

proportional, integral, and derivative gains (Kp,Ki,Kd) based on 

real-time error signals, enhancing adaptabilityin nonlinear 

systems [6]. Fractional-Order PID (FOPID) controllers extend 

this framework further by incorporating non-integer 

differentiation and integration orders (λ,μ), offering 

unparalleled flexibility in shaping transient and steady-state 

responses [7]. Notably, Makhbouche et al. (2023) demonstrated 

the efficacy of fractional-order controllers in handling time-

delay systems using immune feedback mechanisms [8], while 

Saleem and Abbas (2024) proposed nonlinear self-tuning 

FOPID for PMDC motors, achieving robust performance under 

dynamic loads [9]. 

The integration of fuzzy logic with PID control has also gained 

traction. Hybrid architectures, such as Fuzzy-PID and Relative 

Rate Observer (RRO)-based Self-Tuning Fuzzy PID (FPID), 

combine the precision of PID with the rule-based adaptability 

of fuzzy 

systems. For 

example, 

MOHAMED, Ahmed H., et a. (2019) demonstrated that RRO-

based FPID controllers reduce oscillations by 30% in DC motor 

systems under load disturbances [10]. These methodologies 

address the "exploration-exploitation" dilemma inherent in 

control systems, balancing robust stability with real-time 

adaptability [11]. 

Emerging trends in artificial intelligence, such as deep learning 

and reinforcement learning, are further revolutionizing control 

strategies. Recent studies by Ahmed et al. (2021) integrated 

genetic algorithms with backstepping controllers for 

photovoltaic systems, showcasing enhanced adaptability under 

partial shading [12]. Similarly, Bhimte et al. (2024) applied 

fractional-order fuzzy PID controllers to precise position 

control in servo systems, achieving sub-millimeter accuracy 

[13]. 

Despite these innovations, a systematic comparison of 

advanced control strategies for DC servo motors—evaluating 

their computational complexity, implementation feasibility, 

and performance under parametric variations—remains 

underexplored. Prior studies, such as Wahyunggoro and Saad’s 

evaluation of fuzzy self-tuning PI controllers [14] or Singhal et 

al.’s FOPID design for motor speed control [15], have focused 

on individual methods without holistic benchmarking. This gap 

motivates the present study, which aims to: 

▪ Compare GA-optimized PID, Self-Tuning PID, Fuzzy-

PID hybrids, FOPID, and RRO-based FPID controllers. 

▪ Quantify their performance using metrics like settling 

time, overshoot, and disturbance rejection. 

▪ Provide actionable insights for selecting context-

appropriate strategies in industrial applications. 

This paper is structured as follows: Section 2 details the 

mathematical modeling of the DC servo motor and control 

methodologies. Section 3 presents simulation results and 

comparative analysis, while Section 4 discusses trade-offs and 

practical implications. Section 5 concludes with 

recommendations for future research. 

II. Methodology 

This section details the mathematical modeling of the DC servo 

motor, the design and implementation of advanced control 

strategies, and the simulation framework used for performance 

evaluation. The methodologies are grounded in established 

control theory and recent advancements in computational 

intelligence, with references to both foundational and 

contemporary literature. 

II. 1 System Modeling 

A DC servo motor as depicted in Fig. 1 is used as a reference. 

From physical laws a straightforward mathematical relationship 

between the shafts angular position and the DC motors voltage 

input can be obtained. A DC servo motor can be regarded as a 

SISO plant from the perspective of the control system [16]. 

Consequently, issues pertaining to multi-input systems are 

eliminated. The armature and field coil are connected in parallel 

in DC servo motors. The armatures current and the field coils 

current are unrelated. These motors have outstanding speed and 

position control as a result. 

The DC servo motor is modeled as in F.g.2 using 

electromechanical equations derived from Kirchhoff’s voltage 

law and torque-balance principles [17]. Key parameters 

include: 

 

𝐸𝑎(𝑠) =  𝑅𝑎 . 𝐼𝑎(𝑠) + 𝐿𝑎 . 𝑠. 𝐼𝑎(𝑠)𝐸𝑏(𝑠)         (1) 

𝑇𝑚(𝑠) =  𝐾𝑡 . 𝐼𝑎(𝑠)                                          (2) 

𝐸𝑏(𝑠) =  𝐾𝑏 . 𝑠. 𝜃(𝑠) (3)  

𝑇𝑚(𝑠) =  (𝐽𝑚. 𝑠2 + 𝐷𝑚. 𝑠) 𝜃(𝑠) (4) 

• Electrical parameters: Armature resistance Ra=2.45Ω, 

inductance La=0.035H, back EMF constant Kb

=1.2V/(rad/s). 

• Mechanical parameters: Moment of inertia, viscous 

friction. 

Combining these yields the transfer function: 

𝐺(𝑠) =
𝐾𝑡

𝐿𝑎.𝐽𝑚 .𝑠3+(𝑅𝑎 .𝐽𝑚+𝐿𝑎.𝐷𝑚)𝑠2+(𝐾𝑏.𝐾𝑡+𝑅𝑎 .𝐷𝑚)𝑠
 (5)                          

The transfer function (Eq.5) is derived as: 

𝐺(𝑠) =
1.2

 0.00077𝑠3+0.0539 𝑠2+1.441 𝑠
 (6)         

 

II. 2 Control Strategies 

Fig.2Modeling of a DC Servo motor 
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➢ Conventional PID Controller 

Consider the transfer function of the DC servo motor as, 

 

𝐺(𝑠) =

 
𝐾

𝐵1𝑠3+𝐵2𝑠2+𝐵3𝑠
  

 

By comparing equations (1) and (2), 𝐵1=𝐿𝑎 . 𝐽𝑚,𝐵2= 𝑅𝑎 . 𝐽𝑚 +
𝐿𝑎 . 𝐷𝑚, and 𝐵3 = 𝐾𝑏 . 𝐾𝑡 + 𝑅𝑎 . 𝐷𝑚. 

The transfer function of the PID controller can be written as, 

𝑐(𝑠) = 𝐾𝑃 +
𝐾𝐼

𝑠
+ 𝐾𝐷𝑠  (7) 

Then the overall transfer function for a unity feedbacksystem 

will be,  

 (8) 

 

 

➢ GA-Optimized PID 

The Genetic Algorithm (GA) automates PID tuning by 

minimizing the Integral of Time-weighted Absolute Error 

(ITAE) 

(9) 

 

• GA Parameters: Population size = 50, generations = 

20, crossover probability Pc=0.8, mutation 

probability Pm=0.01 [3]. 

• OptimizedGains: Kp=7.68Kp=7.68, Ki=28.86Ki

=28.86, Kd=0.002Kd=0.002, obtained after iterative 

refinement (Fig. 4) [18]. 

➢ Self-Tuning PID with Fuzzy Logic 

A fuzzy logic system dynamically adjusts Kp, Ki, Kd based on 

error (e) and error derivative (e˙): 

• Inputs: Normalized ee and e˙, with membership functions 

{NB, NM, NS, ZE, PS, PM, PB}. 

• Outputs: Scaling factors Kp1, Ki1, Kd1, with membership 

functions {Z, MS, S, M, B, MB, VB}. 

• Rule Base: 49 rules Table 1 derived from Chen and 

Pham’s methodology [8]. 

 

 

 

 

 

The PID gains are updated as: 

Kp2=Kp⋅Kp1,Ki2=Ki⋅Ki1,Kd2=Kd 

 

 

 

 

Table 1Rule base for determining Kp1 
ce 

e 
NB NM NS ZE PS PM PB 

NB VB VB VB VB VB VB VB 
N
M 

MB 
MB 

MB MB B 
MB 

VB 

NS B B B B MB B VB 
ZE ZE ZE ZE MS S S S 
PS B B B B MB B VB 
PM MB MB MB MB B MB VB 
PB VB VB VB VB VB VB VB 

 

➢ Fractional-Order PID (FOPID) 

Fractional-order PID controllers extend classical PID control by 

incorporating non-integer differentiation and integration 

orders (denoted as λ and μ, respectively). This additional 

flexibility allows precise tuning of transient and steady-state 

responses, particularly in systems with complex dynamics such 

as DC servo motors [7].  

The fractional-order PID (FOPID) controller is a generalization 

of the standard PID controller. The transfer function of a FOPID 

controller can be described in Laplace domain as 

FOPID = Kp+ Kis
−λ+ Kds

µ; (λ, µ >0)    (10)      

The result in (1) can be used to determine the time-domain 

representation of the control signal of a FOPID. 

 

u(t) =Kp e(t) +Ki D−λ e(t) +Kd D µ e(t)  (11) 
where Kp, Ki, and Kdare the proportional, integral, and 

derivative gains, while λ and µ are the fractional orders of 

integration and differentiation, usually λ, µ ∈ (0, 1).). Using (2), 

theblock diagram of the FOPID can be derived as indicated in 

Figure 10. Bec 

use of t 

Fig.3 Genetic Algorithm Architecture 

Fig.4 Fuzzy self-tune PID 
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twosupplementary tuning parameters, λ and µ, the FOPIDs have 

increased flexibility in the design and can be tuned to be more 

robust compared to their integer-order counterparts [8]. 

• Optimization: GA tunes Kp, Ki, Kd, λ, μ within predefined 

ranges (Table 4) [10]. 

• Final Parameters: Kp=9.86, Ki=79.89, Kd=2.17, λ=0.5, 

μ=0.89. 

After initialization, the optimization algorithm iteratively 

evaluates and stores the fitness of the particles using the integral 

of time-square-of-errors (ITAE), as given in Eq. 12. The initial 

parameters spaces of all the controller parameters are given in 

Table 2. 

𝐽𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = ∫ 𝑡𝑒2(𝑡)𝑑𝑡 
∞

0
                 (12) 

➢ Self-Tuning of Fractional Order PID Controller 

Design 

The design of the fuzzy logic system is tailored to the specific 

dynamics and control objectives of the system. As outlined in 

Equation (11), the fractional-order PID (FOPID) controller’s 

parameters Kp, Ki, and Kd are dynamically adjusted using this 

fuzzy system. The resulting fractional-order fuzzy PID 

controller integrates three independent fuzzy proportional (P), 

integral (I), and derivative (D) modules with the core FOPID 

structure, as depicted in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fuzzy system employs two input signals: Absolute 

error (∣e∣) &Absolute derivative of error (∣e˙∣), 

both normalized to the range [0, 1]. These inputs are derived 

from the discrepancy between the system’s actual position and 

its desired trajectory. The input signals are partitioned into four 

uniformly distributed membership functions—Small 

(S), Medium (M), Big (B), and Very Big (VB). Similarly, the 

output signals for Kp, Ki, and Kd are normalized to [0, 1] and 

segmented into equal intervals within their respective fuzzy 

output blocks. 

A rule-based framework governs the adjustment of these 

outputs. The rules, defined in Tables 5, correlate input 

conditions (e.g., error magnitude and its rate of change) with 

appropriate adjustments to the controller gains. For instance: 

• IF ∣e∣ is B AND ∣e˙∣ is VB, THEN increase Kp. 

This structured approach ensures precise, context-aware tuning 

of the FOPID parameters, enhancing adaptability to system 

nonlinearities and transient demands. 

The Fuzzy Self-Tuning Fractional Order PID (FSTFO-PID) 

controller represents a sophisticated advancement in control 

engineering, merging the mathematical rigor of fractional 

calculus with the adaptive intelligence of fuzzy logic. This 

hybrid controller is specifically designed to address the 

limitations of classical PID controllers in handling nonlinear, 

time-varying, and complex dynamic systems, such as DC servo 

motors. By integrating fractional-order differentiation and 

integration with real-time parameter tuning via fuzzy inference, 

the FSTFO-PID achieves unparalleled precision, adaptability, 

and robustness. The Figure 10 as shown block diagram of  self-

tuning Fractional Order PID Controller [15]. 

In practical applications such as DC servo motor control, the 

FSTFO-PID controller demonstrates significant advantages. 

DC servo motors, which require precise regulation of angular 

position and speed under variable loads and mechanical wear, 

benefit from the controller’s ability to auto-tune parameters in 

response to disturbances like torque ripple or inertia changes. 

For instance, during sudden load transitions, the fuzzy logic 

system can suppress oscillations by dynamically increasing the 

derivative gain (Kd) while adjusting the fractional 

differentiation order (μ) to dampen high-frequency noise. 

Experimental studies have shown that FSTFO-PID controllers 

achieve settling times up to 40% faster than classical PID 

controllers, with steady-state errors reduced to less than 1% 

under similar operating conditions [19]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

➢ Relative Rate Observer Based Self-tuning of FPID 

Controller 

The Relative Rate Observer (RRO)-based self-tuning 

mechanism for Fuzzy PID (FPID) controllers is an adaptive 

control strategy designed to enhance the performance of 

classical FPID systems by dynamically adjusting key 

GA 

Fig.5 Block diagram of optimized 

Fractionalorder PID (FOPID) controller 

DC 

Serv

o 

Table 2 Range of values of controller 

parameters  

DC 

serv

o 

Mot

Fig.6 The block diagram of self-tuning 

FOPID control (the first technique). 
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parameters in real time. This method leverages fuzzy logic to 

interpret system behavior through a novel metric called the 

"normalized acceleration," enabling precise tuning of scaling 

factors associated with integral and derivative actions. The 

integration of RRO ensures smoother transient responses, 

reduced oscillations, and improved stability in systems with 

nonlinear dynamics or time-varying parameters, such as 

industrial servo motors or process control systems. 

At the core of this approach lies the Relative Rate Observer, a 

fuzzy inference mechanism that monitors the system’s error 

(ee) and its normalized acceleration (rv). The normalized 

acceleration, defined as the second derivative of error scaled by 

the incremental change in error (de), provides critical insights 

into the system’s dynamic behavior—whether it is responding 

too rapidly or sluggishly. Mathematically, rv is expressed as: 

rv(k)=
𝑑𝑑𝑒(𝑘)

𝑑𝑒(.)
 (13) 

where dde(k)=de(k)−de(k−1), and de(.) is selected as the larger 

of ∣de(k)∣ or ∣de(k−1)∣. This metric quantifies the "relative 

speed" of the system’s response, serving as a key input to the 

fuzzy tuning mechanism [20]. 

➢ Parameter Adjustment 

Derivative Scaling Factor (GCE): Adjusted by multiplying a 

predefined value (GCE) with a tuning coefficient (Kf⋅Kfd). 

Integral Scaling Factor (GCU): Adjusted by dividing its 

nominal value (GCUs) by the same coefficient (Kf). 

The fuzzy inference system uses meta-rules to govern these 

adjustments: 

IF the system response is slow, THEN reduce the derivative 

effect (decrease GCE). 

IF the error is small and the response is fast, THEN increase 

the derivative effect (increase GCE). 

 

 

 

 

 

 

 

 

 

 

 

The rule base correlates the error magnitude (∣e∣) and 

normalized acceleration (rv) to output adjustments.  

Membership functions for inputs and outputs are simplified to 

triangular and singleton types, reducing computational 

overhead for real-time implementation on PLCs. 

The advantage of this method over the peak observer method is 

that there is no need to keep the first peak unchanged [21]. 

The RRO-based self-tuning FPID controller bridges heuristic 

fuzzy logic with systematic control theory. By dynamically 

adjusting parameters based on real-time system behavior, it 

ensures precise frequency regulation in the EPS, even under 

severe disturbances and nonlinearities. Its simplicity, 

adaptability, and proven efficacy make it a promising solution 

for modern power systems. 

III. Simulation and Results 

The simulation framework was designed to rigorously evaluate 

the performance of advanced control strategies under both 

nominal and perturbed operating conditions. All controllers 

were implemented in MATLAB/Simulink R2023b, leveraging 

the Control System Toolbox for transfer function modeling and 

the Fuzzy Logic Toolbox for fuzzy inference systems [22]. The 

DC servo motor model (Eq.5) was simulated with the following 

parameters: 

• Nominal Conditions: Ra=2.45Ω, La=0.035H. 

• Perturbed Conditions: Ra=8Ω, La=0.08H, 

introducing parametric uncertainty to test robustness 

[23]. 

Implementation Details: 

I. PID Controllers: Designed using the pidtune function for 

Ziegler-Nichol’s tuning. 

II. GA Optimization: Executed via the Global Optimization 

Toolbox, with ITAE minimization as the fitness function 

(Eq. 8) [3]. 

III. Fuzzy Systems: Membership functions and rule bases 

were encoded using the Fuzzy Logic Designer. 

IV. FOPID: Fractional operators approximated using 

Oustaloup’s recursive filter. 

V. RRO-Based FPID: PLC-compatible code generated via 

Simulink Coder for real-time validation. 

This section presents a rigorous comparative analysis of the 

advanced control strategies applied to the DC servo motor. 

Performance metrics—settling time (Ts), percentage overshoot 

(%OS), steady-state error (sse), and robustness to parameter 

variations—are quantified under nominal and perturbed 

conditions. All results are derived from MATLAB/Simulink 

simulations Figs. 7 and contextualized with prior studies. 

 

IV. Performance Under Nominal Conditions 
➢ GA-Optimized PID Controller 

• Settling Time: Ts=2.5s (30% faster than manual PID 

tuning). 

• Overshoot: OS=12% (40% reduction compared to 

Ziegler-Nichols PID). 

• Steady-State Error: ess=0.8%. 

 

➢  Self-Tuning PID with Fuzzy Logic 

• Dynamic Adaptation: Reduced %OS to 8% during 

step changes (Fig. 15). 

Table 3Relative rate observer FLC rule matrix9 

ɵ 
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• Rule Efficiency: The 49-rule fuzzy system (Tables 1 

to 3) maintained Ts=2.8s, comparable to GA-PID but 

with better disturbance rejection. 

➢  Fractional-Order PID (FOPID) 

• Fractional Flexibility: With λ=0.5 and μ=0.89, 

achieved Ts=1.8s, outperforming integer-order PID by 

40% (Fig. 16). 

• Steady-State Precision: ess=0.2%, demonstrating 

fractional calculus’s superiority in handling nonlinear 

dynamics. 

➢  RRO-Based Self-Tuning FPID 

• Optimal Performance: Near-zero overshoot 

(%OS=0.5%) and fastest settling (Ts=0.6s). 

• Simplified Rules: The 4-rule observer (Table 3) 

reduced computational latency by 15% compared to 

conventional fuzzy-PID. 

 

 

 

 

 

 

 

 

 

 

 

V. Conclusion 

This study systematically evaluated advanced control 

strategies for DC servo motors, addressing the limitations of 

conventional PID controllers. The RRO-based FPID emerged 

as the most robust solution, combining fuzzy adaptability with 

systematic tuning to achieve near-zero overshoot and rapid 

settling (Ts=0.6s) under disturbances. FOPID demonstrated 

superior flexibility in handling nonlinear dynamics but 

required specialized hardware for real-time 

implementation. GA-optimized PID provided precision at the 

cost of computational resources, while Self-Tuning 

PID balanced adaptability and complexity. 
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